MahdiMasoon
commited on
Commit
•
d47018c
1
Parent(s):
40b78d8
base
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +17 -17
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 260.86 +/- 19.75
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f49bc85bb80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f49bc85bc10>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f49bc85bca0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f49bc85bd30>", "_build": "<function ActorCriticPolicy._build at 0x7f49bc85bdc0>", "forward": "<function ActorCriticPolicy.forward at 0x7f49bc85be50>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f49bc85bee0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f49bc85bf70>", "_predict": "<function ActorCriticPolicy._predict at 0x7f49bc85e040>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f49bc85e0d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f49bc85e160>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f49bc85e1f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f49bc7df180>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678823043913716037, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAG4yBD9D/0s9cjitPE3sZb7pw52+piIOvwAAgD8AAAAAzb39PIXhoD9XU0s9kWDOvmhhzztOKs08AAAAAAAAAAAzbIO8DpLaPeJUATweIQ+9h+kiPOcbkTwAAAAAAAAAANBH8r7TZwk/lkgnvVOuNr7DvIS8Bl5VvQAAAAAAAAAAc+klvte9OT+O3Lc7GZlTvlrQhbxaE168AAAAAAAAAAAlGue+aJanPSZ1Qzo/Tz++ljBxvnQjmL4AAAAAAAAAAJqYnjzqHJ0/g56aPVe02b6vSvY8ikQsPQAAAAAAAAAAmqswvlCXgD/DswO+Ytejvpmhg732tjY9AAAAAAAAAAAaeO694dOLPjBMvTxkFxi+kmNvvCuIej0AAAAAAAAAAFiq5L58oEo900rcPD6LNLv+OT2+zchGOwAAgD8AAIA/7iWavqcvZj+/MqW+J1SEvqBZ2L1jyqe8AAAAAAAAAADGrjc+LtWbOzgtjLsMEzo8gdqlPSd1PL0AAIA/AACAPxohM72W/hs9GTcePaCKj70LACM86eSSuwAAAAAAAAAApqK2voidKT8O1RW+RlqBviWvmb3xdyM9AAAAAAAAAABmMos7YcEAPmYndj3V6++9/Ywyu85nlL0AAAAAAAAAAPOeTb6S+8w8+gK2O2c1KboA+l++2Ag5OwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIELBW7RriZUCUhpRSlIwBbJRNcgGMAXSUR0CZCNrYoRZmdX2UKGgGaAloD0MISIld21sTaUCUhpRSlGgVTY4BaBZHQJkLtme18b91fZQoaAZoCWgPQwheonpr4HltQJSGlFKUaBVNYwFoFkdAmQ1pTVDrq3V9lChoBmgJaA9DCBlybD1DdlFAlIaUUpRoFU3oA2gWR0CZD1pKjBVNdX2UKGgGaAloD0MIIEWduYeSSMCUhpRSlGgVTUcBaBZHQJkQn8ejmCB1fZQoaAZoCWgPQwgPtAJDVkdhQJSGlFKUaBVN6ANoFkdAmRW8baRISXV9lChoBmgJaA9DCOUn1T6d2m9AlIaUUpRoFU1dAWgWR0CZGWOzY287dX2UKGgGaAloD0MIke7nFOT0UECUhpRSlGgVTegDaBZHQJkdulchTwV1fZQoaAZoCWgPQwhI/mDgueJrQJSGlFKUaBVNmAFoFkdAmSA/OpsGgXV9lChoBmgJaA9DCHUfgNQmrGdAlIaUUpRoFU3AA2gWR0CZIRKB/ZuidX2UKGgGaAloD0MINfEO8KRNaECUhpRSlGgVTfkBaBZHQJkhun5zo2Z1fZQoaAZoCWgPQwjZe/FFe2NsQJSGlFKUaBVNawFoFkdAmSPISQHRkXV9lChoBmgJaA9DCL8MxohEgT/AlIaUUpRoFU0oAWgWR0CZJhR6nivQdX2UKGgGaAloD0MIpMLYQpC9ZUCUhpRSlGgVTXIBaBZHQJkmhudf9gp1fZQoaAZoCWgPQwh9dVWgFmVqQJSGlFKUaBVNYAFoFkdAmSb123azvHV9lChoBmgJaA9DCDkmi/uPlFZAlIaUUpRoFU3oA2gWR0CZKDPQv6CUdX2UKGgGaAloD0MIEHnL1Y/xSUCUhpRSlGgVTegDaBZHQJkozfixVyZ1fZQoaAZoCWgPQwjn4m97gjZsQJSGlFKUaBVNhQFoFkdAmS1n+ZPVNHV9lChoBmgJaA9DCBXFq6ztPG5AlIaUUpRoFU1qAWgWR0CZLh6VMVUNdX2UKGgGaAloD0MI2gOtwJCraUCUhpRSlGgVTXYBaBZHQJkw/RsuWbB1fZQoaAZoCWgPQwga3NYWnsxsQJSGlFKUaBVNUgFoFkdAmTHMYl6Z6XV9lChoBmgJaA9DCFMJT+j1hFlAlIaUUpRoFU3oA2gWR0CZMkYNiH6/dX2UKGgGaAloD0MIDRgkfVrDaECUhpRSlGgVTUYBaBZHQJkznIcR15l1fZQoaAZoCWgPQwg9Sbpm8sZdQJSGlFKUaBVNawJoFkdAmTSl1B+nZXV9lChoBmgJaA9DCPFiYYic4kZAlIaUUpRoFU3oA2gWR0CZNSgyuZCwdX2UKGgGaAloD0MIg6W6gJfya0CUhpRSlGgVTbABaBZHQJk1gDgZTAF1fZQoaAZoCWgPQwhX7ZqQ1sheQJSGlFKUaBVN6ANoFkdAmTZ21x82JnV9lChoBmgJaA9DCEG8rl+wG/i/lIaUUpRoFU1FAWgWR0CZNxKYAsCldX2UKGgGaAloD0MICJRNucKbEUCUhpRSlGgVTXUBaBZHQJk5rHNorWl1fZQoaAZoCWgPQwhq2sU0U4xkQJSGlFKUaBVNswFoFkdAmTo8/hVENXV9lChoBmgJaA9DCNuIJ7uZ8mpAlIaUUpRoFU3NAWgWR0CZO6Q04zacdX2UKGgGaAloD0MIhe/9DZoHcECUhpRSlGgVTegBaBZHQJlSrZIxxkx1fZQoaAZoCWgPQwiUap+Ox3A7wJSGlFKUaBVNEwFoFkdAmVgx/EwWWXV9lChoBmgJaA9DCEjCvp1E7WpAlIaUUpRoFU2sAmgWR0CZWVeXAuZkdX2UKGgGaAloD0MImN7+XLTgZUCUhpRSlGgVTX4BaBZHQJlZtalk6Lh1fZQoaAZoCWgPQwgWvVMBd1FsQJSGlFKUaBVNWgFoFkdAmVp/szEaVHV9lChoBmgJaA9DCI/9LJaigm1AlIaUUpRoFU2VAWgWR0CZW9EDyOJddX2UKGgGaAloD0MIGapiKv16a0CUhpRSlGgVTVkBaBZHQJlb41Gb1AZ1fZQoaAZoCWgPQwgFFsCUgW82QJSGlFKUaBVL/WgWR0CZXTW7voeQdX2UKGgGaAloD0MIuamB5vNwaUCUhpRSlGgVTXoBaBZHQJlfTJjlPrR1fZQoaAZoCWgPQwjLvFXXIadkQJSGlFKUaBVN+gFoFkdAmV+WuDBdlnV9lChoBmgJaA9DCKD6B5EMh0nAlIaUUpRoFUvVaBZHQJliu+bmU4d1fZQoaAZoCWgPQwi4Wicuxz9wQJSGlFKUaBVN4wFoFkdAmWM0aAFxGXV9lChoBmgJaA9DCGowDcNHUWxAlIaUUpRoFU1hAWgWR0CZY33aBZp0dX2UKGgGaAloD0MIsfm4NlRJZ0CUhpRSlGgVTbIBaBZHQJlm1pwjt5V1fZQoaAZoCWgPQwgtz4O7s9xrQJSGlFKUaBVNYAFoFkdAmWf0ZJkGzXV9lChoBmgJaA9DCDZWYp6VdBXAlIaUUpRoFU0UAWgWR0CZaC/NqxkedX2UKGgGaAloD0MI4GQbuAP6bECUhpRSlGgVTV4BaBZHQJlqQXxe9jB1fZQoaAZoCWgPQwgv3LkwUj9iQJSGlFKUaBVNuQJoFkdAmWyZyp71I3V9lChoBmgJaA9DCGGowwq3qG1AlIaUUpRoFU1iAWgWR0CZbfUGmk30dX2UKGgGaAloD0MIKxIT1PBnbkCUhpRSlGgVTZABaBZHQJluipvP1L91fZQoaAZoCWgPQwjJO4cyVPZpQJSGlFKUaBVN1gFoFkdAmW8in+AEuHV9lChoBmgJaA9DCMO4G0TrfG9AlIaUUpRoFU10AWgWR0CZcOskpqh2dX2UKGgGaAloD0MI+GwdHOxCUMCUhpRSlGgVTT8BaBZHQJlyItqYZ2p1fZQoaAZoCWgPQwhXsI14skRXQJSGlFKUaBVN6ANoFkdAmXKSAQQL/nV9lChoBmgJaA9DCAK6L2e2sU5AlIaUUpRoFU3oA2gWR0CZcy3z+WGAdX2UKGgGaAloD0MIE9VbA9t9aUCUhpRSlGgVTWQBaBZHQJl0U8kleGB1fZQoaAZoCWgPQwgNNnUeFRVlQJSGlFKUaBVN3QFoFkdAmXW0MPSUknV9lChoBmgJaA9DCAIPDCD8g2tAlIaUUpRoFU13AWgWR0CZeX55Z8rqdX2UKGgGaAloD0MIeJYgIyBFcECUhpRSlGgVTVMBaBZHQJl5/rY5DJF1fZQoaAZoCWgPQwjsUbgeBXxrQJSGlFKUaBVNXAFoFkdAmXyL2Dg62nV9lChoBmgJaA9DCI6VmGclzRtAlIaUUpRoFUv8aBZHQJl94XvYvnN1fZQoaAZoCWgPQwhM3gAz369MQJSGlFKUaBVN6ANoFkdAmYBRjawljXV9lChoBmgJaA9DCPKXFvVJ1EDAlIaUUpRoFU14AWgWR0CZgNPY4ACGdX2UKGgGaAloD0MI9l0R/O+xZUCUhpRSlGgVTX4CaBZHQJmDZ5Qgs9V1fZQoaAZoCWgPQwj6DKg3o0toQJSGlFKUaBVNWAFoFkdAmYUkQf6oEXV9lChoBmgJaA9DCMKFPIIbYm5AlIaUUpRoFU2BAWgWR0CZhYMzuWrwdX2UKGgGaAloD0MI5XrbTIUPb0CUhpRSlGgVTWIBaBZHQJmcT3BYV7B1fZQoaAZoCWgPQwh9kjtsordvQJSGlFKUaBVNaAFoFkdAmZ36+rU9ZHV9lChoBmgJaA9DCN5X5ULlV0/AlIaUUpRoFU0lAWgWR0CZoIQo1DSgdX2UKGgGaAloD0MIdGIP7eM2bUCUhpRSlGgVTbcBaBZHQJmjL5tWMjx1fZQoaAZoCWgPQwgDB7R0RRpwQJSGlFKUaBVNRAFoFkdAmaXKrWAf+3V9lChoBmgJaA9DCHGQEOUL5GpAlIaUUpRoFU2CAWgWR0CZq0jASFoMdX2UKGgGaAloD0MIRWgEG9fDbkCUhpRSlGgVTYwBaBZHQJmsTYAbQ1J1fZQoaAZoCWgPQwio4PCCiAVqQJSGlFKUaBVNdAFoFkdAmazuc6Nly3V9lChoBmgJaA9DCGEyVTAqSTLAlIaUUpRoFUvIaBZHQJmuR2JSBLB1fZQoaAZoCWgPQwjfbd44qbRvQJSGlFKUaBVNewFoFkdAmbArmp2lmHV9lChoBmgJaA9DCG3mkNTCoGhAlIaUUpRoFU