MRNH commited on
Commit
26df4ed
1 Parent(s): 29f98ae

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +34 -4
README.md CHANGED
@@ -1,10 +1,40 @@
1
  ---
2
  language:
3
  - en
4
- - it
5
  metrics:
6
  - f1
7
- pipeline_tag: text2text-generation
8
  tags:
9
- - sql
10
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  language:
3
  - en
4
+ pipeline_tag: text2text-generation
5
  metrics:
6
  - f1
 
7
  tags:
8
+ - grammatical error correction
9
+ - GEC
10
+ - english
11
+ ---
12
+
13
+ This is a fine-tuned version of LLAMA2 trained (7b) on spider, sql-create-context.
14
+
15
+ To initialize the model:
16
+
17
+
18
+ #from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
19
+ #model = MBartForConditionalGeneration.from_pretrained("MRNH/mbart-english-grammar-corrector")
20
+
21
+
22
+ Use the tokenizer:
23
+
24
+
25
+ #tokenizer = MBart50TokenizerFast.from_pretrained("MRNH/mbart-english-grammar-corrector", src_lang="en_XX", tgt_lang="en_XX")
26
+
27
+ #input = tokenizer("I was here yesterday to studying",
28
+ # text_target="I was here yesterday to study", return_tensors='pt')
29
+
30
+ To generate text using the model:
31
+
32
+ #output = model.generate(input["input_ids"],attention_mask=input["attention_mask"],
33
+ # forced_bos_token_id=tokenizer_it.lang_code_to_id["en_XX"])
34
+
35
+
36
+ Training of the model is performed using the following loss computation based on the hidden state output h:
37
+
38
+ #h.logits, h.loss = model(input_ids=input["input_ids"],
39
+ # attention_mask=input["attention_mask"],
40
+ # labels=input["labels"])