Upload render.py with huggingface_hub
Browse files
render.py
ADDED
|
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
|
| 5 |
+
class ResidualRenderBlock(nn.Module):
|
| 6 |
+
def __init__(self, dim):
|
| 7 |
+
super().__init__()
|
| 8 |
+
self.block = nn.Sequential(
|
| 9 |
+
nn.Conv2d(dim, dim, kernel_size=3, padding=1),
|
| 10 |
+
nn.GroupNorm(8, dim),
|
| 11 |
+
nn.SiLU(),
|
| 12 |
+
nn.Conv2d(dim, dim, kernel_size=3, padding=1),
|
| 13 |
+
nn.GroupNorm(8, dim)
|
| 14 |
+
)
|
| 15 |
+
|
| 16 |
+
def forward(self, x):
|
| 17 |
+
return x + self.block(x)
|
| 18 |
+
|
| 19 |
+
class RenderEncoder(nn.Module):
|
| 20 |
+
def __init__(self, encoder_type="1d", in_channels=768, out_channels=3):
|
| 21 |
+
super().__init__()
|
| 22 |
+
self.encoder_type = encoder_type
|
| 23 |
+
|
| 24 |
+
if encoder_type == "1d":
|
| 25 |
+
self.model = nn.Sequential(
|
| 26 |
+
nn.Conv2d(in_channels, out_channels, kernel_size=1),
|
| 27 |
+
nn.Sigmoid()
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
+
elif encoder_type == "residual":
|
| 31 |
+
self.model = ResidualBlockRender(in_channels, out_channels)
|
| 32 |
+
|
| 33 |
+
elif encoder_type == "expressive":
|
| 34 |
+
mid_channels = 256
|
| 35 |
+
self.model = nn.Sequential(
|
| 36 |
+
nn.Conv2d(in_channels, mid_channels, kernel_size=3, padding=1),
|
| 37 |
+
nn.GroupNorm(8, mid_channels),
|
| 38 |
+
nn.SiLU(),
|
| 39 |
+
ResidualRenderBlock(mid_channels),
|
| 40 |
+
ResidualRenderBlock(mid_channels),
|
| 41 |
+
ResidualRenderBlock(mid_channels),
|
| 42 |
+
nn.Conv2d(mid_channels, out_channels, kernel_size=1),
|
| 43 |
+
nn.Sigmoid()
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
else:
|
| 47 |
+
raise ValueError(f"Unknown encoder_type '{encoder_type}'. Use '1d', 'residual', or 'expressive'.")
|
| 48 |
+
|
| 49 |
+
def forward(self, x):
|
| 50 |
+
return self.model(x)
|
| 51 |
+
|
| 52 |
+
class ResidualBlockRender(nn.Module):
|
| 53 |
+
def __init__(self, in_channels=768, out_channels=3):
|
| 54 |
+
super().__init__()
|
| 55 |
+
self.conv1 = nn.Conv2d(in_channels, 256, kernel_size=3, padding=1)
|
| 56 |
+
self.relu1 = nn.ReLU()
|
| 57 |
+
self.conv2 = nn.Conv2d(256, 256, kernel_size=3, padding=1)
|
| 58 |
+
self.relu2 = nn.ReLU()
|
| 59 |
+
self.conv3 = nn.Conv2d(256, out_channels, kernel_size=1)
|
| 60 |
+
self.out = nn.Sigmoid()
|
| 61 |
+
|
| 62 |
+
if in_channels != out_channels:
|
| 63 |
+
self.residual_proj = nn.Conv2d(in_channels, out_channels, kernel_size=1)
|
| 64 |
+
else:
|
| 65 |
+
self.residual_proj = nn.Identity()
|
| 66 |
+
|
| 67 |
+
def forward(self, x):
|
| 68 |
+
residual = self.residual_proj(x)
|
| 69 |
+
h = self.relu1(self.conv1(x))
|
| 70 |
+
h = self.relu2(self.conv2(h))
|
| 71 |
+
h = self.conv3(h)
|
| 72 |
+
h = h + residual
|
| 73 |
+
return self.out(h)
|
| 74 |
+
|
| 75 |
+
def load_render_encoder(checkpoint_path, device='cpu'):
|
| 76 |
+
"""Load standalone RenderEncoder from checkpoint"""
|
| 77 |
+
checkpoint = torch.load(checkpoint_path, map_location=device)
|
| 78 |
+
|
| 79 |
+
config = checkpoint['model_config']
|
| 80 |
+
model = RenderEncoder(
|
| 81 |
+
encoder_type=config['encoder_type'],
|
| 82 |
+
in_channels=config['in_channels'],
|
| 83 |
+
out_channels=config['out_channels']
|
| 84 |
+
)
|
| 85 |
+
|
| 86 |
+
model.load_state_dict(checkpoint['model_state_dict'])
|
| 87 |
+
model.to(device)
|
| 88 |
+
model.eval()
|
| 89 |
+
|
| 90 |
+
print(f"Loaded RenderEncoder: {config}")
|
| 91 |
+
return model
|