Madnesss commited on
Commit
81821b6
1 Parent(s): 4552443

Delete model_multi.pt

Browse files
model_multi.pt/1_Pooling/config.json DELETED
@@ -1,7 +0,0 @@
1
- {
2
- "word_embedding_dimension": 768,
3
- "pooling_mode_cls_token": false,
4
- "pooling_mode_mean_tokens": true,
5
- "pooling_mode_max_tokens": false,
6
- "pooling_mode_mean_sqrt_len_tokens": false
7
- }
 
 
 
 
 
 
 
 
model_multi.pt/2_Dense/config.json DELETED
@@ -1 +0,0 @@
1
- {"in_features": 768, "out_features": 512, "bias": true, "activation_function": "torch.nn.modules.activation.Tanh"}
 
 
model_multi.pt/2_Dense/pytorch_model.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:9a3ef502c274525380bdf86d714a70d9cbfba2ea12581ef6da5c5c2e0855be55
3
- size 1576127
 
 
 
 
model_multi.pt/README.md DELETED
@@ -1,126 +0,0 @@
1
- ---
2
- pipeline_tag: sentence-similarity
3
- tags:
4
- - sentence-transformers
5
- - feature-extraction
6
- - sentence-similarity
7
- - transformers
8
-
9
- ---
10
-
11
- # {MODEL_NAME}
12
-
13
- This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
14
-
15
- <!--- Describe your model here -->
16
-
17
- ## Usage (Sentence-Transformers)
18
-
19
- Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
20
-
21
- ```
22
- pip install -U sentence-transformers
23
- ```
24
-
25
- Then you can use the model like this:
26
-
27
- ```python
28
- from sentence_transformers import SentenceTransformer
29
- sentences = ["This is an example sentence", "Each sentence is converted"]
30
-
31
- model = SentenceTransformer('{MODEL_NAME}')
32
- embeddings = model.encode(sentences)
33
- print(embeddings)
34
- ```
35
-
36
-
37
-
38
- ## Usage (HuggingFace Transformers)
39
- Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
40
-
41
- ```python
42
- from transformers import AutoTokenizer, AutoModel
43
- import torch
44
-
45
-
46
- #Mean Pooling - Take attention mask into account for correct averaging
47
- def mean_pooling(model_output, attention_mask):
48
- token_embeddings = model_output[0] #First element of model_output contains all token embeddings
49
- input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
50
- return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
51
-
52
-
53
- # Sentences we want sentence embeddings for
54
- sentences = ['This is an example sentence', 'Each sentence is converted']
55
-
56
- # Load model from HuggingFace Hub
57
- tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
58
- model = AutoModel.from_pretrained('{MODEL_NAME}')
59
-
60
- # Tokenize sentences
61
- encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
62
-
63
- # Compute token embeddings
64
- with torch.no_grad():
65
- model_output = model(**encoded_input)
66
-
67
- # Perform pooling. In this case, mean pooling.
68
- sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
69
-
70
- print("Sentence embeddings:")
71
- print(sentence_embeddings)
72
- ```
73
-
74
-
75
-
76
- ## Evaluation Results
77
-
78
- <!--- Describe how your model was evaluated -->
79
-
80
- For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
81
-
82
-
83
- ## Training
84
- The model was trained with the parameters:
85
-
86
- **DataLoader**:
87
-
88
- `torch.utils.data.dataloader.DataLoader` of length 398 with parameters:
89
- ```
90
- {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
91
- ```
92
-
93
- **Loss**:
94
-
95
- `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
96
-
97
- Parameters of the fit()-Method:
98
- ```
99
- {
100
- "epochs": 5,
101
- "evaluation_steps": 0,
102
- "evaluator": "NoneType",
103
- "max_grad_norm": 1,
104
- "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
105
- "optimizer_params": {
106
- "lr": 2e-05
107
- },
108
- "scheduler": "WarmupLinear",
109
- "steps_per_epoch": null,
110
- "warmup_steps": 100,
111
- "weight_decay": 0.01
112
- }
113
- ```
114
-
115
-
116
- ## Full Model Architecture
117
- ```
118
- SentenceTransformer(
119
- (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
120
- (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
121
- )
122
- ```
123
-
124
- ## Citing & Authors
125
-
126
- <!--- Describe where people can find more information -->
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
model_multi.pt/config.json DELETED
@@ -1,29 +0,0 @@
1
- {
2
- "_name_or_path": "/root/.cache/torch/sentence_transformers/sentence-transformers_paraphrase-multilingual-mpnet-base-v2/",
3
- "architectures": [
4
- "XLMRobertaModel"
5
- ],
6
- "attention_probs_dropout_prob": 0.1,
7
- "bos_token_id": 0,
8
- "classifier_dropout": null,
9
- "eos_token_id": 2,
10
- "gradient_checkpointing": false,
11
- "hidden_act": "gelu",
12
- "hidden_dropout_prob": 0.1,
13
- "hidden_size": 768,
14
- "initializer_range": 0.02,
15
- "intermediate_size": 3072,
16
- "layer_norm_eps": 1e-05,
17
- "max_position_embeddings": 514,
18
- "model_type": "xlm-roberta",
19
- "num_attention_heads": 12,
20
- "num_hidden_layers": 12,
21
- "output_past": true,
22
- "pad_token_id": 1,
23
- "position_embedding_type": "absolute",
24
- "torch_dtype": "float32",
25
- "transformers_version": "4.30.1",
26
- "type_vocab_size": 1,
27
- "use_cache": true,
28
- "vocab_size": 250002
29
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
model_multi.pt/config_sentence_transformers.json DELETED
@@ -1,7 +0,0 @@
1
- {
2
- "__version__": {
3
- "sentence_transformers": "2.0.0",
4
- "transformers": "4.7.0",
5
- "pytorch": "1.9.0+cu102"
6
- }
7
- }
 
