Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- IMDB Dataset.csv +3 -0
- huggingface_deploy.py +380 -0
- saved_models/logistic_regression_model.pkl +3 -0
- saved_models/model_metadata.json +5016 -0
- saved_models/naive_bayes_model.pkl +3 -0
- saved_models/tfidf_vectorizer.pkl +3 -0
- sentiment_analysis.py +161 -0
- streamlit_app.py +141 -0
- train_and_save_model.py +316 -0
- word_frequency.png +0 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
IMDB[[:space:]]Dataset.csv filter=lfs diff=lfs merge=lfs -text
|
IMDB Dataset.csv
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:dfc447764f82be365fa9c2beef4e8df89d3919e3da95f5088004797d79695aa2
|
| 3 |
+
size 66212309
|
huggingface_deploy.py
ADDED
|
@@ -0,0 +1,380 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import json
|
| 3 |
+
import joblib
|
| 4 |
+
from transformers import pipeline
|
| 5 |
+
import torch
|
| 6 |
+
|
| 7 |
+
def create_huggingface_config():
|
| 8 |
+
"""Create Hugging Face model card and configuration"""
|
| 9 |
+
|
| 10 |
+
# Create model card
|
| 11 |
+
model_card = """---
|
| 12 |
+
language: en
|
| 13 |
+
tags:
|
| 14 |
+
- sentiment-analysis
|
| 15 |
+
- text-classification
|
| 16 |
+
- nltk
|
| 17 |
+
- scikit-learn
|
| 18 |
+
license: mit
|
| 19 |
+
---
|
| 20 |
+
|
| 21 |
+
# IMDb Sentiment Analysis Model
|
| 22 |
+
|
| 23 |
+
This model analyzes the sentiment of IMDb movie reviews to classify them as positive or negative.
|
| 24 |
+
|
| 25 |
+
## Model Details
|
| 26 |
+
|
| 27 |
+
- **Model Type**: Ensemble of Logistic Regression and Naive Bayes
|
| 28 |
+
- **Vectorizer**: TF-IDF with 5000 features
|
| 29 |
+
- **Accuracy**:
|
| 30 |
+
- Logistic Regression: ~88.47%
|
| 31 |
+
- Naive Bayes: ~85.2%
|
| 32 |
+
|
| 33 |
+
## Usage
|
| 34 |
+
|
| 35 |
+
```python
|
| 36 |
+
from transformers import pipeline
|
| 37 |
+
|
| 38 |
+
# Load the model
|
| 39 |
+
classifier = pipeline("text-classification", model="your-username/imdb-sentiment")
|
| 40 |
+
|
| 41 |
+
# Make predictions
|
| 42 |
+
result = classifier("This movie was absolutely fantastic!")
|
| 43 |
+
print(result)
|
| 44 |
+
```
|
| 45 |
+
|
| 46 |
+
## Training Data
|
| 47 |
+
|
| 48 |
+
The model was trained on the IMDb dataset containing 50,000 movie reviews with binary sentiment labels.
|
| 49 |
+
|
| 50 |
+
## Preprocessing
|
| 51 |
+
|
| 52 |
+
1. Text lowercase conversion
|
| 53 |
+
2. Special character removal
|
| 54 |
+
3. Tokenization using NLTK
|
| 55 |
+
4. Stopword removal
|
| 56 |
+
5. Lemmatization using WordNet
|
| 57 |
+
|
| 58 |
+
## Model Architecture
|
| 59 |
+
|
| 60 |
+
- **Feature Extraction**: TF-IDF Vectorizer (5000 features)
|
| 61 |
+
- **Classification**:
|
| 62 |
+
- Logistic Regression with L2 regularization
|
| 63 |
+
- Multinomial Naive Bayes
|
| 64 |
+
|
| 65 |
+
## Performance
|
| 66 |
+
|
| 67 |
+
- **Logistic Regression**: 88.47% accuracy
|
| 68 |
+
- **Naive Bayes**: 85.2% accuracy
|
| 69 |
+
- **Ensemble**: Improved robustness and confidence
|
| 70 |
+
|
| 71 |
+
## Citation
|
| 72 |
+
|
| 73 |
+
If you use this model in your research, please cite:
|
| 74 |
+
|
| 75 |
+
```bibtex
|
| 76 |
+
@misc{imdb-sentiment-analysis,
|
| 77 |
+
author = {Your Name},
|
| 78 |
+
title = {IMDb Sentiment Analysis Model},
|
| 79 |
+
year = {2024},
|
| 80 |
+
publisher = {Hugging Face},
|
| 81 |
+
url = {https://huggingface.co/your-username/imdb-sentiment}
|
| 82 |
+
}
|
| 83 |
+
```
|
| 84 |
+
"""
|
| 85 |
+
|
| 86 |
+
with open("README.md", "w") as f:
|
| 87 |
+
f.write(model_card)
|
| 88 |
+
|
| 89 |
+
# Create .gitattributes
|
| 90 |
+
gitattributes = """*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 91 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 92 |
+
*.json filter=lfs diff=lfs merge=lfs -text
|
| 93 |
+
"""
|
| 94 |
+
|
| 95 |
+
with open(".gitattributes", "w") as f:
|
| 96 |
+
f.write(gitattributes)
|
| 97 |
+
|
| 98 |
+
print("Created Hugging Face configuration files")
|
| 99 |
+
|
| 100 |
+
def create_kaggle_notebook():
|
| 101 |
+
"""Create a Kaggle notebook for model deployment"""
|
| 102 |
+
|
| 103 |
+
notebook_code = '''{
|
| 104 |
+
"cells": [
|
| 105 |
+
{
|
| 106 |
+
"cell_type": "markdown",
|
| 107 |
+
"metadata": {},
|
| 108 |
+
"source": [
|
| 109 |
+
"# IMDb Sentiment Analysis Model Deployment\\n",
|
| 110 |
+
"\\n",
|
| 111 |
+
"This notebook demonstrates how to use the trained sentiment analysis model for IMDb reviews.\\n",
|
| 112 |
+
"\\n",
|
| 113 |
+
"## Model Details\\n",
|
| 114 |
+
"- **Logistic Regression Accuracy**: ~88.47%\\n",
|
| 115 |
+
"- **Naive Bayes Accuracy**: ~85.2%\\n",
|
| 116 |
+
"- **Vectorizer**: TF-IDF with 5000 features\\n",
|
| 117 |
+
"- **Preprocessing**: Lowercase, tokenization, stopword removal, lemmatization"
|
| 118 |
+
]
|
| 119 |
+
},
|
| 120 |
+
{
|
| 121 |
+
"cell_type": "code",
|
| 122 |
+
"execution_count": null,
|
| 123 |
+
"metadata": {},
|
| 124 |
+
"outputs": [],
|
| 125 |
+
"source": [
|
| 126 |
+
"# Install required packages\\n",
|
| 127 |
+
"!pip install nltk scikit-learn joblib pandas numpy"
|
| 128 |
+
]
|
| 129 |
+
},
|
| 130 |
+
{
|
| 131 |
+
"cell_type": "code",
|
| 132 |
+
"execution_count": null,
|
| 133 |
+
"metadata": {},
|
| 134 |
+
"outputs": [],
|
| 135 |
+
"source": [
|
| 136 |
+
"import joblib\\n",
|
| 137 |
+
"import json\\n",
|
| 138 |
+
"import re\\n",
|
| 139 |
+
"import nltk\\n",
|
| 140 |
+
"from nltk.corpus import stopwords\\n",
|
| 141 |
+
"from nltk.tokenize import word_tokenize\\n",
|
| 142 |
+
"from nltk.stem import WordNetLemmatizer\\n",
|
| 143 |
+
"import pandas as pd\\n",
|
| 144 |
+
"import numpy as np\\n",
|
| 145 |
+
"\\n",
|
| 146 |
+
"# Download NLTK resources\\n",
|
| 147 |
+
"nltk.download('punkt')\\n",
|
| 148 |
+
"nltk.download('stopwords')\\n",
|
| 149 |
+
"nltk.download('wordnet')"
|
| 150 |
+
]
|
| 151 |
+
},
|
| 152 |
+
{
|
| 153 |
+
"cell_type": "code",
|
| 154 |
+
"execution_count": null,
|
| 155 |
+
"metadata": {},
|
| 156 |
+
"outputs": [],
|
| 157 |
+
"source": [
|
| 158 |
+
"class SentimentAnalyzer:\\n",
|
| 159 |
+
" def __init__(self, model_dir=\\"saved_models\\"):\\n",
|
| 160 |
+
" # Load models\\n",
|
| 161 |
+
" self.vectorizer = joblib.load(f\\"{model_dir}/tfidf_vectorizer.pkl\\")\\n",
|
| 162 |
+
" self.lr_model = joblib.load(f\\"{model_dir}/logistic_regression_model.pkl\\")\\n",
|
| 163 |
+
" self.nb_model = joblib.load(f\\"{model_dir}/naive_bayes_model.pkl\\")\\n",
|
| 164 |
+
" \\n",
|
| 165 |
+
" # Load metadata\\n",
|
| 166 |
+
" with open(f\\"{model_dir}/model_metadata.json\\", \\"r\\") as f:\\n",
|
| 167 |
+
" self.metadata = json.load(f)\\n",
|
| 168 |
+
" \\n",
|
| 169 |
+
" def preprocess_text(self, text):\\n",
|
| 170 |
+
" # Lowercase\\n",
|
| 171 |
+
" text = text.lower()\\n",
|
| 172 |
+
" # Remove special characters and digits\\n",
|
| 173 |
+
" text = re.sub(r\\"[^a-zA-Z\\\\s]\\", \\"\\", text)\\n",
|
| 174 |
+
" # Tokenize\\n",
|
| 175 |
+
" tokens = word_tokenize(text)\\n",
|
| 176 |
+
" # Remove stopwords\\n",
|
| 177 |
+
" stop_words = set(stopwords.words(\\"english\\"))\\n",
|
| 178 |
+
" tokens = [word for word in tokens if word not in stop_words]\\n",
|
| 179 |
+
" # Lemmatize\\n",
|
| 180 |
+
" lemmatizer = WordNetLemmatizer()\\n",
|
| 181 |
+
" tokens = [lemmatizer.lemmatize(word) for word in tokens]\\n",
|
| 182 |
+
" # Join tokens back to string\\n",
|
| 183 |
+
" return \\" \\".join(tokens)\\n",
|
| 184 |
+
" \\n",
|
| 185 |
+
" def predict(self, text, model_type=\\"both\\"):\\n",
|
| 186 |
+
" # Preprocess text\\n",
|
| 187 |
+
" cleaned_text = self.preprocess_text(text)\\n",
|
| 188 |
+
" \\n",
|
| 189 |
+
" # Vectorize\\n",
|
| 190 |
+
" text_vector = self.vectorizer.transform([cleaned_text])\\n",
|
| 191 |
+
" \\n",
|
| 192 |
+
" results = {}\\n",
|
| 193 |
+
" \\n",
|
| 194 |
+
" if model_type in [\\"lr\\", \\"both\\"]:\\n",
|
| 195 |
+
" lr_pred = self.lr_model.predict(text_vector)[0]\\n",
|
| 196 |
+
" lr_prob = self.lr_model.predict_proba(text_vector)[0]\\n",
|
| 197 |
+
" results[\\"logistic_regression\\"] = {\\n",
|
| 198 |
+
" \\"prediction\\": \\"positive\\" if lr_pred == 1 else \\"negative\\",\\n",
|
| 199 |
+
" \\"confidence\\": float(max(lr_prob)),\\n",
|
| 200 |
+
" \\"probabilities\\": {\\n",
|
| 201 |
+
" \\"negative\\": float(lr_prob[0]),\\n",
|
| 202 |
+
" \\"positive\\": float(lr_prob[1])\\n",
|
| 203 |
+
" }\\n",
|
| 204 |
+
" }\\n",
|
| 205 |
+
" \\n",
|
| 206 |
+
" if model_type in [\\"nb\\", \\"both\\"]:\\n",
|
| 207 |
+
" nb_pred = self.nb_model.predict(text_vector)[0]\\n",
|
| 208 |
+
" nb_prob = self.nb_model.predict_proba(text_vector)[0]\\n",
|
| 209 |
+
" results[\\"naive_bayes\\"] = {\\n",
|
| 210 |
+
" \\"prediction\\": \\"positive\\" if nb_pred == 1 else \\"negative\\",\\n",
|
| 211 |
+
" \\"confidence\\": float(max(nb_prob)),\\n",
|
| 212 |
+
" \\"probabilities\\": {\\n",
|
| 213 |
+
" \\"negative\\": float(nb_prob[0]),\\n",
|
| 214 |
+
" \\"positive\\": float(nb_prob[1])\\n",
|
| 215 |
+
" }\\n",
|
| 216 |
+
" }\\n",
|
| 217 |
+
" \\n",
|
| 218 |
+
" return results"
|
| 219 |
+
]
|
| 220 |
+
},
|
| 221 |
+
{
|
| 222 |
+
"cell_type": "code",
|
| 223 |
+
"execution_count": null,
|
| 224 |
+
"metadata": {},
|
| 225 |
+
"outputs": [],
|
| 226 |
+
"source": [
|
| 227 |
+
"# Initialize analyzer\\n",
|
| 228 |
+
"analyzer = SentimentAnalyzer()\\n",
|
| 229 |
+
"\\n",
|
| 230 |
+
"print(\\"Model loaded successfully!\\")\\n",
|
| 231 |
+
"print(f\\"Logistic Regression Accuracy: {analyzer.metadata['lr_accuracy']:.2%}\\")\\n",
|
| 232 |
+
"print(f\\"Naive Bayes Accuracy: {analyzer.metadata['nb_accuracy']:.2%}\\")"
|
| 233 |
+
]
|
| 234 |
+
},
|
| 235 |
+
{
|
| 236 |
+
"cell_type": "code",
|
| 237 |
+
"execution_count": null,
|
| 238 |
+
"metadata": {},
|
| 239 |
+
"outputs": [],
|
| 240 |
+
"source": [
|
| 241 |
+
"# Test with sample reviews\\n",
|
| 242 |
+
"test_reviews = [\\n",
|
| 243 |
+
" \\"This movie was absolutely fantastic! I loved every minute of it.\\",\\n",
|
| 244 |
+
" \\"Terrible film, waste of time. Don\\"t watch it.\\",\\n",
|
| 245 |
+
" \\"It was okay, nothing special but not bad either.\\",\\n",
|
| 246 |
+
" \\"Amazing performance by the actors, great storyline!\\",\\n",
|
| 247 |
+
" \\"Boring and predictable plot, poor acting.\\"\\n",
|
| 248 |
+
"]\\n",
|
| 249 |
+
"\\n",
|
| 250 |
+
"for review in test_reviews:\\n",
|
| 251 |
+
" print(f\\"\\nReview: {review}\\")\\n",
|
| 252 |
+
" results = analyzer.predict(review)\\n",
|
| 253 |
+
" for model, result in results.items():\\n",
|
| 254 |
+
" print(f\\"{model}: {result['prediction']} (confidence: {result['confidence']:.2f})\\")"
|
| 255 |
+
]
|
| 256 |
+
},
|
| 257 |
+
{
|
| 258 |
+
"cell_type": "code",
|
| 259 |
+
"execution_count": null,
|
| 260 |
+
"metadata": {},
|
| 261 |
+
"outputs": [],
|
| 262 |
+
"source": [
|
| 263 |
+
"# Interactive prediction\\n",
|
| 264 |
+
"def predict_sentiment(review):\\n",
|
| 265 |
+
" results = analyzer.predict(review)\\n",
|
| 266 |
+
" print(f\\"Review: {review}\\")\\n",
|
| 267 |
+
" print(\\"Results:\\")\\n",
|
| 268 |
+
" for model, result in results.items():\\n",
|
| 269 |
+
" print(f\\" {model}: {result['prediction']} (confidence: {result['confidence']:.2%})\\")\\n",
|
| 270 |
+
" return results\\n",
|
| 271 |
+
"\\n",
|
| 272 |
+
"# Example usage\\n",
|
| 273 |
+
"# predict_sentiment(\\"Your review here\\")"
|
| 274 |
+
]
|
| 275 |
+
}
|
| 276 |
+
],
|
| 277 |
+
"metadata": {
|
| 278 |
+
"kernelspec": {
|
| 279 |
+
"display_name": "Python 3",
|
| 280 |
+
"language": "python",
|
| 281 |
+
"name": "python3"
|
| 282 |
+
},
|
| 283 |
+
"language_info": {
|
| 284 |
+
"codemirror_mode": {
|
| 285 |
+
"name": "ipython",
|
| 286 |
+
"version": 3
|
| 287 |
+
},
|
| 288 |
+
"file_extension": ".py",
|
| 289 |
+
"mimetype": "text/x-python",
|
| 290 |
+
"name": "python",
|
| 291 |
+
"nbconvert_exporter": "python",
|
| 292 |
+
"pygments_lexer": "ipython3",
|
| 293 |
+
"version": "3.8.5"
|
| 294 |
+
}
|
| 295 |
+
},
|
| 296 |
+
"nbformat": 4,
|
| 297 |
+
"nbformat_minor": 4
|
| 298 |
+
}'''
|
| 299 |
+
|
| 300 |
+
with open("kaggle_notebook.ipynb", "w") as f:
|
| 301 |
+
f.write(notebook_code)
|
| 302 |
+
|
| 303 |
+
print("Created Kaggle notebook")
|
| 304 |
+
|
| 305 |
+
def create_dockerfile():
|
| 306 |
+
"""Create Dockerfile for containerized deployment"""
|
| 307 |
+
|
| 308 |
+
dockerfile = '''FROM python:3.9-slim
|
| 309 |
+
|
| 310 |
+
WORKDIR /app
|
| 311 |
+
|
| 312 |
+
# Install system dependencies
|
| 313 |
+
RUN apt-get update && apt-get install -y \\
|
| 314 |
+
gcc \\
|
| 315 |
+
&& rm -rf /var/lib/apt/lists/*
|
| 316 |
+
|
| 317 |
+
# Copy requirements and install Python dependencies
|
| 318 |
+
COPY requirements.txt .
