Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
pipeline_tag: text2text-generation
|
5 |
+
metrics:
|
6 |
+
- f1
|
7 |
+
tags:
|
8 |
+
- SQL
|
9 |
+
- plSQL
|
10 |
+
- english
|
11 |
+
---
|
12 |
+
|
13 |
+
This is a fine-tuned version of T5 FLAN LARGE (783M) on English in particular on the public dataset spider for text-toSQL.
|
14 |
+
|
15 |
+
To initialize the model:
|
16 |
+
|
17 |
+
|
18 |
+
from transformers import T5ForConditionalGeneration
|
19 |
+
model = T5ForConditionalGeneration.from_pretrained("MRNH/flan-t5-large-PLsql")
|
20 |
+
|
21 |
+
|
22 |
+
Use the tokenizer:
|
23 |
+
|
24 |
+
|
25 |
+
tokenizer = T5ForConditionalGeneration.from_pretrained("MRNH/flan-t5-large-PLsql")
|
26 |
+
|
27 |
+
input = tokenizer("<question> "+sentence["db_id"]+" </question> "+sentence["question"],
|
28 |
+
text_target=sentence["query"], return_tensors='pt')
|
29 |
+
|
30 |
+
To generate text using the model:
|
31 |
+
|
32 |
+
output = model.generate(input["input_ids"],attention_mask=input["attention_mask"])
|
33 |
+
|
34 |
+
Training of the model is performed using the following loss computation based on the hidden state output h:
|
35 |
+
|
36 |
+
h.logits, h.loss = model(input_ids=input["input_ids"],
|
37 |
+
attention_mask=input["attention_mask"],
|
38 |
+
labels=input["labels"])
|