 
 
 
 
 
 
 
model_multi.pt/modules.json DELETED
@@ -1,14 +0,0 @@
1
- [
2
- {
3
- "idx": 0,
4
- "name": "0",
5
- "path": "",
6
- "type": "sentence_transformers.models.Transformer"
7
- },
8
- {
9
- "idx": 1,
10
- "name": "1",
11
- "path": "1_Pooling",
12
- "type": "sentence_transformers.models.Pooling"
13
- }
14
- ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
model_multi.pt/pytorch_model.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:5cdeab59ea68ea8a33adc4ae851118aa1b23a0e8a2eb0cb97ba43b7aa5bda33b
3
- size 1112245805
 
 
 
 
model_multi.pt/sentence_bert_config.json DELETED
@@ -1,4 +0,0 @@
1
- {
2
- "max_seq_length": 128,
3
- "do_lower_case": false
4
- }
 
 
 
 
 
model_multi.pt/sentencepiece.bpe.model DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
- size 5069051
 
 
 
 
model_multi.pt/special_tokens_map.json DELETED
@@ -1,15 +0,0 @@
1
- {
2
- "bos_token": "<s>",
3
- "cls_token": "<s>",
4
- "eos_token": "</s>",
5
- "mask_token": {
6
- "content": "<mask>",
7
- "lstrip": true,
8
- "normalized": false,
9
- "rstrip": false,
10
- "single_word": false
11
- },
12
- "pad_token": "<pad>",
13
- "sep_token": "</s>",
14
- "unk_token": "<unk>"
15
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
model_multi.pt/tokenizer.json DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:b60b6b43406a48bf3638526314f3d232d97058bc93472ff2de930d43686fa441
3
- size 17082913
 
 
 
 
model_multi.pt/tokenizer_config.json DELETED
@@ -1,19 +0,0 @@
1
- {
2
- "bos_token": "<s>",
3
- "clean_up_tokenization_spaces": true,
4
- "cls_token": "<s>",
5
- "eos_token": "</s>",
6
- "mask_token": {
7
- "__type": "AddedToken",
8
- "content": "<mask>",
9
- "lstrip": true,
10
- "normalized": true,
11
- "rstrip": false,
12
- "single_word": false
13
- },
14
- "model_max_length": 512,
15
- "pad_token": "<pad>",
16
- "sep_token": "</s>",
17
- "tokenizer_class": "XLMRobertaTokenizer",
18
- "unk_token": "<unk>"
19
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
model_multi.pt/vocab.txt DELETED
The diff for this file is too large to render. See raw diff