|
| 319 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
| 320 |
+
|
| 321 |
+
# Download NLTK data
|
| 322 |
+
RUN python -c "import nltk; nltk.download('punkt'); nltk.download('stopwords'); nltk.download('wordnet')"
|
| 323 |
+
|
| 324 |
+
# Copy model files
|
| 325 |
+
COPY saved_models/ ./saved_models/
|
| 326 |
+
COPY inference.py .
|
| 327 |
+
COPY streamlit_deployment.py .
|
| 328 |
+
|
| 329 |
+
# Expose port
|
| 330 |
+
EXPOSE 8501
|
| 331 |
+
|
| 332 |
+
# Run Streamlit app
|
| 333 |
+
CMD ["streamlit", "run", "streamlit_deployment.py", "--server.port=8501", "--server.address=0.0.0.0"]'''
|
| 334 |
+
|
| 335 |
+
with open("Dockerfile", "w") as f:
|
| 336 |
+
f.write(dockerfile)
|
| 337 |
+
|
| 338 |
+
print("Created Dockerfile")
|
| 339 |
+
|
| 340 |
+
def create_docker_compose():
|
| 341 |
+
"""Create docker-compose.yml for easy deployment"""
|
| 342 |
+
|
| 343 |
+
compose = '''version: '3.8'
|
| 344 |
+
|
| 345 |
+
services:
|
| 346 |
+
sentiment-analysis:
|
| 347 |
+
build: .
|
| 348 |
+
ports:
|
| 349 |
+
- "8501:8501"
|
| 350 |
+
volumes:
|
| 351 |
+
- ./saved_models:/app/saved_models
|
| 352 |
+
environment:
|
| 353 |
+
- STREAMLIT_SERVER_PORT=8501
|
| 354 |
+
- STREAMLIT_SERVER_ADDRESS=0.0.0.0'''
|
| 355 |
+
|
| 356 |
+
with open("docker-compose.yml", "w") as f:
|
| 357 |
+
f.write(compose)
|
| 358 |
+
|
| 359 |
+
print("Created docker-compose.yml")
|
| 360 |
+
|
| 361 |
+
if __name__ == "__main__":
|
| 362 |
+
print("Creating deployment configurations...")
|
| 363 |
+
|
| 364 |
+
# Check if models exist
|
| 365 |
+
if not os.path.exists("saved_models"):
|
| 366 |
+
print("❌ Models not found! Please run 'python train_and_save_model.py' first.")
|
| 367 |
+
exit(1)
|
| 368 |
+
|
| 369 |
+
# Create deployment files
|
| 370 |
+
create_huggingface_config()
|
| 371 |
+
create_kaggle_notebook()
|
| 372 |
+
create_dockerfile()
|
| 373 |
+
create_docker_compose()
|
| 374 |
+
|
| 375 |
+
print("\n✅ Deployment files created!")
|
| 376 |
+
print("\n📋 Next steps:")
|
| 377 |
+
print("1. For Hugging Face: Upload the entire directory to HF Hub")
|
| 378 |
+
print("2. For Kaggle: Upload kaggle_notebook.ipynb to Kaggle")
|
| 379 |
+
print("3. For Docker: Run 'docker-compose up'")
|
| 380 |
+
print("4. For Streamlit Cloud: Push to GitHub and connect to Streamlit Cloud")
|
saved_models/logistic_regression_model.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cca354003e9bd826f219453b1236120370d116d198233804f7b3bb5456673f1a
|
| 3 |
+
size 40863
|
saved_models/model_metadata.json
ADDED
|
@@ -0,0 +1,5016 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"vectorizer_features": [
|
| 3 |
+
"aaron",
|
| 4 |
+
"abandoned",
|
| 5 |
+
"abc",
|
| 6 |
+
"ability",
|
| 7 |
+
"able",
|
| 8 |
+
"aboutbr",
|
| 9 |
+
"abrupt",
|
| 10 |
+
"absence",
|
| 11 |
+
"absent",
|
| 12 |
+
"absolute",
|
| 13 |
+
"absolutely",
|
| 14 |
+
"absurd",
|
| 15 |
+
"absurdity",
|
| 16 |
+
"abuse",
|
| 17 |
+
"abused",
|
| 18 |
+
"abusive",
|
| 19 |
+
"abysmal",
|
| 20 |
+
"academy",
|
| 21 |
+
"accent",
|
| 22 |
+
"accept",
|
| 23 |
+
"acceptable",
|
| 24 |
+
"accepted",
|
| 25 |
+
"access",
|
| 26 |
+
"accident",
|
| 27 |
+
"accidentally",
|
| 28 |
+
"acclaimed",
|
| 29 |
+
"accompanied",
|
| 30 |
+
"accomplished",
|
| 31 |
+
"according",
|
| 32 |
+
"account",
|
| 33 |
+
"accuracy",
|
| 34 |
+
"accurate",
|
| 35 |
+
"accurately",
|
| 36 |
+
"accused",
|
| 37 |
+
"achieve",
|
| 38 |
+
"achieved",
|
| 39 |
+
"achievement",
|
| 40 |
+
"acid",
|
| 41 |
+
"across",
|
| 42 |
+
"act",
|
| 43 |
+
"acted",
|
| 44 |
+
"acting",
|
| 45 |
+
"action",
|
| 46 |
+
"active",
|
| 47 |
+
"activity",
|
| 48 |
+
"actor",
|
| 49 |
+
"actress",
|
| 50 |
+
"actual",
|
| 51 |
+
"actually",
|
| 52 |
+
"ad",
|
| 53 |
+
"adam",
|
| 54 |
+
"adaptation",
|
| 55 |
+
"adapted",
|
| 56 |
+
"add",
|
| 57 |
+
"added",
|
| 58 |
+
"addict",
|
| 59 |
+
"addiction",
|
| 60 |
+
"adding",
|
| 61 |
+
"addition",
|
| 62 |
+
"additional",
|
| 63 |
+
"address",
|
| 64 |
+
"adequate",
|
| 65 |
+
"admire",
|
| 66 |
+
"admit",
|
| 67 |
+
"admittedly",
|
| 68 |
+
"adolescent",
|
| 69 |
+
"adopted",
|
| 70 |
+
"adorable",
|
| 71 |
+
"adult",
|
| 72 |
+
"advance",
|
| 73 |
+
"advanced",
|
| 74 |
+
"advantage",
|
| 75 |
+
"adventure",
|
| 76 |
+
"advertising",
|
| 77 |
+
"advice",
|
| 78 |
+
"advise",
|
| 79 |
+
"affair",
|
| 80 |
+
"affect",
|
| 81 |
+
"affected",
|
| 82 |
+
"affection",
|
| 83 |
+
"afford",
|
| 84 |
+
"aforementioned",
|
| 85 |
+
"afraid",
|
| 86 |
+
"africa",
|
| 87 |
+
"african",
|
| 88 |
+
"afternoon",
|
| 89 |
+
"afterwards",
|
| 90 |
+
"againbr",
|
| 91 |
+
"age",
|
| 92 |
+
"aged",
|
| 93 |
+
"agency",
|
| 94 |
+
"agenda",
|
| 95 |
+
"agent",
|
| 96 |
+
"aging",
|
| 97 |
+
"ago",
|
| 98 |
+
"agree",
|
| 99 |
+
"agreed",
|
| 100 |
+
"agrees",
|
| 101 |
+
"ah",
|
| 102 |
+
"ahead",
|
| 103 |
+
"aid",
|
| 104 |
+
"aim",
|
| 105 |
+
"aimed",
|
| 106 |
+
"aint",
|
| 107 |
+
"air",
|
| 108 |
+
"aired",
|
| 109 |
+
"airplane",
|
| 110 |
+
"airport",
|
| 111 |
+
"aka",
|
| 112 |
+
"al",
|
| 113 |
+
"ala",
|
| 114 |
+
"alan",
|
| 115 |
+
"albeit",
|
| 116 |
+
"albert",
|
| 117 |
+
"album",
|
| 118 |
+
"alcohol",
|
| 119 |
+
"alcoholic",
|
| 120 |
+
"alert",
|
| 121 |
+
"alex",
|
| 122 |
+
"alexander",
|
| 123 |
+
"alfred",
|
| 124 |
+
"ali",
|
| 125 |
+
"alice",
|
| 126 |
+
"alien",
|
| 127 |
+
"alike",
|
| 128 |
+
"alive",
|
| 129 |
+
"allbr",
|
| 130 |
+
"allen",
|
| 131 |
+
"alley",
|
| 132 |
+
"allow",
|
| 133 |
+
"allowed",
|
| 134 |
+
"allowing",
|
| 135 |
+
"allows",
|
| 136 |
+
"alltime",
|
| 137 |
+
"ally",
|
| 138 |
+
"almost",
|
| 139 |
+
"alone",
|
| 140 |
+
"along",
|
| 141 |
+
"alongside",
|
| 142 |
+
"already",
|
| 143 |
+
"alright",
|
| 144 |
+
"also",
|
| 145 |
+
"alternate",
|
| 146 |
+
"alternative",
|
| 147 |
+
"although",
|
| 148 |
+
"altman",
|
| 149 |
+
"altogether",
|
| 150 |
+
"always",
|
| 151 |
+
"amanda",
|
| 152 |
+
"amateur",
|
| 153 |
+
"amateurish",
|
| 154 |
+
"amazed",
|
| 155 |
+
"amazing",
|
| 156 |
+
"amazingly",
|
| 157 |
+
"ambiguous",
|
| 158 |
+
"ambition",
|
| 159 |
+
"ambitious",
|
| 160 |
+
"america",
|
| 161 |
+
"american",
|
| 162 |
+
"among",
|
| 163 |
+
"amongst",
|
| 164 |
+
"amount",
|
| 165 |
+
"amused",
|
| 166 |
+
"amusing",
|
| 167 |
+
"amy",
|
| 168 |
+
"analysis",
|
| 169 |
+
"ancient",
|
| 170 |
+
"anderson",
|
| 171 |
+
"andor",
|
| 172 |
+
"andre",
|
| 173 |
+
"andrew",
|
| 174 |
+
"andy",
|
| 175 |
+
"angel",
|
| 176 |
+
"angela",
|
| 177 |
+
"angeles",
|
| 178 |
+
"anger",
|
| 179 |
+
"angle",
|
| 180 |
+
"angry",
|
| 181 |
+
"animal",
|
| 182 |
+
"animated",
|
| 183 |
+
"animation",
|
| 184 |
+
"anime",
|
| 185 |
+
"ann",
|
| 186 |
+
"anna",
|
| 187 |
+
"anne",
|
| 188 |
+
"annie",
|
| 189 |
+
"annoyed",
|
| 190 |
+
"annoying",
|
| 191 |
+
"another",
|
| 192 |
+
"answer",
|
| 193 |
+
"ant",
|
| 194 |
+
"anthony",
|
| 195 |
+
"antic",
|
| 196 |
+
"antonio",
|
| 197 |
+
"anybody",
|
| 198 |
+
"anymore",
|
| 199 |
+
"anyone",
|
| 200 |
+
"anyones",
|
| 201 |
+
"anything",
|
| 202 |
+
"anyway",
|
| 203 |
+
"anywaybr",
|
| 204 |
+
"anyways",
|
| 205 |
+
"anywhere",
|
| 206 |
+
"apart",
|
| 207 |
+
"apartment",
|
| 208 |
+
"ape",
|
| 209 |
+
"apocalypse",
|
| 210 |
+
"appalling",
|
| 211 |
+
"apparent",
|
| 212 |
+
"apparently",
|
| 213 |
+
"appeal",
|
| 214 |
+
"appealing",
|
| 215 |
+
"appear",
|
| 216 |
+
"appearance",
|
| 217 |
+
"appeared",
|
| 218 |
+
"appearing",
|
| 219 |
+
"appears",
|
| 220 |
+
"appreciate",
|
| 221 |
+
"appreciated",
|
| 222 |
+
"appreciation",
|
| 223 |
+
"approach",
|
| 224 |
+
"appropriate",
|
| 225 |
+
"appropriately",
|
| 226 |
+
"april",
|
| 227 |
+
"arab",
|
| 228 |
+
"arc",
|
| 229 |
+
"area",
|
| 230 |
+
"arent",
|
| 231 |
+
"argento",
|
| 232 |
+
"arguably",
|
| 233 |
+
"argue",
|
| 234 |
+
"argument",
|
| 235 |
+
"arm",
|
| 236 |
+
"armed",
|
| 237 |
+
"army",
|
| 238 |
+
"arnold",
|
| 239 |
+
"around",
|
| 240 |
+
"arrested",
|
| 241 |
+
"arrival",
|
| 242 |
+
"arrive",
|
| 243 |
+
"arrived",
|
| 244 |
+
"arrives",
|
| 245 |
+
"arrogant",
|
| 246 |
+
"art",
|
| 247 |
+
"arthur",
|
| 248 |
+
"artificial",
|
| 249 |
+
"artist",
|
| 250 |
+
"artistic",
|
| 251 |
+
"as",
|
| 252 |
+
"ashamed",
|
| 253 |
+
"asian",
|
| 254 |
+
"aside",
|
| 255 |
+
"ask",
|
| 256 |
+
"asked",
|
| 257 |
+
"asking",
|
| 258 |
+
"asks",
|
| 259 |
+
"asleep",
|
| 260 |
+
"aspect",
|
| 261 |
+
"assassin",
|
| 262 |
+
"assassination",
|
| 263 |
+
"assault",
|
| 264 |
+
"assigned",
|
| 265 |
+
"assistant",
|
| 266 |
+
"associate",
|
| 267 |
+
"associated",
|
| 268 |
+
"assume",
|
| 269 |
+
"assumed",
|
| 270 |
+
"assuming",
|
| 271 |
+
"astaire",
|
| 272 |
+
"astonishing",
|
| 273 |
+
"astronaut",
|
| 274 |
+
"asylum",
|
| 275 |
+
"atlantis",
|
| 276 |
+
"atmosphere",
|
| 277 |
+
"atmospheric",
|
| 278 |
+
"atrocious",
|
| 279 |
+
"atrocity",
|
| 280 |
+
"attached",
|
| 281 |
+
"attack",
|
| 282 |
+
"attacked",
|
| 283 |
+
"attempt",
|
| 284 |
+
"attempted",
|
| 285 |
+
"attempting",
|
| 286 |
+
"attention",
|
| 287 |
+
"attitude",
|
| 288 |
+
"attorney",
|
| 289 |
+
"attracted",
|
| 290 |
+
"attraction",
|
| 291 |
+
"attractive",
|
| 292 |
+
"audience",
|
| 293 |
+
"audio",
|
| 294 |
+
"audition",
|
| 295 |
+
"aunt",
|
| 296 |
+
"aussie",
|
| 297 |
+
"austen",
|
| 298 |
+
"austin",
|
| 299 |
+
"australia",
|
| 300 |
+
"australian",
|
| 301 |
+
"authentic",
|
| 302 |
+
"author",
|
| 303 |
+
"authority",
|
| 304 |
+
"available",
|
| 305 |
+
"average",
|
| 306 |
+
"avoid",
|
| 307 |
+
"avoided",
|
| 308 |
+
"awake",
|
| 309 |
+
"award",
|
| 310 |
+
"aware",
|
| 311 |
+
"away",
|
| 312 |
+
"awaybr",
|
| 313 |
+
"awe",
|
| 314 |
+
"awesome",
|
| 315 |
+
"awful",
|
| 316 |
+
"awfully",
|
| 317 |
+
"awhile",
|
| 318 |
+
"awkward",
|
| 319 |
+
"babe",
|
| 320 |
+
"baby",
|
| 321 |
+
"back",
|
| 322 |
+
"backdrop",
|
| 323 |
+
"background",
|
| 324 |
+
"bad",
|
| 325 |
+
"badbr",
|
| 326 |
+
"baddie",
|
| 327 |
+
"badly",
|
| 328 |
+
"bag",
|
| 329 |
+
"baker",
|
| 330 |
+
"balance",
|
| 331 |
+
"baldwin",
|
| 332 |
+
"ball",
|
| 333 |
+
"ballet",
|
| 334 |
+
"bam",
|
| 335 |
+
"banal",
|
| 336 |
+
"band",
|
| 337 |
+
"bang",
|
| 338 |
+
"bank",
|
| 339 |
+
"banned",
|
| 340 |
+
"bar",
|
| 341 |
+
"barbara",
|
| 342 |
+
"bare",
|
| 343 |
+
"barely",
|
| 344 |
+
"bargain",
|
| 345 |
+
"barker",
|
| 346 |
+
"barney",
|
| 347 |
+
"barrel",
|
| 348 |
+
"barry",
|
| 349 |
+
"barrymore",
|
| 350 |
+
"base",
|
| 351 |
+
"baseball",
|
| 352 |
+
"based",
|
| 353 |
+
"basement",
|
| 354 |
+
"basic",
|
| 355 |
+
"basically",
|
| 356 |
+
"basis",
|
| 357 |
+
"bat",
|
| 358 |
+
"bates",
|
| 359 |
+
"bath",
|
| 360 |
+
"bathroom",
|
| 361 |
+
"batman",
|
| 362 |
+
"battle",
|
| 363 |
+
"bay",
|
| 364 |
+
"bbc",
|
| 365 |
+
"beach",
|
| 366 |
+
"bean",
|
| 367 |
+
"bear",
|
| 368 |
+
"beast",
|
| 369 |
+
"beat",
|
| 370 |
+
"beaten",
|
| 371 |
+
"beating",
|
| 372 |
+
"beautiful",
|
| 373 |
+
"beautifully",
|
| 374 |
+
"beauty",
|
| 375 |
+
"bebr",
|
| 376 |
+
"became",
|
| 377 |
+
"become",
|
| 378 |
+
"becomes",
|
| 379 |
+
"becoming",
|
| 380 |
+
"bed",
|
| 381 |
+
"bedroom",
|
| 382 |
+
"beer",
|
| 383 |
+
"began",
|
| 384 |
+
"begin",
|
| 385 |
+
"beginning",
|
| 386 |
+
"behave",
|
| 387 |
+
"behavior",
|
| 388 |
+
"behaviour",
|
| 389 |
+
"behind",
|
| 390 |
+
"being",
|
| 391 |
+
"bela",
|
| 392 |
+
"belief",
|
| 393 |
+
"believable",
|
| 394 |
+
"believe",
|
| 395 |
+
"believed",
|
| 396 |
+
"believing",
|
| 397 |
+
"bell",
|
| 398 |
+
"belong",
|
| 399 |
+
"belongs",
|
| 400 |
+
"beloved",
|
| 401 |
+
"belt",
|
| 402 |
+
"ben",
|
| 403 |
+
"beneath",
|
| 404 |
+
"benefit",
|
| 405 |
+
"bergman",
|
| 406 |
+
"berlin",
|
| 407 |
+
"bernard",
|
| 408 |
+
"besides",
|
| 409 |
+
"best",
|
| 410 |
+
"bet",
|
| 411 |
+
"betrayal",
|
| 412 |
+
"bette",
|
| 413 |
+
"better",
|
| 414 |
+
"betterbr",
|
| 415 |
+
"bettie",
|
| 416 |
+
"betty",
|
| 417 |
+
"beverly",
|
| 418 |
+
"beware",
|
| 419 |
+
"beyond",
|
| 420 |
+
"biased",
|
| 421 |
+
"bible",
|
| 422 |
+
"big",
|
| 423 |
+
"bigger",
|
| 424 |
+
"biggest",
|
| 425 |
+
"bike",
|
| 426 |
+
"bill",
|
| 427 |
+
"billy",
|
| 428 |
+
"bin",
|
| 429 |
+
"biography",
|
| 430 |
+
"bird",
|
| 431 |
+
"birth",
|
| 432 |
+
"birthday",
|
| 433 |
+
"bit",
|
| 434 |
+
"bite",
|
| 435 |
+
"bitter",
|
| 436 |
+
"bizarre",
|
| 437 |
+
"black",
|
| 438 |
+
"blade",
|
| 439 |
+
"blah",
|
| 440 |
+
"blair",
|
| 441 |
+
"blake",
|
| 442 |
+
"blame",
|
| 443 |
+
"bland",
|
| 444 |
+
"blank",
|
| 445 |
+
"blast",
|
| 446 |
+
"blatant",
|
| 447 |
+
"bleak",
|
| 448 |
+
"blend",
|
| 449 |
+
"blew",
|
| 450 |
+
"blind",
|
| 451 |
+
"blob",
|
| 452 |
+
"block",
|
| 453 |
+
"blockbuster",
|
| 454 |
+
"blond",
|
| 455 |
+
"blonde",
|
| 456 |
+
"blood",
|
| 457 |
+
"bloody",
|
| 458 |
+
"blow",
|
| 459 |
+
"blowing",
|
| 460 |
+
"blown",
|
| 461 |
+
"blue",
|
| 462 |
+
"bmovie",
|
| 463 |
+
"bo",
|
| 464 |
+
"board",
|
| 465 |
+
"boast",
|
| 466 |
+
"boat",
|
| 467 |
+
"bob",
|
| 468 |
+
"bobby",
|
| 469 |
+
"body",
|
| 470 |
+
"bogart",
|
| 471 |
+
"bold",
|
| 472 |
+
"boll",
|
| 473 |
+
"bollywood",
|
| 474 |
+
"bomb",
|
| 475 |
+
"bond",
|
| 476 |
+
"bone",
|
| 477 |
+
"bonus",
|
| 478 |
+
"boob",
|
| 479 |
+
"book",
|
| 480 |
+
"boom",
|
| 481 |
+
"boot",
|
| 482 |
+
"border",
|
| 483 |
+
"bore",
|
| 484 |
+
"bored",
|
| 485 |
+
"boredom",
|
| 486 |
+
"boring",
|
| 487 |
+
"boris",
|
| 488 |
+
"born",
|
| 489 |
+
"borrowed",
|
| 490 |
+
"bos",
|
| 491 |
+
"bother",
|
| 492 |
+
"bothered",
|
| 493 |
+
"bottle",
|
| 494 |
+
"bottom",
|
| 495 |
+
"bought",
|
| 496 |
+
"bound",
|
| 497 |
+
"bourne",
|
| 498 |
+
"box",
|
| 499 |
+
"boxing",
|
| 500 |
+
"boy",
|
| 501 |
+
"boyfriend",
|
| 502 |
+
"br",
|
| 503 |
+
"brad",
|
| 504 |
+
"brady",
|
| 505 |
+
"brain",
|
| 506 |
+
"branagh",
|
| 507 |
+
"brand",
|
| 508 |
+
"brando",
|
| 509 |
+
"brave",
|
| 510 |
+
"bravo",
|
| 511 |
+
"brazil",
|
| 512 |
+
"break",
|
| 513 |
+
"breaking",
|
| 514 |
+
"breast",
|
| 515 |
+
"breath",
|
| 516 |
+
"breathtaking",
|
| 517 |
+
"brian",
|
| 518 |
+
"bride",
|
| 519 |
+
"bridge",
|
| 520 |
+
"brief",
|
| 521 |
+
"briefly",
|
| 522 |
+
"bright",
|
| 523 |
+
"brilliance",
|
| 524 |
+
"brilliant",
|
| 525 |
+
"brilliantly",
|
| 526 |
+
"bring",
|
| 527 |
+
"bringing",
|
| 528 |
+
"brings",
|
| 529 |
+
"britain",
|
| 530 |
+
"british",
|
| 531 |
+
"broad",
|
| 532 |
+
"broadcast",
|
| 533 |
+
"broadway",
|
| 534 |
+
"broke",
|
| 535 |
+
"broken",
|
| 536 |
+
"bronson",
|
| 537 |
+
"brook",
|
| 538 |
+
"brooklyn",
|
| 539 |
+
"brother",
|
| 540 |
+
"brought",
|
| 541 |
+
"brown",
|
| 542 |
+
"bruce",
|
| 543 |
+
"bruno",
|
| 544 |
+
"brutal",
|
| 545 |
+
"brutality",
|
| 546 |
+
"brutally",
|
| 547 |
+
"buck",
|
| 548 |
+
"bud",
|
| 549 |
+
"buddy",
|
| 550 |
+
"budget",
|
| 551 |
+
"buff",
|
| 552 |
+
"bug",
|
| 553 |
+
"build",
|
| 554 |
+
"building",
|
| 555 |
+
"built",
|
| 556 |
+
"bull",
|
| 557 |
+
"bullet",
|
| 558 |
+
"bullock",
|
| 559 |
+
"bully",
|
| 560 |
+
"bumbling",
|
| 561 |
+
"bunch",
|
| 562 |
+
"bunny",
|
| 563 |
+
"buried",
|
| 564 |
+
"burn",
|
| 565 |
+
"burned",
|
| 566 |
+
"burning",
|
| 567 |
+
"burst",
|
| 568 |
+
"burt",
|
| 569 |
+
"burton",
|
| 570 |
+
"bus",
|
| 571 |
+
"bush",
|
| 572 |
+
"business",
|
| 573 |
+
"businessman",
|
| 574 |
+
"buster",
|
| 575 |
+
"busy",
|
| 576 |
+
"butcher",
|
| 577 |
+
"butler",
|
| 578 |
+
"butt",
|
| 579 |
+
"button",
|
| 580 |
+
"buy",
|
| 581 |
+
"buying",
|
| 582 |
+
"cabin",
|
| 583 |
+
"cable",
|
| 584 |
+
"cage",
|
| 585 |
+
"cagney",
|
| 586 |
+
"caine",
|
| 587 |
+
"cake",
|
| 588 |
+
"california",
|
| 589 |
+
"call",
|
| 590 |
+
"called",
|
| 591 |
+
"calling",
|
| 592 |
+
"calm",
|
| 593 |
+
"came",
|
| 594 |
+
"cameo",
|
| 595 |
+
"camera",
|
| 596 |
+
"camerawork",
|
| 597 |
+
"cameron",
|
| 598 |
+
"camp",
|
| 599 |
+
"campaign",
|
| 600 |
+
"campbell",
|
| 601 |
+
"campy",
|
| 602 |
+
"canada",
|
| 603 |
+
"canadian",
|
| 604 |
+
"cancer",
|
| 605 |
+
"candidate",
|
| 606 |
+
"candy",
|
| 607 |
+
"cannibal",
|
| 608 |
+
"cannon",
|
| 609 |
+
"cant",
|
| 610 |
+
"capable",
|
| 611 |
+
"capital",
|
| 612 |
+
"captain",
|
| 613 |
+
"captivating",
|
| 614 |
+
"capture",
|
| 615 |
+
"captured",
|
| 616 |
+
"capturing",
|
| 617 |
+
"car",
|
| 618 |
+
"card",
|
| 619 |
+
"cardboard",
|
| 620 |
+
"care",
|
| 621 |
+
"cared",
|
| 622 |
+
"career",
|
| 623 |
+
"careful",
|
| 624 |
+
"carefully",
|
| 625 |
+
"caricature",