2SAWgWR0CZsFKvmozfdX2UKGgGaAloD0MIXi7iOzGvV0CUhpRSlGgVTegDaBZHQJmwpwqAjIJ1fZQoaAZoCWgPQwiAngYMkvhXQJSGlFKUaBVN6ANoFkdAmbIC/oJRfnV9lChoBmgJaA9DCNfDl4kisEfAlIaUUpRoFU1SAWgWR0CZso3uuzQedX2UKGgGaAloD0MI6pYd4h/cWECUhpRSlGgVTegDaBZHQJm3g10knkV1fZQoaAZoCWgPQwjkh0ojZvBaQJSGlFKUaBVN6ANoFkdAmblT4L1EmnV9lChoBmgJaA9DCJQT7Sqk5CnAlIaUUpRoFU0mAWgWR0CZu8tuDSPVdX2UKGgGaAloD0MIpDSbx2FOaECUhpRSlGgVTSoCaBZHQJm70QK8cuJ1fZQoaAZoCWgPQwjhuIybmlhsQJSGlFKUaBVNsgFoFkdAmb7aGtZFHHV9lChoBmgJaA9DCERq2sU0xz/AlIaUUpRoFU0vAWgWR0CZwuzLfUF0dX2UKGgGaAloD0MI6xotB3p2bkCUhpRSlGgVTS4BaBZHQJnGifK6nR91fZQoaAZoCWgPQwjS4SGMn9dqQJSGlFKUaBVNpwFoFkdAmcbccdYGMXV9lChoBmgJaA9DCIo/ijrzbmtAlIaUUpRoFU2GAWgWR0CZxwxVAAyVdX2UKGgGaAloD0MIhSUeUDYTaECUhpRSlGgVTWsBaBZHQJnHcQNCqp91fZQoaAZoCWgPQwi2os1xbhFoQJSGlFKUaBVNbQFoFkdAmcfwGGEf1nV9lChoBmgJaA9DCNJVurvOoldAlIaUUpRoFU3oA2gWR0CZyTYsd1dPdX2UKGgGaAloD0MI1LfM6bJKVkCUhpRSlGgVTegDaBZHQJnL1SiudPN1fZQoaAZoCWgPQwjDoEyjyQ5uQJSGlFKUaBVNaAFoFkdAmc2D/6wdKnV9lChoBmgJaA9DCFluaTWkaGhAlIaUUpRoFU1dAWgWR0CZzhxKxs2vdX2UKGgGaAloD0MIrtSzIJRtakCUhpRSlGgVTVoBaBZHQJnPkEU0vXd1fZQoaAZoCWgPQwgh6GhVy8RsQJSGlFKUaBVNbQJoFkdAmc/vGp++d3V9lChoBmgJaA9DCKYO8nowvFpAlIaUUpRoFU3oA2gWR0CZ0VwGnn+ydX2UKGgGaAloD0MI5PkMqDeNbECUhpRSlGgVTVcBaBZHQJnRXUYsNDt1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.98, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3fa9ee3a60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3fa9ee3af0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3fa9ee3b80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3fa9ee3c10>", "_build": "<function ActorCriticPolicy._build at 0x7f3fa9ee3ca0>", "forward": "<function ActorCriticPolicy.forward at 0x7f3fa9ee3d30>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3fa9ee3dc0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3fa9ee3e50>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3fa9ee3ee0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3fa9ee3f70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3fa9ee5040>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3fa9ee50d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f3fa9f62d80>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678825167704348450, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABoGTy93XY/WAnRvcbRjL4rq4o6w8SlvQAAAAAAAAAArS1nPpM9PT9DEA2+G++zvvywkj24M/69AAAAAAAAAADm9i2932kSPhhzSz17xFi+2BzovOUa7TwAAAAAAAAAALMnW76cwco+KK4YPmkhh74Mx7q99YNWvQAAAAAAAAAA8Dl0vh33EL2blOS67ThvuT6RgD6i3DM6AACAPwAAgD+aGSw6tZgMPnpbMr00Yn2+gSAquyKtBj4AAAAAAAAAAJpQb70Uxom6l5sHO/0k8LgsbzM7VTfxtwAAgD8AAIA/Gl1uvY/WZrrlM6Q7dT2kNs50jTkK1Zk1AAAAAAAAgD/zsbi9bnK+P1btv75vMBO+nDU/PTJ/GL0AAAAAAAAAAJqWSj3DRVy6itWCNsLikTGlCxo7umGbtQAAgD8AAIA/rYt8vjx+nz7ibYg+gPYMvo2apb0ha4G8AAAAAAAAAAANKQE+znaWPy6sAD9T1uu+o7YBPrBxZj4AAAAAAAAAAPNwhj3CGVk+oWSGvmElh76DMbq9CxxkvAAAAAAAAAAAmiO7vQJzkT78kww+58WLvmIk2DyktLa8AAAAAAAAAAA+X5++nZESP58oDD2Bw5i+P1Uovo4t5z0AAAAAAAAAADM2M74pU/o+8jFFPnpmgb5Do288CzCSPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIECBDxw47ckCUhpRSlIwBbJRNPAGMAXSUR0CSs+JIUahpdX2UKGgGaAloD0MIXqCkwMLncECUhpRSlGgVTTkBaBZHQJK1LSjQAuJ1fZQoaAZoCWgPQwihnj4C/19sQJSGlFKUaBVNAwFoFkdAkrgRVZLZjHV9lChoBmgJaA9DCFnbFI8LAm9AlIaUUpRoFU1MAWgWR0CSuBLXL/0edX2UKGgGaAloD0MILqnabsIKcECUhpRSlGgVTSsBaBZHQJK5IrCm/Fl1fZQoaAZoCWgPQwhIUz2ZP/VyQJSGlFKUaBVNgwFoFkdAkroGNaQmu3V9lChoBmgJaA9DCD85ChDFnHJAlIaUUpRoFU0xAWgWR0CSui+85CF9dX2UKGgGaAloD0MI8PlhhLA+c0CUhpRSlGgVTR0BaBZHQJK6S0KJEYx1fZQoaAZoCWgPQwhSnQ5k/dVwQJSGlFKUaBVNDwFoFkdAkrrXH/95yHV9lChoBmgJaA9DCAn5oGczqm9AlIaUUpRoFU04AWgWR0CSu0UHpr1vdX2UKGgGaAloD0MIXr2KjE5vckCUhpRSlGgVTZQBaBZHQJK7W3MINVl1fZQoaAZoCWgPQwhDc51GGu9xQJSGlFKUaBVNJAFoFkdAkruVXzUZvXV9lChoBmgJaA9DCD7shQL2lHFAlIaUUpRoFU0mAWgWR0CSvOrJ8v25dX2UKGgGaAloD0MIWyIXnIE2cECUhpRSlGgVTQoBaBZHQJK87WH1vl51fZQoaAZoCWgPQwjde7jkuLJwQJSGlFKUaBVNHgFoFkdAkr7R1klNUXV9lChoBmgJaA9DCHOesS/ZLWtAlIaUUpRoFU0MAWgWR0CSv/18LKFJdX2UKGgGaAloD0MIRnnm5TBJckCUhpRSlGgVTW0BaBZHQJLCUxk/bCd1fZQoaAZoCWgPQwiZLsTqD2hwQJSGlFKUaBVNHwFoFkdAksVIyfthNXV9lChoBmgJaA9DCJ1KBoDq7XFAlIaUUpRoFUv/aBZHQJLF2z4UN8V1fZQoaAZoCWgPQwiE2JlCJ5ZyQJSGlFKUaBVL/mgWR0CSx1uPmxMWdX2UKGgGaAloD0MIZqGd02xRcECUhpRSlGgVTUgBaBZHQJLHpQEZBLR1fZQoaAZoCWgPQwg1071O6vhsQJSGlFKUaBVNOQFoFkdAksguVPepGXV9lChoBmgJaA9DCPaZsz6lK3FAlIaUUpRoFU0cAWgWR0CSyG5y2hIwdX2UKGgGaAloD0MIFm75SIrZcUCUhpRSlGgVTUYBaBZHQJLJ2Jl8PWh1fZQoaAZoCWgPQwjJycStwoxxQJSGlFKUaBVNKwFoFkdAksoOQU5+6XV9lChoBmgJaA9DCMCUgQOaPnFAlIaUUpRoFU0OAWgWR0CSyjVEd/8VdX2UKGgGaAloD0MI9Wc/UsS9cUCUhpRSlGgVTVABaBZHQJLKRnPE87p1fZQoaAZoCWgPQwjpK0gzFgJxQJSGlFKUaBVNRAFoFkdAksqgYgq3E3V9lChoBmgJaA9DCOWYLO6/1W9AlIaUUpRoFU0cAWgWR0CSyqDk2gnMdX2UKGgGaAloD0MI0NGqlnR1YUCUhpRSlGgVTegDaBZHQJLLl1fVqet1fZQoaAZoCWgPQwhlFwyueTlwQJSGlFKUaBVNUgFoFkdAks1GPLgXM3V9lChoBmgJaA9DCBk8TPsme3FAlIaUUpRoFU1gAWgWR0CSznrdFfAsdX2UKGgGaAloD0MIL/oK0sxccECUhpRSlGgVS/5oFkdAks6U9ECvHXV9lChoBmgJaA9DCGbbaWvEuW9AlIaUUpRoFU0/AWgWR0CSzuiNbTttdX2UKGgGaAloD0MICkj7H2CRTECUhpRSlGgVS9hoFkdAks8gsXizcHV9lChoBmgJaA9DCC3pKAezHTZAlIaUUpRoFUvTaBZHQJLQKJ3xFy91fZQoaAZoCWgPQwi2gNB6eAxwQJSGlFKUaBVNMwFoFkdAktCQ0Kqn33V9lChoBmgJaA9DCIHNOXgm/29AlIaUUpRoFU08AWgWR0CS0fRJ2+wldX2UKGgGaAloD0MIByRh385Nb0CUhpRSlGgVS/toFkdAktIHFUADJXV9lChoBmgJaA9DCM6mI4Dby3BAlIaUUpRoFU0kAWgWR0CS0pS6UaAGdX2UKGgGaAloD0MI0UAsm7nUcUCUhpRSlGgVTVYBaBZHQJLSpqfvnbJ1fZQoaAZoCWgPQwhypDMwMlhxQJSGlFKUaBVNgQFoFkdAktRkDlo11nV9lChoBmgJaA9DCIo73uS3UnBAlIaUUpRoFU1NAWgWR0CS1IvEjxCqdX2UKGgGaAloD0MIZmoSvKEDcECUhpRSlGgVTToBaBZHQJLVKaVlf7d1fZQoaAZoCWgPQwjwpIXLKmhyQJSGlFKUaBVNiwFoFkdAktYSCWeHz3V9lChoBmgJaA9DCKdZoN1honFAlIaUUpRoFU0bAWgWR0CS1iD7IkqudX2UKGgGaAloD0MIcvkP6Tfbb0CUhpRSlGgVTR4BaBZHQJLXiDOC5Et1fZQoaAZoCWgPQwimKJfGL0NzQJSGlFKUaBVL82gWR0CS2CdEb5uZdX2UKGgGaAloD0MI22rWGd/2cUCUhpRSlGgVTT0BaBZHQJLqxB/qgRN1fZQoaAZoCWgPQwiU2SCTTK5xQJSGlFKUaBVNSwFoFkdAkuuoR7JGOXV9lChoBmgJaA9DCDLLngQ2R0lAlIaUUpRoFUv5aBZHQJLsDjU/fO51fZQoaAZoCWgPQwhIjJ5b6AdxQJSGlFKUaBVNUwFoFkdAkuwoQjD8+HV9lChoBmgJaA9DCNRjWwacDXBAlIaUUpRoFU00AWgWR0CS7DVCXyAhdX2UKGgGaAloD0MInDV4X1UbckCUhpRSlGgVTQoBaBZHQJLs+//Nqxl1fZQoaAZoCWgPQwh1WrdBbfdtQJSGlFKUaBVNBAFoFkdAku6v7N0NjXV9lChoBmgJaA9DCEPlX8urKHNAlIaUUpRoFU1cAWgWR0CS7vkpqh11dX2UKGgGaAloD0MIlPqytJNycUCUhpRSlGgVTUgBaBZHQJLvANe+mFd1fZQoaAZoCWgPQwh1PdF1oatwQJSGlFKUaBVNLQFoFkdAkvDCgXdj5XV9lChoBmgJaA9DCCDtf