project-monai's picture
Upload breast_density_classification version 0.1.8
eb746b7 verified
{
"schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20240725.json",
"version": "0.1.8",
"changelog": {
"0.1.8": "enhance metadata with improved descriptions and task specification",
"0.1.7": "update to huggingface hosting",
"0.1.6": "Remove meta dict usage",
"0.1.5": "Fixed duplication of input output format section",
"0.1.4": "Changed Readme",
"0.1.3": "Change input_dim from 229 to 299",
"0.1.2": "black autofix format and add name tag",
"0.1.1": "update license files",
"0.1.0": "complete the model package"
},
"monai_version": "1.3.0",
"pytorch_version": "1.13.1",
"numpy_version": "1.22.2",
"required_packages_version": {
"torchvision": "0.14.1"
},
"supported_apps": {},
"name": "Breast density classification",
"task": "Mammographic Breast Density Classification (BI-RADS)",
"description": "A deep learning model for automated classification of breast tissue density in mammograms according to the BI-RADS density categories (A through D). The model processes 299x299 pixel images and classifies breast tissue into four categories: fatty, scattered fibroglandular, heterogeneously dense, and extremely dense.",
"authors": "Center for Augmented Intelligence in Imaging, Mayo Clinic Florida",
"copyright": "Copyright (c) Mayo Clinic",
"data_source": "Mayo Clinic",
"data_type": "jpeg",
"image_classes": "three channel data, intensity scaled to [0, 1]. A single grayscale is copied to 3 channels",
"label_classes": "four classes marked as [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0] and [0, 0, 0, 1] for the classes A, B, C and D respectively.",
"pred_classes": "One hot data",
"eval_metrics": {
"accuracy": 0.96
},
"intended_use": "This is an example, not to be used for diagnostic purposes",
"references": [
"Gupta, Vikash, et al. A multi-reconstruction study of breast density estimation using Deep Learning. arXiv preprint arXiv:2202.08238 (2022)."
],
"network_data_format": {
"inputs": {
"image": {
"type": "image",
"format": "magnitude",
"modality": "Mammogram",
"num_channels": 3,
"spatial_shape": [
299,
299
],
"dtype": "float32",
"value_range": [
0,
1
],
"is_patch_data": false,
"channel_def": {
"0": "image"
}
}
},
"outputs": {
"pred": {
"type": "image",
"format": "labels",
"dtype": "float32",
"value_range": [
0,
1
],
"num_channels": 4,
"spatial_shape": [
1,
4
],
"is_patch_data": false,
"channel_def": {
"0": "A",
"1": "B",
"2": "C",
"3": "D"
}
}
}
}
}