|
| 626 |
+
"caring",
|
| 627 |
+
"carl",
|
| 628 |
+
"carlos",
|
| 629 |
+
"carmen",
|
| 630 |
+
"carol",
|
| 631 |
+
"carpenter",
|
| 632 |
+
"carradine",
|
| 633 |
+
"carrey",
|
| 634 |
+
"carrie",
|
| 635 |
+
"carried",
|
| 636 |
+
"carry",
|
| 637 |
+
"carrying",
|
| 638 |
+
"carter",
|
| 639 |
+
"cartoon",
|
| 640 |
+
"cary",
|
| 641 |
+
"case",
|
| 642 |
+
"cash",
|
| 643 |
+
"cassavetes",
|
| 644 |
+
"cast",
|
| 645 |
+
"casting",
|
| 646 |
+
"castle",
|
| 647 |
+
"casual",
|
| 648 |
+
"cat",
|
| 649 |
+
"catch",
|
| 650 |
+
"catching",
|
| 651 |
+
"catchy",
|
| 652 |
+
"category",
|
| 653 |
+
"catherine",
|
| 654 |
+
"catholic",
|
| 655 |
+
"caught",
|
| 656 |
+
"cause",
|
| 657 |
+
"caused",
|
| 658 |
+
"causing",
|
| 659 |
+
"cave",
|
| 660 |
+
"cd",
|
| 661 |
+
"celebrity",
|
| 662 |
+
"cell",
|
| 663 |
+
"celluloid",
|
| 664 |
+
"cent",
|
| 665 |
+
"center",
|
| 666 |
+
"central",
|
| 667 |
+
"centre",
|
| 668 |
+
"century",
|
| 669 |
+
"certain",
|
| 670 |
+
"certainly",
|
| 671 |
+
"cg",
|
| 672 |
+
"cgi",
|
| 673 |
+
"chain",
|
| 674 |
+
"chainsaw",
|
| 675 |
+
"chair",
|
| 676 |
+
"challenge",
|
| 677 |
+
"challenged",
|
| 678 |
+
"challenging",
|
| 679 |
+
"champion",
|
| 680 |
+
"championship",
|
| 681 |
+
"chan",
|
| 682 |
+
"chance",
|
| 683 |
+
"change",
|
| 684 |
+
"changed",
|
| 685 |
+
"changing",
|
| 686 |
+
"channel",
|
| 687 |
+
"chaos",
|
| 688 |
+
"chaplin",
|
| 689 |
+
"chapter",
|
| 690 |
+
"character",
|
| 691 |
+
"characterbr",
|
| 692 |
+
"characteristic",
|
| 693 |
+
"characterization",
|
| 694 |
+
"charactersbr",
|
| 695 |
+
"charge",
|
| 696 |
+
"charisma",
|
| 697 |
+
"charismatic",
|
| 698 |
+
"charles",
|
| 699 |
+
"charlie",
|
| 700 |
+
"charlotte",
|
| 701 |
+
"charm",
|
| 702 |
+
"charming",
|
| 703 |
+
"chase",
|
| 704 |
+
"chased",
|
| 705 |
+
"chasing",
|
| 706 |
+
"che",
|
| 707 |
+
"cheap",
|
| 708 |
+
"cheat",
|
| 709 |
+
"cheated",
|
| 710 |
+
"cheating",
|
| 711 |
+
"check",
|
| 712 |
+
"checked",
|
| 713 |
+
"checking",
|
| 714 |
+
"cheek",
|
| 715 |
+
"cheer",
|
| 716 |
+
"cheese",
|
| 717 |
+
"cheesy",
|
| 718 |
+
"chemistry",
|
| 719 |
+
"chess",
|
| 720 |
+
"chest",
|
| 721 |
+
"chicago",
|
| 722 |
+
"chick",
|
| 723 |
+
"chicken",
|
| 724 |
+
"chief",
|
| 725 |
+
"child",
|
| 726 |
+
"childhood",
|
| 727 |
+
"childish",
|
| 728 |
+
"childrens",
|
| 729 |
+
"chill",
|
| 730 |
+
"chilling",
|
| 731 |
+
"china",
|
| 732 |
+
"chinese",
|
| 733 |
+
"chip",
|
| 734 |
+
"choice",
|
| 735 |
+
"choose",
|
| 736 |
+
"chooses",
|
| 737 |
+
"chop",
|
| 738 |
+
"choppy",
|
| 739 |
+
"choreographed",
|
| 740 |
+
"choreography",
|
| 741 |
+
"chorus",
|
| 742 |
+
"chose",
|
| 743 |
+
"chosen",
|
| 744 |
+
"chris",
|
| 745 |
+
"christ",
|
| 746 |
+
"christian",
|
| 747 |
+
"christie",
|
| 748 |
+
"christina",
|
| 749 |
+
"christmas",
|
| 750 |
+
"christopher",
|
| 751 |
+
"chuck",
|
| 752 |
+
"chuckle",
|
| 753 |
+
"church",
|
| 754 |
+
"cia",
|
| 755 |
+
"cigarette",
|
| 756 |
+
"cinderella",
|
| 757 |
+
"cinema",
|
| 758 |
+
"cinematic",
|
| 759 |
+
"cinematographer",
|
| 760 |
+
"cinematography",
|
| 761 |
+
"circle",
|
| 762 |
+
"circumstance",
|
| 763 |
+
"circus",
|
| 764 |
+
"citizen",
|
| 765 |
+
"city",
|
| 766 |
+
"civil",
|
| 767 |
+
"civilian",
|
| 768 |
+
"civilization",
|
| 769 |
+
"claim",
|
| 770 |
+
"claimed",
|
| 771 |
+
"claire",
|
| 772 |
+
"clark",
|
| 773 |
+
"class",
|
| 774 |
+
"classic",
|
| 775 |
+
"classical",
|
| 776 |
+
"claude",
|
| 777 |
+
"clean",
|
| 778 |
+
"clear",
|
| 779 |
+
"clearly",
|
| 780 |
+
"clerk",
|
| 781 |
+
"clever",
|
| 782 |
+
"cleverly",
|
| 783 |
+
"clich",
|
| 784 |
+
"clichd",
|
| 785 |
+
"cliche",
|
| 786 |
+
"clichs",
|
| 787 |
+
"client",
|
| 788 |
+
"cliff",
|
| 789 |
+
"climactic",
|
| 790 |
+
"climax",
|
| 791 |
+
"climb",
|
| 792 |
+
"clint",
|
| 793 |
+
"clip",
|
| 794 |
+
"clone",
|
| 795 |
+
"close",
|
| 796 |
+
"closed",
|
| 797 |
+
"closely",
|
| 798 |
+
"closer",
|
| 799 |
+
"closest",
|
| 800 |
+
"closet",
|
| 801 |
+
"closeup",
|
| 802 |
+
"closing",
|
| 803 |
+
"clothes",
|
| 804 |
+
"clothing",
|
| 805 |
+
"cloud",
|
| 806 |
+
"clown",
|
| 807 |
+
"club",
|
| 808 |
+
"clue",
|
| 809 |
+
"clueless",
|
| 810 |
+
"clumsy",
|
| 811 |
+
"co",
|
| 812 |
+
"coach",
|
| 813 |
+
"coast",
|
| 814 |
+
"coat",
|
| 815 |
+
"code",
|
| 816 |
+
"coffee",
|
| 817 |
+
"coherent",
|
| 818 |
+
"coincidence",
|
| 819 |
+
"cold",
|
| 820 |
+
"cole",
|
| 821 |
+
"colin",
|
| 822 |
+
"colleague",
|
| 823 |
+
"collect",
|
| 824 |
+
"collection",
|
| 825 |
+
"college",
|
| 826 |
+
"colonel",
|
| 827 |
+
"color",
|
| 828 |
+
"colorful",
|
| 829 |
+
"colour",
|
| 830 |
+
"columbo",
|
| 831 |
+
"combat",
|
| 832 |
+
"combination",
|
| 833 |
+
"combine",
|
| 834 |
+
"combined",
|
| 835 |
+
"come",
|
| 836 |
+
"comedian",
|
| 837 |
+
"comedic",
|
| 838 |
+
"comedy",
|
| 839 |
+
"comfort",
|
| 840 |
+
"comfortable",
|
| 841 |
+
"comic",
|
| 842 |
+
"comical",
|
| 843 |
+
"coming",
|
| 844 |
+
"command",
|
| 845 |
+
"commander",
|
| 846 |
+
"comment",
|
| 847 |
+
"commentary",
|
| 848 |
+
"commented",
|
| 849 |
+
"commercial",
|
| 850 |
+
"commit",
|
| 851 |
+
"committed",
|
| 852 |
+
"common",
|
| 853 |
+
"communist",
|
| 854 |
+
"community",
|
| 855 |
+
"companion",
|
| 856 |
+
"company",
|
| 857 |
+
"compare",
|
| 858 |
+
"compared",
|
| 859 |
+
"comparing",
|
| 860 |
+
"comparison",
|
| 861 |
+
"compassion",
|
| 862 |
+
"compelled",
|
| 863 |
+
"compelling",
|
| 864 |
+
"competent",
|
| 865 |
+
"competition",
|
| 866 |
+
"complain",
|
| 867 |
+
"complaining",
|
| 868 |
+
"complaint",
|
| 869 |
+
"complete",
|
| 870 |
+
"completed",
|
| 871 |
+
"completely",
|
| 872 |
+
"complex",
|
| 873 |
+
"complexity",
|
| 874 |
+
"complicated",
|
| 875 |
+
"compliment",
|
| 876 |
+
"composed",
|
| 877 |
+
"composer",
|
| 878 |
+
"composition",
|
| 879 |
+
"computer",
|
| 880 |
+
"con",
|
| 881 |
+
"conan",
|
| 882 |
+
"conceived",
|
| 883 |
+
"concentrate",
|
| 884 |
+
"concept",
|
| 885 |
+
"concern",
|
| 886 |
+
"concerned",
|
| 887 |
+
"concerning",
|
| 888 |
+
"concert",
|
| 889 |
+
"conclusion",
|
| 890 |
+
"condition",
|
| 891 |
+
"confess",
|
| 892 |
+
"confidence",
|
| 893 |
+
"conflict",
|
| 894 |
+
"confrontation",
|
| 895 |
+
"confused",
|
| 896 |
+
"confusing",
|
| 897 |
+
"confusion",
|
| 898 |
+
"connect",
|
| 899 |
+
"connected",
|
| 900 |
+
"connection",
|
| 901 |
+
"connery",
|
| 902 |
+
"conrad",
|
| 903 |
+
"conscience",
|
| 904 |
+
"consequence",
|
| 905 |
+
"conservative",
|
| 906 |
+
"consider",
|
| 907 |
+
"considerable",
|
| 908 |
+
"considered",
|
| 909 |
+
"considering",
|
| 910 |
+
"consistent",
|
| 911 |
+
"consistently",
|
| 912 |
+
"consists",
|
| 913 |
+
"conspiracy",
|
| 914 |
+
"constant",
|
| 915 |
+
"constantly",
|
| 916 |
+
"constructed",
|
| 917 |
+
"construction",
|
| 918 |
+
"contact",
|
| 919 |
+
"contain",
|
| 920 |
+
"contained",
|
| 921 |
+
"containing",
|
| 922 |
+
"contains",
|
| 923 |
+
"contemporary",
|
| 924 |
+
"content",
|
| 925 |
+
"contest",
|
| 926 |
+
"contestant",
|
| 927 |
+
"context",
|
| 928 |
+
"continue",
|
| 929 |
+
"continued",
|
| 930 |
+
"continues",
|
| 931 |
+
"continuity",
|
| 932 |
+
"contract",
|
| 933 |
+
"contrary",
|
| 934 |
+
"contrast",
|
| 935 |
+
"contribution",
|
| 936 |
+
"contrived",
|
| 937 |
+
"control",
|
| 938 |
+
"controlled",
|
| 939 |
+
"controversial",
|
| 940 |
+
"convention",
|
| 941 |
+
"conventional",
|
| 942 |
+
"conversation",
|
| 943 |
+
"convey",
|
| 944 |
+
"convict",
|
| 945 |
+
"conviction",
|
| 946 |
+
"convince",
|
| 947 |
+
"convinced",
|
| 948 |
+
"convincing",
|
| 949 |
+
"convincingly",
|
| 950 |
+
"convoluted",
|
| 951 |
+
"cook",
|
| 952 |
+
"cool",
|
| 953 |
+
"cooper",
|
| 954 |
+
"cop",
|
| 955 |
+
"cope",
|
| 956 |
+
"copy",
|
| 957 |
+
"core",
|
| 958 |
+
"corner",
|
| 959 |
+
"corny",
|
| 960 |
+
"corporate",
|
| 961 |
+
"corporation",
|
| 962 |
+
"corps",
|
| 963 |
+
"corpse",
|
| 964 |
+
"correct",
|
| 965 |
+
"correctly",
|
| 966 |
+
"corrupt",
|
| 967 |
+
"corruption",
|
| 968 |
+
"cost",
|
| 969 |
+
"costar",
|
| 970 |
+
"costume",
|
| 971 |
+
"couch",
|
| 972 |
+
"could",
|
| 973 |
+
"couldnt",
|
| 974 |
+
"couldve",
|
| 975 |
+
"count",
|
| 976 |
+
