|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import json |
|
import os |
|
from typing import Sequence |
|
|
|
from monai.apps.utils import extractall |
|
from monai.utils import ensure_tuple_rep |
|
|
|
|
|
def convert_body_region(body_region: str | Sequence[str]) -> Sequence[int]: |
|
""" |
|
Convert body region string to body region index. |
|
Args: |
|
body_region: list of input body region string. If single str, will be converted to list of str. |
|
Return: |
|
body_region_indices, list of input body region index. |
|
""" |
|
if type(body_region) is str: |
|
body_region = [body_region] |
|
|
|
|
|
region_mapping_maisi = { |
|
"head": 0, |
|
"chest": 1, |
|
"thorax": 1, |
|
"chest/thorax": 1, |
|
"abdomen": 2, |
|
"pelvis": 3, |
|
"lower": 3, |
|
"pelvis/lower": 3, |
|
} |
|
|
|
|
|
body_region_indices = [] |
|
for region in body_region: |
|
normalized_region = region.lower() |
|
if normalized_region not in region_mapping_maisi: |
|
raise ValueError(f"Invalid region: {normalized_region}") |
|
body_region_indices.append(region_mapping_maisi[normalized_region]) |
|
|
|
return body_region_indices |
|
|
|
|
|
def find_masks( |
|
anatomy_list: int | Sequence[int], |
|
spacing: Sequence[float] | float = 1.0, |
|
output_size: Sequence[int] = (512, 512, 512), |
|
check_spacing_and_output_size: bool = False, |
|
database_filepath: str = "./configs/database.json", |
|
mask_foldername: str = "./datasets/masks/", |
|
): |
|
""" |
|
Find candidate masks that fullfills all the requirements. |
|
They shoud contain all the anatomies in `anatomy_list`. |
|
If there is no tumor specified in `anatomy_list`, we also expect the candidate masks to be tumor free. |
|
If check_spacing_and_output_size is True, the candidate masks need to have the expected `spacing` and `output_size`. |
|
Args: |
|
anatomy_list: list of input anatomy. The found candidate mask will include these anatomies. |
|
spacing: list of three floats, voxel spacing. If providing a single number, will use it for all the three dimensions. |
|
output_size: list of three int, expected candidate mask spatial size. |
|
check_spacing_and_output_size: whether we expect candidate mask to have spatial size of `output_size` |
|
and voxel size of `spacing`. |
|
database_filepath: path for the json file that stores the information of all the candidate masks. |
|
mask_foldername: directory that saves all the candidate masks. |
|
Return: |
|
candidate_masks, list of dict, each dict contains information of one candidate mask that fullfills all the requirements. |
|
""" |
|
|
|
if isinstance(anatomy_list, int): |
|
anatomy_list = [anatomy_list] |
|
|
|
spacing = ensure_tuple_rep(spacing, 3) |
|
|
|
if not os.path.exists(mask_foldername): |
|
zip_file_path = mask_foldername + ".zip" |
|
|
|
if not os.path.isfile(zip_file_path): |
|
raise ValueError(f"Please download {zip_file_path} following the instruction in ./datasets/README.md.") |
|
|
|
print(f"Extracting {zip_file_path} to {os.path.dirname(zip_file_path)}") |
|
extractall(filepath=zip_file_path, output_dir=os.path.dirname(zip_file_path), file_type="zip") |
|
print(f"Unzipped {zip_file_path} to {mask_foldername}.") |
|
|
|
if not os.path.isfile(database_filepath): |
|
raise ValueError(f"Please download {database_filepath} following the instruction in ./datasets/README.md.") |
|
with open(database_filepath, "r") as f: |
|
db = json.load(f) |
|
|
|
|
|
candidate_masks = [] |
|
for _item in db: |
|
if not set(anatomy_list).issubset(_item["label_list"]): |
|
continue |
|
|
|
|
|
keep_mask = True |
|
|
|
for tumor_label in [23, 24, 26, 27, 128]: |
|
|
|
if tumor_label not in anatomy_list and tumor_label in _item["label_list"]: |
|
keep_mask = False |
|
|
|
if check_spacing_and_output_size: |
|
|
|
for axis in range(3): |
|
if _item["dim"][axis] != output_size[axis] or _item["spacing"][axis] != spacing[axis]: |
|
keep_mask = False |
|
|
|
if keep_mask: |
|
|
|
candidate = { |
|
"pseudo_label": os.path.join(mask_foldername, _item["pseudo_label_filename"]), |
|
"spacing": _item["spacing"], |
|
"dim": _item["dim"], |
|
} |
|
|
|
|
|
if "label_filename" in _item: |
|
candidate["label"] = os.path.join(mask_foldername, _item["label_filename"]) |
|
|
|
candidate_masks.append(candidate) |
|
|
|
if len(candidate_masks) == 0 and not check_spacing_and_output_size: |
|
raise ValueError("Cannot find body region with given anatomy list.") |
|
|
|
return candidate_masks |
|
|