Nic-Ma commited on
Commit
b6434f8
1 Parent(s): fd52691

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +39 -3
README.md CHANGED
@@ -1,3 +1,39 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Description
2
+ A pre-trained model for volumetric (3D) segmentation of the spleen from CT image.
3
+
4
+ # Model Overview
5
+ This model is trained using the runnerup [1] awarded pipeline of the "Medical Segmentation Decathlon Challenge 2018" using the UNet architecture [2] with 32 training images and 9 validation images.
6
+
7
+ ## Data
8
+ The training dataset is Task09_Spleen.tar from http://medicaldecathlon.com/.
9
+
10
+ ## Training configuration
11
+ The training was performed with at least 12GB-memory GPUs.
12
+
13
+ Actual Model Input: 96 x 96 x 96
14
+
15
+ ## Input and output formats
16
+ Input: 1 channel CT image
17
+
18
+ Output: 2 channels: Label 1: spleen; Label 0: everything else
19
+
20
+ ## Scores
21
+ This model achieve the following Dice score on the validation data (our own split from the training dataset):
22
+
23
+ Mean dice = 0.96
24
+
25
+ ## commands example
26
+ Execute inference:
27
+ `python -m monai.bundle run evaluator --meta_file configs/metadata.json --config_file configs/inference.json`
28
+ Verify the metadata format:
29
+ `python -m monai.bundle verify_metadata --meta_file configs/metadata.json --filepath eval/schema.json`
30
+ Verify the data shape of network:
31
+ `python -m monai.bundle verify_net_in_out network_def --meta_file configs/metadata.json --config_file configs/inference.json`
32
+
33
+ # Disclaimer
34
+ This is an example, not to be used for diagnostic purposes.
35
+
36
+ # References
37
+ [1] Xia, Yingda, et al. "3D Semi-Supervised Learning with Uncertainty-Aware Multi-View Co-Training." arXiv preprint arXiv:1811.12506 (2018). https://arxiv.org/abs/1811.12506.
38
+
39
+ [2] Kerfoot E., Clough J., Oksuz I., Lee J., King A.P., Schnabel J.A. (2019) Left-Ventricle Quantification Using Residual U-Net. In: Pop M. et al. (eds) Statistical Atlases and Computational Models of the Heart. Atrial Segmentation and LV Quantification Challenges. STACOM 2018. Lecture Notes in Computer Science, vol 11395. Springer, Cham. https://doi.org/10.1007/978-3-030-12029-0_40