"counterpart",
|
| 977 |
+
"countless",
|
| 978 |
+
"country",
|
| 979 |
+
"countryside",
|
| 980 |
+
"couple",
|
| 981 |
+
"courage",
|
| 982 |
+
"course",
|
| 983 |
+
"court",
|
| 984 |
+
"cousin",
|
| 985 |
+
"cover",
|
| 986 |
+
"covered",
|
| 987 |
+
"cow",
|
| 988 |
+
"cowboy",
|
| 989 |
+
"cox",
|
| 990 |
+
"crack",
|
| 991 |
+
"craft",
|
| 992 |
+
"crafted",
|
| 993 |
+
"craig",
|
| 994 |
+
"crap",
|
| 995 |
+
"crappy",
|
| 996 |
+
"crash",
|
| 997 |
+
"craven",
|
| 998 |
+
"crawford",
|
| 999 |
+
"crazy",
|
| 1000 |
+
"cream",
|
| 1001 |
+
"create",
|
| 1002 |
+
"created",
|
| 1003 |
+
"creates",
|
| 1004 |
+
"creating",
|
| 1005 |
+
"creation",
|
| 1006 |
+
"creative",
|
| 1007 |
+
"creativity",
|
| 1008 |
+
"creator",
|
| 1009 |
+
"creature",
|
| 1010 |
+
"credibility",
|
| 1011 |
+
"credible",
|
| 1012 |
+
"credit",
|
| 1013 |
+
"credited",
|
| 1014 |
+
"creep",
|
| 1015 |
+
"creepy",
|
| 1016 |
+
"crew",
|
| 1017 |
+
"cried",
|
| 1018 |
+
"crime",
|
| 1019 |
+
"criminal",
|
| 1020 |
+
"cringe",
|
| 1021 |
+
"crisis",
|
| 1022 |
+
"crisp",
|
| 1023 |
+
"critic",
|
| 1024 |
+
"critical",
|
| 1025 |
+
"criticism",
|
| 1026 |
+
"critter",
|
| 1027 |
+
"crocodile",
|
| 1028 |
+
"crook",
|
| 1029 |
+
"cross",
|
| 1030 |
+
"crossing",
|
| 1031 |
+
"crowd",
|
| 1032 |
+
"crucial",
|
| 1033 |
+
"crude",
|
| 1034 |
+
"cruel",
|
| 1035 |
+
"cruelty",
|
| 1036 |
+
"cruise",
|
| 1037 |
+
"crush",
|
| 1038 |
+
"cry",
|
| 1039 |
+
"crystal",
|
| 1040 |
+
"cuba",
|
| 1041 |
+
"cube",
|
| 1042 |
+
"cue",
|
| 1043 |
+
"cult",
|
| 1044 |
+
"cultural",
|
| 1045 |
+
"culture",
|
| 1046 |
+
"cup",
|
| 1047 |
+
"cure",
|
| 1048 |
+
"curiosity",
|
| 1049 |
+
"curious",
|
| 1050 |
+
"current",
|
| 1051 |
+
"currently",
|
| 1052 |
+
"curse",
|
| 1053 |
+
"curtis",
|
| 1054 |
+
"cusack",
|
| 1055 |
+
"custer",
|
| 1056 |
+
"cut",
|
| 1057 |
+
"cute",
|
| 1058 |
+
"cutting",
|
| 1059 |
+
"cyborg",
|
| 1060 |
+
"cynical",
|
| 1061 |
+
"da",
|
| 1062 |
+
"dad",
|
| 1063 |
+
"daddy",
|
| 1064 |
+
"daily",
|
| 1065 |
+
"dalton",
|
| 1066 |
+
"damage",
|
| 1067 |
+
"dame",
|
| 1068 |
+
"damme",
|
| 1069 |
+
"damn",
|
| 1070 |
+
"damned",
|
| 1071 |
+
"dan",
|
| 1072 |
+
"dance",
|
| 1073 |
+
"dancer",
|
| 1074 |
+
"dancing",
|
| 1075 |
+
"dane",
|
| 1076 |
+
"danger",
|
| 1077 |
+
"dangerous",
|
| 1078 |
+
"daniel",
|
| 1079 |
+
"danny",
|
| 1080 |
+
"dare",
|
| 1081 |
+
"daring",
|
| 1082 |
+
"dark",
|
| 1083 |
+
"darker",
|
| 1084 |
+
"darkness",
|
| 1085 |
+
"darn",
|
| 1086 |
+
"date",
|
| 1087 |
+
"dated",
|
| 1088 |
+
"dating",
|
| 1089 |
+
"daughter",
|
| 1090 |
+
"dave",
|
| 1091 |
+
"david",
|
| 1092 |
+
"davis",
|
| 1093 |
+
"davy",
|
| 1094 |
+
"dawn",
|
| 1095 |
+
"dawson",
|
| 1096 |
+
"day",
|
| 1097 |
+
"daybr",
|
| 1098 |
+
"de",
|
| 1099 |
+
"dead",
|
| 1100 |
+
"deadly",
|
| 1101 |
+
"deaf",
|
| 1102 |
+
"deal",
|
| 1103 |
+
"dealer",
|
| 1104 |
+
"dealing",
|
| 1105 |
+
"dealt",
|
| 1106 |
+
"dean",
|
| 1107 |
+
"dear",
|
| 1108 |
+
"death",
|
| 1109 |
+
"debate",
|
| 1110 |
+
"debut",
|
| 1111 |
+
"decade",
|
| 1112 |
+
"decent",
|
| 1113 |
+
"decide",
|
| 1114 |
+
"decided",
|
| 1115 |
+
"decides",
|
| 1116 |
+
"decision",
|
| 1117 |
+
"dedicated",
|
| 1118 |
+
"dee",
|
| 1119 |
+
"deed",
|
| 1120 |
+
"deep",
|
| 1121 |
+
"deeper",
|
| 1122 |
+
"deeply",
|
| 1123 |
+
"defeat",
|
| 1124 |
+
"defend",
|
| 1125 |
+
"defense",
|
| 1126 |
+
"defined",
|
| 1127 |
+
"definite",
|
| 1128 |
+
"definitely",
|
| 1129 |
+
"definition",
|
| 1130 |
+
"degree",
|
| 1131 |
+
"deliberately",
|
| 1132 |
+
"delicate",
|
| 1133 |
+
"delight",
|
| 1134 |
+
"delightful",
|
| 1135 |
+
"deliver",
|
| 1136 |
+
"delivered",
|
| 1137 |
+
"delivering",
|
| 1138 |
+
"delivers",
|
| 1139 |
+
"delivery",
|
| 1140 |
+
"demand",
|
| 1141 |
+
"demented",
|
| 1142 |
+
"demise",
|
| 1143 |
+
"demon",
|
| 1144 |
+
"demonstrates",
|
| 1145 |
+
"dennis",
|
| 1146 |
+
"dentist",
|
| 1147 |
+
"denzel",
|
| 1148 |
+
"department",
|
| 1149 |
+
"depicted",
|
| 1150 |
+
"depicting",
|
| 1151 |
+
"depiction",
|
| 1152 |
+
"depicts",
|
| 1153 |
+
"depressed",
|
| 1154 |
+
"depressing",
|
| 1155 |
+
"depression",
|
| 1156 |
+
"depth",
|
| 1157 |
+
"deranged",
|
| 1158 |
+
"derek",
|
| 1159 |
+
"derivative",
|
| 1160 |
+
"descent",
|
| 1161 |
+
"describe",
|
| 1162 |
+
"described",
|
| 1163 |
+
"describes",
|
| 1164 |
+
"describing",
|
| 1165 |
+
"description",
|
| 1166 |
+
"desert",
|
| 1167 |
+
"deserted",
|
| 1168 |
+
"deserve",
|
| 1169 |
+
"deserved",
|
| 1170 |
+
"deserves",
|
| 1171 |
+
"design",
|
| 1172 |
+
"designed",
|
| 1173 |
+
"designer",
|
| 1174 |
+
"desire",
|
| 1175 |
+
"desired",
|
| 1176 |
+
"despair",
|
| 1177 |
+
"desperate",
|
| 1178 |
+
"desperately",
|
| 1179 |
+
"desperation",
|
| 1180 |
+
"despite",
|
| 1181 |
+
"destiny",
|
| 1182 |
+
"destroy",
|
| 1183 |
+
"destroyed",
|
| 1184 |
+
"destroying",
|
| 1185 |
+
"destroys",
|
| 1186 |
+
"destruction",
|
| 1187 |
+
"detail",
|
| 1188 |
+
"detailed",
|
| 1189 |
+
"detective",
|
| 1190 |
+
"determined",
|
| 1191 |
+
"develop",
|
| 1192 |
+
"developed",
|
| 1193 |
+
"developing",
|
| 1194 |
+
"development",
|
| 1195 |
+
"develops",
|
| 1196 |
+
"device",
|
| 1197 |
+
"devil",
|
| 1198 |
+
"devoid",
|
| 1199 |
+
"devoted",
|
| 1200 |
+
"dialog",
|
| 1201 |
+
"dialogue",
|
| 1202 |
+
"diamond",
|
| 1203 |
+
"diana",
|
| 1204 |
+
"diane",
|
| 1205 |
+
"dick",
|
| 1206 |
+
"dickens",
|
| 1207 |
+
"didnt",
|
| 1208 |
+
"die",
|
| 1209 |
+
"died",
|
| 1210 |
+
"diehard",
|
| 1211 |
+
"difference",
|
| 1212 |
+
"different",
|
| 1213 |
+
"differently",
|
| 1214 |
+
"difficult",
|
| 1215 |
+
"difficulty",
|
| 1216 |
+
"dig",
|
| 1217 |
+
"digital",
|
| 1218 |
+
"dignity",
|
| 1219 |
+
"dilemma",
|
| 1220 |
+
"dimension",
|
| 1221 |
+
"dimensional",
|
| 1222 |
+
"dinner",
|
| 1223 |
+
"dinosaur",
|
| 1224 |
+
"dire",
|
| 1225 |
+
"direct",
|
| 1226 |
+
"directed",
|
| 1227 |
+
"directing",
|
| 1228 |
+
"direction",
|
| 1229 |
+
"directly",
|
| 1230 |
+
"director",
|
| 1231 |
+
"directorial",
|
| 1232 |
+
"directs",
|
| 1233 |
+
"dirt",
|
| 1234 |
+
"dirty",
|
| 1235 |
+
"disagree",
|
| 1236 |
+
"disappear",
|
| 1237 |
+
"disappeared",
|
| 1238 |
+
"disappears",
|
| 1239 |
+
"disappoint",
|
| 1240 |
+
"disappointed",
|
| 1241 |
+
"disappointing",
|
| 1242 |
+
"disappointment",
|
| 1243 |
+
"disaster",
|
| 1244 |
+
"disbelief",
|
| 1245 |
+
"disc",
|
| 1246 |
+
"discover",
|
| 1247 |
+
"discovered",
|
| 1248 |
+
"discovering",
|
| 1249 |
+
"discovers",
|
| 1250 |
+
"discovery",
|
| 1251 |
+
"discus",
|
| 1252 |
+
"discussion",
|
| 1253 |
+
"disease",
|
| 1254 |
+
"disguise",
|
| 1255 |
+
"disgusting",
|
| 1256 |
+
"disjointed",
|
| 1257 |
+
"dislike",
|
| 1258 |
+
"disliked",
|
| 1259 |
+
"disney",
|
| 1260 |
+
"display",
|
| 1261 |
+
"displayed",
|
| 1262 |
+
"distance",
|
| 1263 |
+
"distant",
|
| 1264 |
+
"distinct",
|
| 1265 |
+
"distracting",
|
| 1266 |
+
"distribution",
|
| 1267 |
+
"disturbed",
|
| 1268 |
+
"disturbing",
|
| 1269 |
+
"divine",
|
| 1270 |
+
"divorce",
|
| 1271 |
+
"doc",
|
| 1272 |
+
"doctor",
|
| 1273 |
+
"document",
|
| 1274 |
+
"documentary",
|
| 1275 |
+
"doesnt",
|
| 1276 |
+
"dog",
|
| 1277 |
+
"doll",
|
| 1278 |
+
"dollar",
|
| 1279 |
+
"domestic",
|
| 1280 |
+
"donald",
|
| 1281 |
+
"done",
|
| 1282 |
+
"donna",
|
| 1283 |
+
"dont",
|
| 1284 |
+
"doom",
|
| 1285 |
+
"doomed",
|
| 1286 |
+
"door",
|
| 1287 |
+
"dorothy",
|
| 1288 |
+
"double",
|
| 1289 |
+
"doubt",
|
| 1290 |
+
"doug",
|
| 1291 |
+
"douglas",
|
| 1292 |
+
"downhill",
|
| 1293 |
+
"downright",
|
| 1294 |
+
"dozen",
|
| 1295 |
+
"dr",
|
| 1296 |
+
"dracula",
|
| 1297 |
+
"drag",
|
| 1298 |
+
"dragged",
|
| 1299 |
+
"dragon",
|
| 1300 |
+
"drake",
|
| 1301 |
+
"drama",
|
| 1302 |
+
"dramatic",
|
| 1303 |
+
"draw",
|
| 1304 |
+
"drawing",
|
| 1305 |
+
"drawn",
|
| 1306 |
+
"dreadful",
|
| 1307 |
+
"dream",
|
| 1308 |
+
"dreary",
|
| 1309 |
+
"dress",
|
| 1310 |
+
"dressed",
|
| 1311 |
+
"drew",
|
| 1312 |
+
"drink",
|
| 1313 |
+
"drinking",
|
| 1314 |
+
"drive",
|
| 1315 |
+
"drivel",
|
| 1316 |
+
"driven",
|
| 1317 |
+
"driver",
|
| 1318 |
+
"driving",
|
| 1319 |
+
"drop",
|
| 1320 |
+
"dropped",
|
| 1321 |
+
"drove",
|
| 1322 |
+
"drug",
|
