|
import json |
|
import os |
|
from typing import List |
|
|
|
import datasets |
|
|
|
|
|
_HF_ENDPOINT = os.getenv("HF_ENDPOINT", "https://huggingface.co") |
|
|
|
_DESCRIPTION = "UltraChat: Large-scale, Informative, and Diverse Multi-round Dialogue Data." |
|
|
|
_CITATION = """\ |
|
@misc{UltraChat, |
|
author = {Ding, Ning and Chen, Yulin and Xu, Bokai and Hu, Shengding and Qin, Yujia and Liu, Zhiyuan and Sun, Maosong and Zhou, Bowen}, |
|
title = {UltraChat: A Large-scale Auto-generated Multi-round Dialogue Data}, |
|
year = {2023}, |
|
publisher = {GitHub}, |
|
journal = {GitHub repository}, |
|
howpublished = {\\url{https://github.com/thunlp/ultrachat}}, |
|
} |
|
""" |
|
|
|
_HOMEPAGE = "{}/datasets/stingning/ultrachat".format(_HF_ENDPOINT) |
|
_LICENSE = "cc-by-nc-4.0" |
|
_BASE_DATA_URL = "{}/datasets/stingning/ultrachat/resolve/main/train_{{idx}}.jsonl".format(_HF_ENDPOINT) |
|
|
|
|
|
class UltraChat(datasets.GeneratorBasedBuilder): |
|
VERSION = datasets.Version("0.0.0") |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{"conversations": [{"from": datasets.Value("string"), "value": datasets.Value("string")}]} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager): |
|
file_paths = [dl_manager.download(_BASE_DATA_URL.format(idx=idx)) for idx in range(10)] |
|
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": file_paths})] |
|
|
|
def _generate_examples(self, filepaths: List[str]): |
|
for filepath in filepaths: |
|
with open(filepath, "r", encoding="utf-8") as f: |
|
for row in f: |
|
try: |
|
data = json.loads(row) |
|
except Exception: |
|
continue |
|
key: int = data["id"] |
|
content: List[str] = data["data"] |
|
if len(content) % 2 == 1: |
|
content.pop(-1) |
|
if len(content) < 2: |
|
continue |
|
conversations = [ |
|
{"from": "human" if i % 2 == 0 else "gpt", "value": content[i]} for i in range(len(content)) |
|
] |
|
yield key, {"conversations": conversations} |
|
|