maisi_ct_generative / scripts /find_masks.py
Venn's picture
Upload maisi_ct_generative version 1.0.0
02aa18d verified
raw
history blame
5.69 kB
# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
from typing import Sequence
from monai.apps.utils import extractall
from monai.utils import ensure_tuple_rep
def convert_body_region(body_region: str | Sequence[str]) -> Sequence[int]:
"""
Convert body region string to body region index.
Args:
body_region: list of input body region string. If single str, will be converted to list of str.
Return:
body_region_indices, list of input body region index.
"""
if type(body_region) is str:
body_region = [body_region]
# body region mapping for maisi
region_mapping_maisi = {
"head": 0,
"chest": 1,
"thorax": 1,
"chest/thorax": 1,
"abdomen": 2,
"pelvis": 3,
"lower": 3,
"pelvis/lower": 3,
}
# perform mapping
body_region_indices = []
for region in body_region:
normalized_region = region.lower() # norm str to lower case
if normalized_region not in region_mapping_maisi:
raise ValueError(f"Invalid region: {normalized_region}")
body_region_indices.append(region_mapping_maisi[normalized_region])
return body_region_indices
def find_masks(
anatomy_list: int | Sequence[int],
spacing: Sequence[float] | float = 1.0,
output_size: Sequence[int] = (512, 512, 512),
check_spacing_and_output_size: bool = False,
database_filepath: str = "./configs/database.json",
mask_foldername: str = "./datasets/masks/",
):
"""
Find candidate masks that fullfills all the requirements.
They shoud contain all the anatomies in `anatomy_list`.
If there is no tumor specified in `anatomy_list`, we also expect the candidate masks to be tumor free.
If check_spacing_and_output_size is True, the candidate masks need to have the expected `spacing` and `output_size`.
Args:
anatomy_list: list of input anatomy. The found candidate mask will include these anatomies.
spacing: list of three floats, voxel spacing. If providing a single number, will use it for all the three dimensions.
output_size: list of three int, expected candidate mask spatial size.
check_spacing_and_output_size: whether we expect candidate mask to have spatial size of `output_size`
and voxel size of `spacing`.
database_filepath: path for the json file that stores the information of all the candidate masks.
mask_foldername: directory that saves all the candidate masks.
Return:
candidate_masks, list of dict, each dict contains information of one candidate mask that fullfills all the requirements.
"""
# check and preprocess input
if isinstance(anatomy_list, int):
anatomy_list = [anatomy_list]
spacing = ensure_tuple_rep(spacing, 3)
if not os.path.exists(mask_foldername):
zip_file_path = mask_foldername + ".zip"
if not os.path.isfile(zip_file_path):
raise ValueError(f"Please download {zip_file_path} following the instruction in ./datasets/README.md.")
print(f"Extracting {zip_file_path} to {os.path.dirname(zip_file_path)}")
extractall(filepath=zip_file_path, output_dir=os.path.dirname(zip_file_path), file_type="zip")
print(f"Unzipped {zip_file_path} to {mask_foldername}.")
if not os.path.isfile(database_filepath):
raise ValueError(f"Please download {database_filepath} following the instruction in ./datasets/README.md.")
with open(database_filepath, "r") as f:
db = json.load(f)
# select candidate_masks
candidate_masks = []
for _item in db:
if not set(anatomy_list).issubset(_item["label_list"]):
continue
# whether to keep this mask, default to be True.
keep_mask = True
for tumor_label in [23, 24, 26, 27, 128]:
# we skip those mask with tumors if users do not provide tumor label in anatomy_list
if tumor_label not in anatomy_list and tumor_label in _item["label_list"]:
keep_mask = False
if check_spacing_and_output_size:
# if the output_size and spacing are different with user's input, skip it
for axis in range(3):
if _item["dim"][axis] != output_size[axis] or _item["spacing"][axis] != spacing[axis]:
keep_mask = False
if keep_mask:
# if decide to keep this mask, we pack the information of this mask and add to final output.
candidate = {
"pseudo_label": os.path.join(mask_foldername, _item["pseudo_label_filename"]),
"spacing": _item["spacing"],
"dim": _item["dim"],
}
# Conditionally add the label to the candidate dictionary
if "label_filename" in _item:
candidate["label"] = os.path.join(mask_foldername, _item["label_filename"])
candidate_masks.append(candidate)
if len(candidate_masks) == 0 and not check_spacing_and_output_size:
raise ValueError("Cannot find body region with given anatomy list.")
return candidate_masks