4C1DW9AlIaUUpRoFU1KAWgWR0CS8RI5o4+9dX2UKGgGaAloD0MI2bW93ZJCb0CUhpRSlGgVTSUBaBZHQJLxlMDfWMF1fZQoaAZoCWgPQwieJF0zeWJrQJSGlFKUaBVNRwFoFkdAkvMFLi++NHV9lChoBmgJaA9DCMEcPX5vdnBAlIaUUpRoFU0iAWgWR0CS86ZJkGzKdX2UKGgGaAloD0MITP28qchPb0CUhpRSlGgVTQsBaBZHQJL1SntOVPh1fZQoaAZoCWgPQwiWXTC4ZmFxQJSGlFKUaBVNLgFoFkdAkvWjYywfQ3V9lChoBmgJaA9DCHF0le7ul3BAlIaUUpRoFU1CAWgWR0CS9i1zhgmadX2UKGgGaAloD0MIQKN06d8xcUCUhpRSlGgVTRsDaBZHQJL2RQ40dil1fZQoaAZoCWgPQwjD0ytlWYhyQJSGlFKUaBVNEAFoFkdAkvZQ6U7jk3V9lChoBmgJaA9DCBfzc0NTuHFAlIaUUpRoFU0ZAWgWR0CS9ndszl90dX2UKGgGaAloD0MI3LdaJ65zckCUhpRSlGgVTREBaBZHQJL3WI1tO211fZQoaAZoCWgPQwiA07t4f/VxQJSGlFKUaBVNVAFoFkdAkvjBnrY5DXV9lChoBmgJaA9DCAZlGk0ufm5AlIaUUpRoFU0OAWgWR0CS+egxrSE2dX2UKGgGaAloD0MIxXB1AESVcECUhpRSlGgVS/9oFkdAkvvqRMewLXV9lChoBmgJaA9DCFWi7C0l0XBAlIaUUpRoFU1CAWgWR0CS+/sasIVudX2UKGgGaAloD0MIl4+kpIdscECUhpRSlGgVTQYBaBZHQJL9bNr0rbx1fZQoaAZoCWgPQwgmNEksqe9xQJSGlFKUaBVNCAFoFkdAkv8cy31BdHV9lChoBmgJaA9DCGZmZmbmF25AlIaUUpRoFU05AWgWR0CS/zlHz6JqdX2UKGgGaAloD0MItAWE1gPxckCUhpRSlGgVTScBaBZHQJMBWDujRD11fZQoaAZoCWgPQwh381SHXJFxQJSGlFKUaBVL92gWR0CTAb078vVWdX2UKGgGaAloD0MIATW1bC0qcUCUhpRSlGgVTQkBaBZHQJMCgAIY3vR1fZQoaAZoCWgPQwj2RNeF31JwQJSGlFKUaBVNKAFoFkdAkwMhkZrHl3V9lChoBmgJaA9DCB13SgfrCHNAlIaUUpRoFU0qAWgWR0CTBCxkupS8dX2UKGgGaAloD0MI6NhBJW6zcUCUhpRSlGgVTRIBaBZHQJMEPyauwHJ1fZQoaAZoCWgPQwjPMLWljgpyQJSGlFKUaBVNMgFoFkdAkwRH7cfvF3V9lChoBmgJaA9DCFdCd0kciHBAlIaUUpRoFU1fAWgWR0CTBTPTXrdFdX2UKGgGaAloD0MIVUyln3BwbUCUhpRSlGgVTREBaBZHQJMFS1eBxxV1fZQoaAZoCWgPQwiGyOnr+bNwQJSGlFKUaBVNHQFoFkdAkwZbJKaodnV9lChoBmgJaA9DCJdTAmLSZnJAlIaUUpRoFU0lAWgWR0CTB91rIo3KdX2UKGgGaAloD0MIqUvGMRJbcUCUhpRSlGgVTSQBaBZHQJMI4L2HtWx1fZQoaAZoCWgPQwgwStBf6IByQJSGlFKUaBVNNQFoFkdAkwrBv73wkXV9lChoBmgJaA9DCMtIvady3W1AlIaUUpRoFU0VAWgWR0CTCy6H0se5dX2UKGgGaAloD0MIaRmp91QGckCUhpRSlGgVTQgBaBZHQJML/VWjoIR1fZQoaAZoCWgPQwielbTim5ZwQJSGlFKUaBVNKQFoFkdAkww5Qgs9S3V9lChoBmgJaA9DCB7GpL+XIm1AlIaUUpRoFU2rAWgWR0CTDMcYqG1ydX2UKGgGaAloD0MICqGDLuG9cECUhpRSlGgVTQ0BaBZHQJMNP7Q9ic51fZQoaAZoCWgPQwilZ3qJcfZyQJSGlFKUaBVNegFoFkdAkw1jUiILxHV9lChoBmgJaA9DCM4AF2SLVXBAlIaUUpRoFU0sAWgWR0CTDjc3EQ5FdX2UKGgGaAloD0MIEsE4uLTucUCUhpRSlGgVTTcBaBZHQJMOrBInSfF1fZQoaAZoCWgPQwjO/6uOnMxxQJSGlFKUaBVNOgFoFkdAkw/epsGgSXV9lChoBmgJaA9DCNRkxtvKom5AlIaUUpRoFU1aAWgWR0CTEM0O3DvWdX2UKGgGaAloD0MIJcy0/avXcECUhpRSlGgVTTMBaBZHQJMQ1TXJ5mh1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:840a355f8a2ff28c47d6ef56e3ef350824de76d1c7b3e66e7284def2398cc715
|
3 |
+
size 147417
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
@@ -48,7 +48,7 @@
|
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
-
"start_time":
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
@@ -57,7 +57,7 @@
|
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
-
":serialized:": "
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -70,7 +70,7 @@
|
|
70 |
"_current_progress_remaining": -0.015808000000000044,
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
-
":serialized:": "
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
@@ -78,7 +78,7 @@
|
|
78 |
},
|
79 |
"_n_updates": 248,
|
80 |
"n_steps": 1024,
|
81 |
-
"gamma": 0.