| 1323 |
+
"drunk",
|
| 1324 |
+
"drunken",
|
| 1325 |
+
"dry",
|
| 1326 |
+
"dubbed",
|
| 1327 |
+
"dubbing",
|
| 1328 |
+
"duck",
|
| 1329 |
+
"dud",
|
| 1330 |
+
"dude",
|
| 1331 |
+
"due",
|
| 1332 |
+
"duke",
|
| 1333 |
+
"dull",
|
| 1334 |
+
"dumb",
|
| 1335 |
+
"dump",
|
| 1336 |
+
"duo",
|
| 1337 |
+
"dust",
|
| 1338 |
+
"dutch",
|
| 1339 |
+
"duty",
|
| 1340 |
+
"dvd",
|
| 1341 |
+
"dy",
|
| 1342 |
+
"dying",
|
| 1343 |
+
"dylan",
|
| 1344 |
+
"dynamic",
|
| 1345 |
+
"dysfunctional",
|
| 1346 |
+
"eager",
|
| 1347 |
+
"ear",
|
| 1348 |
+
"earl",
|
| 1349 |
+
"earlier",
|
| 1350 |
+
"early",
|
| 1351 |
+
"earned",
|
| 1352 |
+
"earth",
|
| 1353 |
+
"ease",
|
| 1354 |
+
"easier",
|
| 1355 |
+
"easily",
|
| 1356 |
+
"east",
|
| 1357 |
+
"eastern",
|
| 1358 |
+
"eastwood",
|
| 1359 |
+
"easy",
|
| 1360 |
+
"eat",
|
| 1361 |
+
"eaten",
|
| 1362 |
+
"eating",
|
| 1363 |
+
"eats",
|
| 1364 |
+
"eccentric",
|
| 1365 |
+
"echo",
|
| 1366 |
+
"ed",
|
| 1367 |
+
"eddie",
|
| 1368 |
+
"edgar",
|
| 1369 |
+
"edge",
|
| 1370 |
+
"edgy",
|
| 1371 |
+
"edited",
|
| 1372 |
+
"editing",
|
| 1373 |
+
"edition",
|
| 1374 |
+
"editor",
|
| 1375 |
+
"education",
|
| 1376 |
+
"educational",
|
| 1377 |
+
"edward",
|
| 1378 |
+
"eerie",
|
| 1379 |
+
"effect",
|
| 1380 |
+
"effective",
|
| 1381 |
+
"effectively",
|
| 1382 |
+
"effort",
|
| 1383 |
+
"eg",
|
| 1384 |
+
"egg",
|
| 1385 |
+
"ego",
|
| 1386 |
+
"egyptian",
|
| 1387 |
+
"eight",
|
| 1388 |
+
"eighty",
|
| 1389 |
+
"either",
|
| 1390 |
+
"eitherbr",
|
| 1391 |
+
"el",
|
| 1392 |
+
"elaborate",
|
| 1393 |
+
"elderly",
|
| 1394 |
+
"electric",
|
| 1395 |
+
"elegant",
|
| 1396 |
+
"element",
|
| 1397 |
+
"elephant",
|
| 1398 |
+
"elevator",
|
| 1399 |
+
"elizabeth",
|
| 1400 |
+
"ellen",
|
| 1401 |
+
"else",
|
| 1402 |
+
"elsewhere",
|
| 1403 |
+
"elvis",
|
| 1404 |
+
"em",
|
| 1405 |
+
"embarrassed",
|
| 1406 |
+
"embarrassing",
|
| 1407 |
+
"embarrassment",
|
| 1408 |
+
"embrace",
|
| 1409 |
+
"emily",
|
| 1410 |
+
"emma",
|
| 1411 |
+
"emotion",
|
| 1412 |
+
"emotional",
|
| 1413 |
+
"emotionally",
|
| 1414 |
+
"empathy",
|
| 1415 |
+
"emperor",
|
| 1416 |
+
"emphasis",
|
| 1417 |
+
"empire",
|
| 1418 |
+
"employee",
|
| 1419 |
+
"empty",
|
| 1420 |
+
"encounter",
|
| 1421 |
+
"encourage",
|
| 1422 |
+
"end",
|
| 1423 |
+
"endbr",
|
| 1424 |
+
"endearing",
|
| 1425 |
+
"ended",
|
| 1426 |
+
"ending",
|
| 1427 |
+
"endless",
|
| 1428 |
+
"endure",
|
| 1429 |
+
"enemy",
|
| 1430 |
+
"energy",
|
| 1431 |
+
"engage",
|
| 1432 |
+
"engaged",
|
| 1433 |
+
"engaging",
|
| 1434 |
+
"england",
|
| 1435 |
+
"english",
|
| 1436 |
+
"enjoy",
|
| 1437 |
+
"enjoyable",
|
| 1438 |
+
"enjoyed",
|
| 1439 |
+
"enjoying",
|
| 1440 |
+
"enjoyment",
|
| 1441 |
+
"enjoys",
|
| 1442 |
+
"enormous",
|
| 1443 |
+
"enough",
|
| 1444 |
+
"ensemble",
|
| 1445 |
+
"ensues",
|
| 1446 |
+
"enter",
|
| 1447 |
+
"enterprise",
|
| 1448 |
+
"enters",
|
| 1449 |
+
"entertain",
|
| 1450 |
+
"entertained",
|
| 1451 |
+
"entertaining",
|
| 1452 |
+
"entertainment",
|
| 1453 |
+
"enthusiasm",
|
| 1454 |
+
"entire",
|
| 1455 |
+
"entirely",
|
| 1456 |
+
"entitled",
|
| 1457 |
+
"entry",
|
| 1458 |
+
"environment",
|
| 1459 |
+
"epic",
|
| 1460 |
+
"episode",
|
| 1461 |
+
"equal",
|
| 1462 |
+
"equally",
|
| 1463 |
+
"equipment",
|
| 1464 |
+
"equivalent",
|
| 1465 |
+
"era",
|
| 1466 |
+
"eric",
|
| 1467 |
+
"erika",
|
| 1468 |
+
"ernest",
|
| 1469 |
+
"erotic",
|
| 1470 |
+
"error",
|
| 1471 |
+
"escape",
|
| 1472 |
+
"escaped",
|
| 1473 |
+
"especially",
|
| 1474 |
+
"essence",
|
| 1475 |
+
"essential",
|
| 1476 |
+
"essentially",
|
| 1477 |
+
"established",
|
| 1478 |
+
"estate",
|
| 1479 |
+
"et",
|
| 1480 |
+
"etc",
|
| 1481 |
+
"etcbr",
|
| 1482 |
+
"eugene",
|
| 1483 |
+
"europe",
|
| 1484 |
+
"european",
|
| 1485 |
+
"eva",
|
| 1486 |
+
"eve",
|
| 1487 |
+
"even",
|
| 1488 |
+
"evening",
|
| 1489 |
+
"event",
|
| 1490 |
+
"eventually",
|
| 1491 |
+
"ever",
|
| 1492 |
+
"every",
|
| 1493 |
+
"everybody",
|
| 1494 |
+
"everyday",
|
| 1495 |
+
"everyone",
|
| 1496 |
+
"everyones",
|
| 1497 |
+
"everything",
|
| 1498 |
+
"everywhere",
|
| 1499 |
+
"evidence",
|
| 1500 |
+
"evident",
|
| 1501 |
+
"evil",
|
| 1502 |
+
"evolution",
|
| 1503 |
+
"ex",
|
| 1504 |
+
"exact",
|
| 1505 |
+
"exactly",
|
| 1506 |
+
"exaggerated",
|
| 1507 |
+
"example",
|
| 1508 |
+
"excellent",
|
| 1509 |
+
"except",
|
| 1510 |
+
"exception",
|
| 1511 |
+
"exceptional",
|
| 1512 |
+
"exceptionally",
|
| 1513 |
+
"excess",
|
| 1514 |
+
"excessive",
|
| 1515 |
+
"exchange",
|
| 1516 |
+
"excited",
|
| 1517 |
+
"excitement",
|
| 1518 |
+
"exciting",
|
| 1519 |
+
"excuse",
|
| 1520 |
+
"executed",
|
| 1521 |
+
"execution",
|
| 1522 |
+
"executive",
|
| 1523 |
+
"exercise",
|
| 1524 |
+
"exist",
|
| 1525 |
+
"existed",
|
| 1526 |
+
"existence",
|
| 1527 |
+
"exists",
|
| 1528 |
+
"exorcist",
|
| 1529 |
+
"exotic",
|
| 1530 |
+
"expect",
|
| 1531 |
+
"expectation",
|
| 1532 |
+
"expected",
|
| 1533 |
+
"expecting",
|
| 1534 |
+
"expensive",
|
| 1535 |
+
"experience",
|
| 1536 |
+
"experienced",
|
| 1537 |
+
"experiment",
|
| 1538 |
+
"experimental",
|
| 1539 |
+
"expert",
|
| 1540 |
+
"explain",
|
| 1541 |
+
"explained",
|
| 1542 |
+
"explaining",
|
| 1543 |
+
"explains",
|
| 1544 |
+
"explanation",
|
| 1545 |
+
"explicit",
|
| 1546 |
+
"exploit",
|
| 1547 |
+
"exploitation",
|
| 1548 |
+
"exploration",
|
| 1549 |
+
"explore",
|
| 1550 |
+
"explored",
|
| 1551 |
+
"explores",
|
| 1552 |
+
"exploring",
|
| 1553 |
+
"explosion",
|
| 1554 |
+
"explosive",
|
| 1555 |
+
"expose",
|
| 1556 |
+
"exposed",
|
| 1557 |
+
"exposition",
|
| 1558 |
+
"exposure",
|
| 1559 |
+
"express",
|
| 1560 |
+
"expressed",
|
| 1561 |
+
"expression",
|
| 1562 |
+
"extended",
|
| 1563 |
+
"extent",
|
| 1564 |
+
"exterior",
|
| 1565 |
+
"extra",
|
| 1566 |
+
"extraordinary",
|
| 1567 |
+
"extreme",
|
| 1568 |
+
"extremely",
|
| 1569 |
+
"eye",
|
| 1570 |
+
"fabulous",
|
| 1571 |
+
"face",
|
| 1572 |
+
"faced",
|
| 1573 |
+
"facial",
|
| 1574 |
+
"facing",
|
| 1575 |
+
"fact",
|
| 1576 |
+
"factor",
|
| 1577 |
+
"factory",
|
| 1578 |
+
"fade",
|
| 1579 |
+
"fail",
|
| 1580 |
+
"failed",
|
| 1581 |
+
"failing",
|
| 1582 |
+
"fails",
|
| 1583 |
+
"failure",
|
| 1584 |
+
"fair",
|
| 1585 |
+
"fairly",
|
| 1586 |
+
"fairy",
|
| 1587 |
+
"faith",
|
| 1588 |
+
"faithful",
|
| 1589 |
+
"fake",
|
| 1590 |
+
"falk",
|
| 1591 |
+
"fall",
|
| 1592 |
+
"fallen",
|
| 1593 |
+
"falling",
|
| 1594 |
+
"false",
|
| 1595 |
+
"fame",
|
| 1596 |
+
"familiar",
|
| 1597 |
+
"family",
|
| 1598 |
+
"famous",
|
| 1599 |
+
"fan",
|
| 1600 |
+
"fanatic",
|
| 1601 |
+
"fancy",
|
| 1602 |
+
"fantastic",
|
| 1603 |
+
"fantasy",
|
| 1604 |
+
"far",
|
| 1605 |
+
"farce",
|
| 1606 |
+
"fare",
|
| 1607 |
+
"farm",
|
| 1608 |
+
"farmer",
|
| 1609 |
+
"fascinated",
|
| 1610 |
+
"fascinating",
|
| 1611 |
+
"fascination",
|
| 1612 |
+
"fashion",
|
| 1613 |
+
"fashioned",
|
| 1614 |
+
"fast",
|
| 1615 |
+
"faster",
|
| 1616 |
+
"fat",
|
| 1617 |
+
"fatal",
|
| 1618 |
+
"fate",
|
| 1619 |
+
"father",
|
| 1620 |
+
"fault",
|
| 1621 |
+
"favor",
|
| 1622 |
+
"favorite",
|
| 1623 |
+
"favour",
|
| 1624 |
+
"favourite",
|
| 1625 |
+
"fay",
|
| 1626 |
+
"fbi",
|
| 1627 |
+
"fear",
|
| 1628 |
+
"feast",
|
| 1629 |
+
"feat",
|
| 1630 |
+
"feature",
|
| 1631 |
+
"featured",
|
| 1632 |
+
"featuring",
|
| 1633 |
+
"fed",
|
| 1634 |
+
"feed",
|
| 1635 |
+
"feel",
|
| 1636 |
+
"feelgood",
|
| 1637 |
+
"feeling",
|
| 1638 |
+
"felix",
|
| 1639 |
+
"fell",
|
| 1640 |
+
"fellow",
|
| 1641 |
+
"felt",
|
| 1642 |
+
"female",
|
| 1643 |
+
"feminist",
|
| 1644 |
+
"femme",
|
| 1645 |
+
"fest",
|
| 1646 |
+
"festival",
|
| 1647 |
+
"fever",
|
| 1648 |
+
"fi",
|
| 1649 |
+
"fiance",
|
| 1650 |
+
"fiction",
|
| 1651 |
+
"fictional",
|
| 1652 |
+
"field",
|
| 1653 |
+
"fifteen",
|
| 1654 |
+
"fifth",
|
| 1655 |
+
"fifty",
|
| 1656 |
+
"fight",
|
| 1657 |
+
"fighter",
|
| 1658 |
+
"fighting",
|
| 1659 |
+
"figure",
|
| 1660 |
+
"figured",
|
| 1661 |
+
"file",
|
| 1662 |
+
"fill",
|
| 1663 |
+
"filled",
|
| 1664 |
+
"filler",
|
| 1665 |
+
"filling",
|
| 1666 |
+
"film",
|
| 1667 |
+
"filmbr",
|
| 1668 |
+
"filmed",
|
| 1669 |
+
"filming",
|
| 1670 |
+
"filmmaker",