|
82 |
"gae_lambda": 0.98,
|
83 |
"ent_coef": 0.01,
|
84 |
"vf_coef": 0.5,
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f3fa9ee3a60>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3fa9ee3af0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3fa9ee3b80>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3fa9ee3c10>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f3fa9ee3ca0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f3fa9ee3d30>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3fa9ee3dc0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3fa9ee3e50>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f3fa9ee3ee0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3fa9ee3f70>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3fa9ee5040>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3fa9ee50d0>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f3fa9f62d80>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
|
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
+
"start_time": 1678825167704348450,
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
|
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABoGTy93XY/WAnRvcbRjL4rq4o6w8SlvQAAAAAAAAAArS1nPpM9PT9DEA2+G++zvvywkj24M/69AAAAAAAAAADm9i2932kSPhhzSz17xFi+2BzovOUa7TwAAAAAAAAAALMnW76cwco+KK4YPmkhh74Mx7q99YNWvQAAAAAAAAAA8Dl0vh33EL2blOS67ThvuT6RgD6i3DM6AACAPwAAgD+aGSw6tZgMPnpbMr00Yn2+gSAquyKtBj4AAAAAAAAAAJpQb70Uxom6l5sHO/0k8LgsbzM7VTfxtwAAgD8AAIA/Gl1uvY/WZrrlM6Q7dT2kNs50jTkK1Zk1AAAAAAAAgD/zsbi9bnK+P1btv75vMBO+nDU/PTJ/GL0AAAAAAAAAAJqWSj3DRVy6itWCNsLikTGlCxo7umGbtQAAgD8AAIA/rYt8vjx+nz7ibYg+gPYMvo2apb0ha4G8AAAAAAAAAAANKQE+znaWPy6sAD9T1uu+o7YBPrBxZj4AAAAAAAAAAPNwhj3CGVk+oWSGvmElh76DMbq9CxxkvAAAAAAAAAAAmiO7vQJzkT78kww+58WLvmIk2DyktLa8AAAAAAAAAAA+X5++nZESP58oDD2Bw5i+P1Uovo4t5z0AAAAAAAAAADM2M74pU/o+8jFFPnpmgb5Do288CzCSPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
70 |
"_current_progress_remaining": -0.015808000000000044,
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVdxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIECBDxw47ckCUhpRSlIwBbJRNPAGMAXSUR0CSs+JIUahpdX2UKGgGaAloD0MIXqCkwMLncECUhpRSlGgVTTkBaBZHQJK1LSjQAuJ1fZQoaAZoCWgPQwihnj4C/19sQJSGlFKUaBVNAwFoFkdAkrgRVZLZjHV9lChoBmgJaA9DCFnbFI8LAm9AlIaUUpRoFU1MAWgWR0CSuBLXL/0edX2UKGgGaAloD0MILqnabsIKcECUhpRSlGgVTSsBaBZHQJK5IrCm/Fl1fZQoaAZoCWgPQwhIUz2ZP/VyQJSGlFKUaBVNgwFoFkdAkroGNaQmu3V9lChoBmgJaA9DCD85ChDFnHJAlIaUUpRoFU0xAWgWR0CSui+85CF9dX2UKGgGaAloD0MI8PlhhLA+c0CUhpRSlGgVTR0BaBZHQJK6S0KJEYx1fZQoaAZoCWgPQwhSnQ5k/dVwQJSGlFKUaBVNDwFoFkdAkrrXH/95yHV9lChoBmgJaA9DCAn5oGczqm9AlIaUUpRoFU04AWgWR0CSu0UHpr1vdX2UKGgGaAloD0MIXr2KjE5vckCUhpRSlGgVTZQBaBZHQJK7W3MINVl1fZQoaAZoCWgPQwhDc51GGu9xQJSGlFKUaBVNJAFoFkdAkruVXzUZvXV9lChoBmgJaA9DCD7shQL2lHFAlIaUUpRoFU0mAWgWR0CSvOrJ8v25dX2UKGgGaAloD0MIWyIXnIE2cECUhpRSlGgVTQoBaBZHQJK87WH1vl51fZQoaAZoCWgPQwjde7jkuLJwQJSGlFKUaBVNHgFoFkdAkr7R1klNUXV9lChoBmgJaA9DCHOesS/ZLWtAlIaUUpRoFU0MAWgWR0CSv/18LKFJdX2UKGgGaAloD0MIRnnm5TBJckCUhpRSlGgVTW0BaBZHQJLCUxk/bCd1fZQoaAZoCWgPQwiZLsTqD2hwQJSGlFKUaBVNHwFoFkdAksVIyfthNXV9lChoBmgJaA9DCJ1KBoDq7XFAlIaUUpRoFUv/aBZHQJLF2z4UN8V1fZQoaAZoCWgPQwiE2JlCJ5ZyQJSGlFKUaBVL/mgWR0CSx1uPmxMWdX2UKGgGaAloD0MIZqGd02xRcECUhpRSlGgVTUgBaBZHQJLHpQEZBLR1fZQoaAZoCWgPQwg1071O6vhsQJSGlFKUaBVNOQFoFkdAksguVPepGXV9lChoBmgJaA9DCPaZsz6lK3FAlIaUUpRoFU0cAWgWR0CSyG5y2hIwdX2UKGgGaAloD0MIFm75SIrZcUCUhpRSlGgVTUYBaBZHQJLJ2Jl8PWh1fZQoaAZoCWgPQwjJycStwoxxQJSGlFKUaBVNKwFoFkdAksoOQU5+6XV9lChoBmgJaA9DCMCUgQOaPnFAlIaUUpRoFU0OAWgWR0CSyjVEd/8VdX2UKGgGaAloD0MI9Wc/UsS9cUCUhpRSlGgVTVABaBZHQJLKRnPE87p1fZQoaAZoCWgPQwjpK0gzFgJxQJSGlFKUaBVNRAFoFkdAksqgYgq3E3V9lChoBmgJaA9DCOWYLO6/1W9AlIaUUpRoFU0cAWgWR0CSyqDk2gnMdX2UKGgGaAloD0MI0NGqlnR1YUCUhpRSlGgVTegDaBZHQJLLl1fVqet1fZQoaAZoCWgPQwhlFwyueTlwQJSGlFKUaBVNUgFoFkdAks1GPLgXM3V9lChoBmgJaA9DCBk8TPsme3FAlIaUUpRoFU1gAWgWR0CSznrdFfAsdX2UKGgGaAloD0MIL/oK0sxccECUhpRSlGgVS/5oFkdAks6U9ECvHXV9lChoBmgJaA9DCGbbaWvEuW9AlIaUUpRoFU0/AWgWR0CSzuiNbTttdX2UKGgGaAloD0MICkj7H2CRTECUhpRSlGgVS9hoFkdAks8gsXizcHV9lChoBmgJaA9DCC3pKAezHTZAlIaUUpRoFUvTaBZHQJLQKJ3xFy91fZQoaAZoCWgPQwi2gNB6eAxwQJSGlFKUaBVNMwFoFkdAktCQ0Kqn33V9lChoBmgJaA9DCIHNOXgm/29AlIaUUpRoFU08AWgWR0CS0fRJ2+wldX2UKGgGaAloD0MIByRh385Nb0CUhpRSlGgVS/toFkdAktIHFUADJXV9lChoBmgJaA9DCM6mI4Dby3BAlIaUUpRoFU0kAWgWR0CS0pS6UaAGdX2UKGgGaAloD0MI0UAsm7nUcUCUhpRSlGgVTVYBaBZHQJLSpqfvnbJ1fZQoaAZoCWgPQwhypDMwMlhxQJSGlFKUaBVNgQFoFkdAktRkDlo11nV9lChoBmgJaA9DCIo73uS3UnBAlIaUUpRoFU1NAWgWR0CS1IvEjxCqdX2UKGgGaAloD0MIZmoSvKEDcECUhpRSlGgVTToBaBZHQJLVKaVlf7d1fZQoaAZoCWgPQwjwpIXLKmhyQJSGlFKUaBVNiwFoFkdAktYSCWeHz3V9lChoBmgJaA9DCKdZoN1honFAlIaUUpRoFU0bAWgWR0CS1iD7IkqudX2UKGgGaAloD0MIcvkP6Tfbb0CUhpRSlGgVTR4BaBZHQJLXiDOC5Et1fZQoaAZoCWgPQwimKJfGL0NzQJSGlFKUaBVL82gWR0CS2CdEb5uZdX2UKGgGaAloD0MI22rWGd/2cUCUhpRSlGgVTT0BaBZHQJLqxB/qgRN1fZQoaAZoCWgPQwiU2SCTTK5xQJSGlFKUaBVNSwFoFkdAkuuoR7JGOXV9lChoBmgJaA9DCDLLngQ2R0lAlIaUUpRoFUv5aBZHQJLsDjU/fO51fZQoaAZoCWgPQwhIjJ5b6AdxQJSGlFKUaBVNUwFoFkdAkuwoQjD8+HV9lChoBmgJaA9DCNRjWwacDXBAlIaUUpRoFU00AWgWR0CS7DVCXyAhdX2UKGgGaAloD0MInDV4X1UbckCUhpRSlGgVTQoBaBZHQJLs+//Nqxl1fZQoaAZoCWgPQwh1WrdBbfdtQJSGlFKUaBVNBAFoFkdAku6v7N0NjXV9lChoBmgJaA9DCEPlX8urKHNAlIaUUpRoFU1cAWgWR0CS7vkpqh11dX2UKGgGaAloD0MIlPqytJNycUCUhpRSlGgVTUgBaBZHQJLvANe+mFd1fZQoaAZoCWgPQwh1PdF1oatwQJSGlFKUaBVNLQFoFkdAkvDCgXdj5XV9lChoBmgJaA9DCCDtf4C1DW9AlIaUUpRoFU1KAWgWR0CS8RI5o4+9dX2UKGgGaAloD0MI2bW93ZJCb0CUhpRSlGgVTSUBaBZHQJLxlMDfWMF1fZQoaAZoCWgPQwieJF0zeWJrQJSGlFKUaBVNRwFoFkdAkvMFLi++NHV9lChoBmgJaA9DCMEcPX5vdnBAlIaUUpRoFU0iAWgWR0CS86ZJkGzKdX2UKGgGaAloD0MITP28qchPb0CUhpRSlGgVTQsBaBZHQJL1SntOVPh1fZQoaAZoCWgPQwiWXTC4ZmFxQJSGlFKUaBVNLgFoFkdAkvWjYywfQ3V9lChoBmgJaA9DCHF0le7ul3BAlIaUUpRoFU1CAWgWR0CS9i1zhgmadX2UKGgGaAloD0MIQKN06d8xcUCUhpRSlGgVTRsDaBZHQJL2RQ40dil1fZQoaAZoCWgPQwjD0ytlWYhyQJSGlFKUaBVNEAFoFkdAkvZQ6U7jk3V9lChoBmgJaA9DCBfzc0NTuHFAlIaUUpRoFU0ZAWgWR0CS9ndszl90dX2UKGgGaAloD0MI3LdaJ65zckCUhpRSlGgVTREBaBZHQJL3WI1tO211fZQoaAZoCWgPQwiA07t4f/VxQJSGlFKUaBVNVAFoFkdAkvjBnrY5DXV9lChoBmgJaA9DCAZlGk0ufm5AlIaUUpRoFU0OAWgWR0CS+egxrSE2dX2UKGgGaAloD0MIxXB1AESVcECUhpRSlGgVS/9oFkdAkvvqRMewLXV9lChoBmgJaA9DCFWi7C0l0XBAlIaUUpRoFU1CAWgWR0CS+/sasIVudX2UKGgGaAloD0MIl4+kpIdscECUhpRSlGgVTQYBaBZHQJL9bNr0rbx1fZQoaAZoCWgPQwgmNEksqe9xQJSGlFKUaBVNCAFoFkdAkv8cy31BdHV9lChoBmgJaA9DCGZmZmbmF25AlIaUUpRoFU05AWgWR0CS/zlHz6JqdX2UKGgGaAloD0MItAWE1gPxckCUhpRSlGgVTScBaBZHQJMBWDujRD11fZQoaAZoCWgPQwh381SHXJFxQJSGlFKUaBVL92gWR0CTAb078vVWdX2UKGgGaAloD0MIATW1bC0qcUCUhpRSlGgVTQkBaBZHQJMCgAIY3vR1fZQoaAZoCWgPQwj2RNeF31JwQJSGlFKUaBVNKAFoFkdAkwMhkZrHl3V9lChoBmgJaA9DCB13SgfrCHNAlIaUUpRoFU0qAWgWR0CTBCxkupS8dX2UKGgGaAloD0MI6NhBJW6zcUCUhpRSlGgVTRIBaBZHQJMEPyauwHJ1fZQoaAZoCWgPQwjPMLWljgpyQJSGlFKUaBVNMgFoFkdAkwRH7cfvF3V9lChoBmgJaA9DCFdCd0kciHBAlIaUUpRoFU1fAWgWR0CTBTPTXrdFdX2UKGgGaAloD0MIVUyln3BwbUCUhpRSlGgVTREBaBZHQJMFS1eBxxV1fZQoaAZoCWgPQwiGyOnr+bNwQJSGlFKUaBVNHQFoFkdAkwZbJKaodnV9lChoBmgJaA9DCJdTAmLSZnJAlIaUUpRoFU0lAWgWR0CTB91rIo3KdX2UKGgGaAloD0MIqUvGMRJbcUCUhpRSlGgVTSQBaBZHQJMI4L2HtWx1fZQoaAZoCWgPQwgwStBf6IByQJSGlFKUaBVNNQFoFkdAkwrBv73wkXV9lChoBmgJaA9DCMtIvady3W1AlIaUUpRoFU0VAWgWR0CTCy6H0se5dX2UKGgGaAloD0MIaRmp91QGckCUhpRSlGgVTQgBaBZHQJML/VWjoIR1fZQoaAZoCWgPQwielbTim5ZwQJSGlFKUaBVNKQFoFkdAkww5Qgs9S3V9lChoBmgJaA9DCB7GpL+XIm1AlIaUUpRoFU2rAWgWR0CTDMcYqG1ydX2UKGgGaAloD0MICqGDLuG9cECUhpRSlGgVTQ0BaBZHQJMNP7Q9ic51fZQoaAZoCWgPQwilZ3qJcfZyQJSGlFKUaBVNegFoFkdAkw1jUiILxHV9lChoBmgJaA9DCM4AF2SLVXBAlIaUUpRoFU0sAWgWR0CTDjc3EQ5FdX2UKGgGaAloD0MIEsE4uLTucUCUhpRSlGgVTTcBaBZHQJMOrBInSfF1fZQoaAZoCWgPQwjO/6uOnMxxQJSGlFKUaBVNOgFoFkdAkw/epsGgSXV9lChoBmgJaA9DCNRkxtvKom5AlIaUUpRoFU1aAWgWR0CTEM0O3DvWdX2UKGgGaAloD0MIJcy0/avXcECUhpRSlGgVTTMBaBZHQJMQ1TXJ5mh1ZS4="
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
|
|
78 |
},
|
79 |
"_n_updates": 248,
|
80 |
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
"gae_lambda": 0.98,
|
83 |
"ent_coef": 0.01,
|
84 |
"vf_coef": 0.5,
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 87929
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4b661c783608aa4b0be477358e5ba58f60f4289b5a024d31703f61989c280f27
|
3 |
size 87929
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43393
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:45ee1c9f7d9be3c4b92b2481c2d57546da7dbaa634929132b07b06458a136e4e
|
3 |
size 43393
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 260.8633558287311, "std_reward": 19.75090951670417, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-14T20:40:49.892059"}
|