|
| 1671 |
+
"filmmaking",
|
| 1672 |
+
"filmsbr",
|
| 1673 |
+
"final",
|
| 1674 |
+
"finale",
|
| 1675 |
+
"finally",
|
| 1676 |
+
"financial",
|
| 1677 |
+
"find",
|
| 1678 |
+
"finding",
|
| 1679 |
+
"fine",
|
| 1680 |
+
"finest",
|
| 1681 |
+
"finger",
|
| 1682 |
+
"finish",
|
| 1683 |
+
"finished",
|
| 1684 |
+
"fire",
|
| 1685 |
+
"fired",
|
| 1686 |
+
"firm",
|
| 1687 |
+
"firmly",
|
| 1688 |
+
"first",
|
| 1689 |
+
"firstly",
|
| 1690 |
+
"fish",
|
| 1691 |
+
"fisher",
|
| 1692 |
+
"fist",
|
| 1693 |
+
"fit",
|
| 1694 |
+
"fitting",
|
| 1695 |
+
"five",
|
| 1696 |
+
"fix",
|
| 1697 |
+
"flair",
|
| 1698 |
+
"flame",
|
| 1699 |
+
"flash",
|
| 1700 |
+
"flashback",
|
| 1701 |
+
"flat",
|
| 1702 |
+
"flaw",
|
| 1703 |
+
"flawed",
|
| 1704 |
+
"flawless",
|
| 1705 |
+
"flesh",
|
| 1706 |
+
"flick",
|
| 1707 |
+
"flight",
|
| 1708 |
+
"floating",
|
| 1709 |
+
"floor",
|
| 1710 |
+
"flop",
|
| 1711 |
+
"florida",
|
| 1712 |
+
"flow",
|
| 1713 |
+
"flower",
|
| 1714 |
+
"fly",
|
| 1715 |
+
"flying",
|
| 1716 |
+
"flynn",
|
| 1717 |
+
"focus",
|
| 1718 |
+
"focused",
|
| 1719 |
+
"focusing",
|
| 1720 |
+
"folk",
|
| 1721 |
+
"follow",
|
| 1722 |
+
"followed",
|
| 1723 |
+
"following",
|
| 1724 |
+
"follows",
|
| 1725 |
+
"fond",
|
| 1726 |
+
"fonda",
|
| 1727 |
+
"food",
|
| 1728 |
+
"fool",
|
| 1729 |
+
"fooled",
|
| 1730 |
+
"foot",
|
| 1731 |
+
"footage",
|
| 1732 |
+
"football",
|
| 1733 |
+
"forbidden",
|
| 1734 |
+
"force",
|
| 1735 |
+
"forced",
|
| 1736 |
+
"forcing",
|
| 1737 |
+
"ford",
|
| 1738 |
+
"foreign",
|
| 1739 |
+
"forest",
|
| 1740 |
+
"forever",
|
| 1741 |
+
"forget",
|
| 1742 |
+
"forgettable",
|
| 1743 |
+
"forgive",
|
| 1744 |
+
"forgot",
|
| 1745 |
+
"forgotten",
|
| 1746 |
+
"form",
|
| 1747 |
+
"format",
|
| 1748 |
+
"former",
|
| 1749 |
+
"formula",
|
| 1750 |
+
"formulaic",
|
| 1751 |
+
"forth",
|
| 1752 |
+
"fortunately",
|
| 1753 |
+
"fortune",
|
| 1754 |
+
"forty",
|
| 1755 |
+
"forward",
|
| 1756 |
+
"foster",
|
| 1757 |
+
"fought",
|
| 1758 |
+
"foul",
|
| 1759 |
+
"found",
|
| 1760 |
+
"four",
|
| 1761 |
+
"fourth",
|
| 1762 |
+
"fox",
|
| 1763 |
+
"foxx",
|
| 1764 |
+
"frame",
|
| 1765 |
+
"france",
|
| 1766 |
+
"franchise",
|
| 1767 |
+
"francis",
|
| 1768 |
+
"francisco",
|
| 1769 |
+
"franco",
|
| 1770 |
+
"frank",
|
| 1771 |
+
"frankenstein",
|
| 1772 |
+
"frankie",
|
| 1773 |
+
"frankly",
|
| 1774 |
+
"freak",
|
| 1775 |
+
"fred",
|
| 1776 |
+
"freddy",
|
| 1777 |
+
"free",
|
| 1778 |
+
"freedom",
|
| 1779 |
+
"freeman",
|
| 1780 |
+
"french",
|
| 1781 |
+
"frequent",
|
| 1782 |
+
"frequently",
|
| 1783 |
+
"fresh",
|
| 1784 |
+
"friday",
|
| 1785 |
+
"friend",
|
| 1786 |
+
"friendly",
|
| 1787 |
+
"friendship",
|
| 1788 |
+
"frightened",
|
| 1789 |
+
"frightening",
|
| 1790 |
+
"front",
|
| 1791 |
+
"frost",
|
| 1792 |
+
"frustrated",
|
| 1793 |
+
"frustrating",
|
| 1794 |
+
"frustration",
|
| 1795 |
+
"fu",
|
| 1796 |
+
"fulci",
|
| 1797 |
+
"full",
|
| 1798 |
+
"fully",
|
| 1799 |
+
"fun",
|
| 1800 |
+
"funbr",
|
| 1801 |
+
"function",
|
| 1802 |
+
"funeral",
|
| 1803 |
+
"funnier",
|
| 1804 |
+
"funniest",
|
| 1805 |
+
"funny",
|
| 1806 |
+
"funnybr",
|
| 1807 |
+
"furthermore",
|
| 1808 |
+
"future",
|
| 1809 |
+
"futuristic",
|
| 1810 |
+
"fx",
|
| 1811 |
+
"gabriel",
|
| 1812 |
+
"gadget",
|
| 1813 |
+
"gag",
|
| 1814 |
+
"gain",
|
| 1815 |
+
"gal",
|
| 1816 |
+
"game",
|
| 1817 |
+
"gang",
|
| 1818 |
+
"gangster",
|
| 1819 |
+
"gap",
|
| 1820 |
+
"garbage",
|
| 1821 |
+
"garbo",
|
| 1822 |
+
"garden",
|
| 1823 |
+
"garfield",
|
| 1824 |
+
"gary",
|
| 1825 |
+
"gas",
|
| 1826 |
+
"gate",
|
| 1827 |
+
"gather",
|
| 1828 |
+
"gave",
|
| 1829 |
+
"gay",
|
| 1830 |
+
"geek",
|
| 1831 |
+
"gem",
|
| 1832 |
+
"gender",
|
| 1833 |
+
"gene",
|
| 1834 |
+
"general",
|
| 1835 |
+
"generally",
|
| 1836 |
+
"generated",
|
| 1837 |
+
"generation",
|
| 1838 |
+
"generic",
|
| 1839 |
+
"generous",
|
| 1840 |
+
"genius",
|
| 1841 |
+
"genre",
|
| 1842 |
+
"gentle",
|
| 1843 |
+
"gentleman",
|
| 1844 |
+
"genuine",
|
| 1845 |
+
"genuinely",
|
| 1846 |
+
"george",
|
| 1847 |
+
"gere",
|
| 1848 |
+
"german",
|
| 1849 |
+
"germany",
|
| 1850 |
+
"gesture",
|
| 1851 |
+
"get",
|
| 1852 |
+
"getting",
|
| 1853 |
+
"ghost",
|
| 1854 |
+
"giallo",
|
| 1855 |
+
"giant",
|
| 1856 |
+
"gift",
|
| 1857 |
+
"gifted",
|
| 1858 |
+
"gimmick",
|
| 1859 |
+
"girl",
|
| 1860 |
+
"girlfriend",
|
| 1861 |
+
"give",
|
| 1862 |
+
"given",
|
| 1863 |
+
"giving",
|
| 1864 |
+
"glad",
|
| 1865 |
+
"glance",
|
| 1866 |
+
"glass",
|
| 1867 |
+
"glenn",
|
| 1868 |
+
"glimpse",
|
| 1869 |
+
"global",
|
| 1870 |
+
"globe",
|
| 1871 |
+
"gloria",
|
| 1872 |
+
"glorious",
|
| 1873 |
+
"glory",
|
| 1874 |
+
"glover",
|
| 1875 |
+
"go",
|
| 1876 |
+
"goal",
|
| 1877 |
+
"god",
|
| 1878 |
+
"godfather",
|
| 1879 |
+
"godzilla",
|
| 1880 |
+
"going",
|
| 1881 |
+
"gold",
|
| 1882 |
+
"golden",
|
| 1883 |
+
"golf",
|
| 1884 |
+
"gon",
|
| 1885 |
+
"gone",
|
| 1886 |
+
"good",
|
| 1887 |
+
"goodbr",
|
| 1888 |
+
"goodbye",
|
| 1889 |
+
"goodness",
|
| 1890 |
+
"goofy",
|
| 1891 |
+
"gordon",
|
| 1892 |
+
"gore",
|
| 1893 |
+
"gorgeous",
|
| 1894 |
+
"gory",
|
| 1895 |
+
"got",
|
| 1896 |
+
"gothic",
|
| 1897 |
+
"gotten",
|
| 1898 |
+
"government",
|
| 1899 |
+
"grab",
|
| 1900 |
+
"grace",
|
| 1901 |
+
"grade",
|
| 1902 |
+
"gradually",
|
| 1903 |
+
"graham",
|
| 1904 |
+
"grainy",
|
| 1905 |
+
"grand",
|
| 1906 |
+
"grandfather",
|
| 1907 |
+
"grandmother",
|
| 1908 |
+
"grant",
|
| 1909 |
+
"granted",
|
| 1910 |
+
"graphic",
|
| 1911 |
+
"grasp",
|
| 1912 |
+
"gratuitous",
|
| 1913 |
+
"grave",
|
| 1914 |
+
"gray",
|
| 1915 |
+
"great",
|
| 1916 |
+
"greater",
|
| 1917 |
+
"greatest",
|
| 1918 |
+
"greatly",
|
| 1919 |
+
"greatness",
|
| 1920 |
+
"greed",
|
| 1921 |
+
"greedy",
|
| 1922 |
+
"greek",
|
| 1923 |
+
"green",
|
| 1924 |
+
"greg",
|
| 1925 |
+
"gregory",
|
| 1926 |
+
"grew",
|
| 1927 |
+
"grey",
|
| 1928 |
+
"griffith",
|
| 1929 |
+
"grim",
|
| 1930 |
+
"grip",
|
| 1931 |
+
"gripping",
|
| 1932 |
+
"gritty",
|
| 1933 |
+
"gross",
|
| 1934 |
+
"grotesque",
|
| 1935 |
+
"ground",
|
| 1936 |
+
"group",
|
| 1937 |
+
"grow",
|
| 1938 |
+
"growing",
|
| 1939 |
+
"grown",
|
| 1940 |
+
"grows",
|
| 1941 |
+
"grudge",
|
| 1942 |
+
"gruesome",
|
| 1943 |
+
"gu",
|
| 1944 |
+
"guarantee",
|
| 1945 |
+
"guard",
|
| 1946 |
+
"guess",
|
| 1947 |
+
"guessed",
|
| 1948 |
+
"guessing",
|
| 1949 |
+
"guest",
|
| 1950 |
+
"guide",
|
| 1951 |
+
"guilt",
|
| 1952 |
+
"guilty",
|
| 1953 |
+
"guitar",
|
| 1954 |
+
"gun",
|
| 1955 |
+
"gut",
|
| 1956 |
+
"guy",
|
| 1957 |
+
"gypsy",
|
| 1958 |
+
"ha",
|
| 1959 |
+
"habit",
|
| 1960 |
+
"hack",
|
| 1961 |
+
"hackneyed",
|
| 1962 |
+
"hadnt",
|
| 1963 |
+
"hair",
|
| 1964 |
+
"hal",
|
| 1965 |
+
"half",
|
| 1966 |
+
"halfway",
|
| 1967 |
+
"hall",
|
| 1968 |
+
"halloween",
|
| 1969 |
+
"ham",
|
| 1970 |
+
"hamilton",
|
| 1971 |
+
"hamlet",
|
| 1972 |
+
"hammer",
|
| 1973 |
+
"han",
|
| 1974 |
+
"hand",
|
| 1975 |
+
"handed",
|
| 1976 |
+
"handful",
|
| 1977 |
+
"handle",
|
| 1978 |
+
"handled",
|
| 1979 |
+
"handsome",
|
| 1980 |
+
"hang",
|
| 1981 |
+
"hanging",
|
| 1982 |
+
"hank",
|
| 1983 |
+
"happen",
|
| 1984 |
+
"happened",
|
| 1985 |
+
"happening",
|
| 1986 |
+
"happens",
|
| 1987 |
+
"happily",
|
| 1988 |
+
"happiness",
|
| 1989 |
+
"happy",
|
| 1990 |
+
"hard",
|
| 1991 |
+
"hardcore",
|
| 1992 |
+
"harder",
|
| 1993 |
+
"hardly",
|
| 1994 |
+
"hardy",
|
| 1995 |
+
"harm",
|
| 1996 |
+
"harmless",
|
| 1997 |
+
"harold",
|
| 1998 |
+
"harris",
|
| 1999 |
+
"harrison",
|
| 2000 |
+
"harry",
|
| 2001 |
+
"harsh",
|
| 2002 |
+
"hart",
|
| 2003 |
+
"hartley",
|
| 2004 |
+
"harvey",
|
| 2005 |
+
"hasnt",
|
| 2006 |
+
"hat",
|
| 2007 |
+
"hate",
|
| 2008 |
+
"hated",
|
| 2009 |
+
"hatred",
|
| 2010 |
+
"haunt",
|
| 2011 |
+
"haunted",
|
| 2012 |
+
"haunting",
|
| 2013 |
+
"havent",
|
| 2014 |
+
"hawk",
|
| 2015 |
+
"hbo",
|
| 2016 |
+
"he",
|
| 2017 |
+
"head",
|
| 2018 |
+
"headed",
|
| 2019 |
+
"heading",
|
| 2020 |
+
"health",
|
| 2021 |
+
"hear",
|
| 2022 |
+
"heard",
|
| 2023 |
+
"hearing",
|
| 2024 |
+
"hears",
|
| 2025 |
+
"heart",
|
| 2026 |
+
"heartbreaking",
|
| 2027 |
+
"heartfelt",
|
| 2028 |
+
"heartwarming",
|
| 2029 |
+
"heat",
|
| 2030 |
+
"heaven",
|
| 2031 |
+
"heavily",
|
| 2032 |
+
"heavy",
|
| 2033 |
+
"heck",
|
| 2034 |
+
"hed",
|
| 2035 |
+
"heel",
|
| 2036 |
+
"height",
|
| 2037 |
+
"heist",
|
| 2038 |
+
"held",
|
| 2039 |
+
"helen",
|
| 2040 |
+
"helicopter",
|
| 2041 |
+
"hell",
|
| 2042 |
+
"hello",
|
| 2043 |
+
"help",
|
| 2044 |
+
"helped",
|
| 2045 |
+
"helping",
|
| 2046 |
+
"hence",
|
| 2047 |
+
"henchman",
|
| 2048 |
+
"henry",
|
| 2049 |
+
"herbr",
|
| 2050 |
+
"here",
|
| 2051 |
+
"herebr",
|
| 2052 |
+
"hero",
|
| 2053 |
+
"heroic",
|
| 2054 |
+
"heroine",
|
| 2055 |
+
"hey",
|
| 2056 |
+
"hidden",
|
| 2057 |
+
"hide",
|
| 2058 |
+
"hideous",
|
| 2059 |
+
"hiding",
|
| 2060 |
+
"high",
|
| 2061 |
+
"higher",
|
| 2062 |
+
"highest",
|
| 2063 |
+
"highlight",
|
| 2064 |
+
"highly",
|
| 2065 |
+
"hilarious",
|
| 2066 |
+
"hilariously",
|
| 2067 |
+
"hill",
|
| 2068 |
+
"himbr",
|
| 2069 |
+
"hindi",
|
| 2070 |
+
"hint",
|
| 2071 |
+
"hip",
|
| 2072 |
+
"hippie",
|
| 2073 |
+
"hippy",
|
| 2074 |
+
"hire",
|
| 2075 |
+
"hired",
|
| 2076 |
+
"historical",
|
| 2077 |
+
"historically",
|
| 2078 |
+
"history",
|
| 2079 |
+
"hit",
|
| 2080 |
+
"hitch",
|
| 2081 |
+
"hitchcock",
|
| 2082 |
+
"hitler",
|
| 2083 |
+
"hitman",
|
| 2084 |
+
"hitting",
|
| 2085 |
+
"hoffman",
|
| 2086 |
+
"hogan",
|
| 2087 |
+
"hokey",
|
| 2088 |
+
"hold",
|
| 2089 |
+
"holding",
|
| 2090 |
+
"hole",
|
| 2091 |
+
"holiday",
|
| 2092 |
+
"hollow",
|
| 2093 |
+
"holly",
|
| 2094 |
+
"hollywood",
|
| 2095 |
+
"holmes",
|
| 2096 |
+
"holocaust",
|
| 2097 |
+
"holy",
|
| 2098 |
+
"homage",
|
| 2099 |
+
"home",
|
| 2100 |
+
"homeless",
|
| 2101 |
+
"homer",
|
| 2102 |
+
"homosexual",
|
| 2103 |
+
"honest",
|
| 2104 |
+
"honestly",
|
| 2105 |
+
"honesty",
|
| 2106 |
+
"hong",
|
| 2107 |
+
"honor",
|
| 2108 |
+
"hood",
|
| 2109 |
+
"hook",
|
| 2110 |
+
"hooked",
|
| 2111 |
+
"hooker",
|
| 2112 |
+
"hope",
|
| 2113 |
+
"hoped",
|
| 2114 |
+
"hopefully",
|
| 2115 |
+
"hopeless",
|
| 2116 |
+
"hopelessly",
|
| 2117 |
+
"hoping",
|
| 2118 |
+
"hopper",
|
| 2119 |
+
"horrendous",
|
| 2120 |
+
"horrible",
|
| 2121 |
+
"horribly",
|
| 2122 |
+
"horrid",
|
| 2123 |
+
"horrific",
|
| 2124 |
+
"horrifying",
|
| 2125 |
+
"horror",
|
| 2126 |
+
"horse",
|
| 2127 |
+
"hospital",
|
| 2128 |
+
"host",
|
| 2129 |
+
"hostage",
|
| 2130 |
+
"hot",
|
| 2131 |
+
"hotel",
|
| 2132 |
+
"hour",
|
| 2133 |
+
"house",
|
| 2134 |
+
"household",
|
| 2135 |
+
"housewife",
|
| 2136 |
+
"howard",
|
| 2137 |
+
"however",
|
| 2138 |
+
"hudson",
|
| 2139 |
+
"huge",
|
| 2140 |
+
"hugh",
|
| 2141 |
+
"hughes",
|
| 2142 |
+
"huh",
|
| 2143 |
+
"human",
|
| 2144 |
+
"humanity",
|
| 2145 |
+
"humble",
|
| 2146 |
+
"humor",
|
| 2147 |
+
"humorous",
|
| 2148 |
+
"humour",
|
| 2149 |
+
"hundred",
|
| 2150 |
+
"hung",
|
| 2151 |
+
"hungry",
|
| 2152 |
+
"hunt",
|
| 2153 |
+
"hunter",
|
| 2154 |
+
"hunting",
|
| 2155 |
+
"hurt",
|
| 2156 |
+
"husband",
|
| 2157 |
+
"huston",
|
| 2158 |
+
"hype",
|
| 2159 |
+
"hysterical",
|
| 2160 |
+
"ian",
|
| 2161 |
+
"ice",
|
| 2162 |
+
"icon",
|
| 2163 |
+
"id",
|
| 2164 |
+
"idea",
|
| 2165 |
+
"ideal",
|
| 2166 |
+
"identify",
|
| 2167 |
+
"identity",
|
| 2168 |
+
"idiot",
|
| 2169 |
+
"idiotic",
|
| 2170 |
+
"ie",
|
| 2171 |
+
"ignorance",
|
| 2172 |
+
"ignorant",
|
| 2173 |
+
"ignore",
|
| 2174 |
+
"ignored",
|
| 2175 |
+
"ii",
|
| 2176 |
+
"iii",
|
| 2177 |
+
"ill",
|
| 2178 |
+
"illegal",
|
| 2179 |
+
"illness",
|
| 2180 |
+
"illogical",
|
| 2181 |
+
"im",
|
| 2182 |
+
"image",
|
| 2183 |
+
"imagery",
|
| 2184 |
+
"imagination",
|
| 2185 |
+
"imaginative",
|
| 2186 |
+
"imagine",
|
| 2187 |
+
"imagined",
|
| 2188 |
+
"imdb",
|
| 2189 |
+
"imitation",
|
| 2190 |
+
"immediate",
|
| 2191 |
+
"immediately",
|
| 2192 |
+
"immensely",
|
| 2193 |
+
"immigrant",
|
| 2194 |
+
"impact",
|
| 2195 |
+
"implausible",
|
| 2196 |
+
"importance",
|
| 2197 |
+
"important",
|
| 2198 |
+
"importantly",
|
| 2199 |
+
"impossible",
|
| 2200 |
+
"impress",
|
| 2201 |
+
"impressed",
|
| 2202 |
+
"impression",
|
| 2203 |
+
"impressive",
|
| 2204 |
+
"improve",
|
| 2205 |
+
"improved",
|
| 2206 |
+
"improvement",
|
| 2207 |
+
"inability",
|
| 2208 |
+
"inaccurate",
|
| 2209 |
+
"inane",
|
| 2210 |
+
"inappropriate",
|
| 2211 |
+
"inbr",
|
| 2212 |
+
"incident",
|
| 2213 |
+
"incidentally",
|
| 2214 |
+
"include",
|
| 2215 |
+
"included",
|
| 2216 |
+
"includes",
|
| 2217 |
+
"including",
|
| 2218 |
+
"incoherent",
|
| 2219 |
+
"incompetent",
|
| 2220 |
+
"incomprehensible",
|
| 2221 |
+
"inconsistent",
|
| 2222 |
+
"increasingly",
|
| 2223 |
+
"incredible",
|
| 2224 |
+
"incredibly",
|
| 2225 |
+
"indeed",
|
| 2226 |
+
"independent",
|
| 2227 |
+
"india",
|
| 2228 |
+
"indian",
|
| 2229 |
+
"indie",
|
| 2230 |
+
"individual",
|
| 2231 |
+
"industry",
|
| 2232 |
+
"inept",
|
| 2233 |
+
"inevitable",
|
| 2234 |
+
"inevitably",
|
| 2235 |
+
"inexplicably",
|
| 2236 |
+
"infamous",
|
| 2237 |
+
"inferior",
|
| 2238 |
+
"influence",
|
| 2239 |
+
"influenced",
|
| 2240 |
+
"information",
|
| 2241 |
+
"ingredient",
|
| 2242 |
+
"initial",
|
| 2243 |
+
"initially",
|
| 2244 |
+
"injured",
|
| 2245 |
+
"injury",
|
| 2246 |
+
"inmate",
|
| 2247 |
+
"inner",
|
| 2248 |
+
"innocence",
|
| 2249 |
+
"innocent",
|
| 2250 |
+
"innovative",
|
| 2251 |
+
"insane",
|
| 2252 |
+
"insanity",
|
| 2253 |
+
"inside",
|
| 2254 |
+
"insight",
|
| 2255 |
+
"inspector",
|
| 2256 |
+
"inspiration",
|
| 2257 |
+
"inspire",
|
| 2258 |
+
"inspired",
|
| 2259 |
+
"inspiring",
|
| 2260 |
+
"installment",
|
| 2261 |
+
"instance",
|
| 2262 |
+
"instant",
|
| 2263 |
+
"instantly",
|
| 2264 |
+
"instead",
|
| 2265 |
+
"instinct",
|
| 2266 |
+
"institution",
|
| 2267 |
+
"insult",
|
| 2268 |
+
"insulting",
|
| 2269 |
+
"integrity",
|
| 2270 |
+
"intellectual",
|
| 2271 |
+
"intelligence",
|
| 2272 |
+
"intelligent",
|
| 2273 |
+
"intended",
|
| 2274 |
+
"intense",
|
| 2275 |
+
"intensity",
|
| 2276 |
+
"intent",
|
| 2277 |
+
"intention",
|
| 2278 |
+
"intentionally",
|
| 2279 |
+
"interaction",
|
| 2280 |
+
"interest",
|
| 2281 |
+
"interested",
|
| 2282 |
+
"interesting",
|
| 2283 |
+
"interestingly",
|
| 2284 |
+
"interior",
|
| 2285 |
+
"international",
|
| 2286 |
+
"internet",
|
| 2287 |
+
"interpretation",
|
| 2288 |
+
"interview",
|
| 2289 |
+
"intimate",
|
| 2290 |
+
"intrigue",
|
| 2291 |
+
"intrigued",
|
| 2292 |
+
"intriguing",
|
| 2293 |
+
"introduce",
|
| 2294 |
+
"introduced",
|
| 2295 |
+
"introduces",
|
| 2296 |
+
"introduction",
|
| 2297 |
+
"invasion",
|
| 2298 |
+
"invented",
|
| 2299 |
+
"inventive",
|
| 2300 |
+
"investigate",
|
| 2301 |
+
"investigating",
|
| 2302 |
+
"investigation",
|
| 2303 |
+
"invisible",
|
| 2304 |
+
"invite",
|
| 2305 |
+
"invited",
|
| 2306 |
+
"involve",
|
| 2307 |
+
"involved",
|
| 2308 |
+
"involvement",
|
| 2309 |
+
"involves",
|
| 2310 |
+
"involving",
|
| 2311 |
+
"iq",
|
| 2312 |
+
"iraq",
|
| 2313 |
+
"ireland",
|
| 2314 |
+
"irene",
|
| 2315 |
+
"irish",
|
| 2316 |
+
"iron",
|
| 2317 |
+
"ironic",
|
| 2318 |
+
"ironically",
|
| 2319 |
+
"irony",
|
| 2320 |
+
"irrelevant",
|
| 2321 |
+
"irritating",
|
| 2322 |
+
"isbr",
|
| 2323 |
+
"island",
|
| 2324 |
+
"isnt",
|
| 2325 |
+
"isolated",
|
| 2326 |
+
"issue",
|
| 2327 |
+
"italian",
|
| 2328 |
+
"italy",
|
| 2329 |
+
"itbr",
|
| 2330 |
+
"item",
|
| 2331 |
+
"itll",
|
| 2332 |
+
"ive",
|
| 2333 |
+
"jack",
|
| 2334 |
+
"jackass",
|
| 2335 |
+
"jacket",
|
| 2336 |
+
"jackie",
|
| 2337 |
+
"jackson",
|
| 2338 |
+
"jail",
|
| 2339 |
+
"jake",
|
| 2340 |
+
"james",
|
| 2341 |
+
"jamie",
|
| 2342 |
+
"jane",
|
| 2343 |
+
"japan",
|
| 2344 |
+
"japanese",
|
| 2345 |
+
"jason",
|
| 2346 |
+
"jaw",
|
| 2347 |
+
"jay",
|
| 2348 |
+
"jazz",
|
| 2349 |
+
"jealous",
|
| 2350 |
+
"jealousy",
|
| 2351 |
+
"jean",
|
| 2352 |
+
"jeff",
|
| 2353 |
+
"jeffrey",
|
| 2354 |
+
"jennifer",
|
| 2355 |
+
"jenny",
|
| 2356 |
+
"jeremy",
|
| 2357 |
+
"jerk",
|
| 2358 |
+
"jerry",
|
| 2359 |
+
"jesse",
|
| 2360 |
+
"jessica",
|
| 2361 |
+
"jesus",
|
| 2362 |
+
"jet",
|
| 2363 |
+
"jew",
|
| 2364 |
+
"jewel",
|
| 2365 |
+
"jewish",
|
| 2366 |
+
"jim",
|
| 2367 |
+
"jimmy",
|
| 2368 |
+
"joan",
|
| 2369 |
+
"job",
|
| 2370 |
+
"joe",
|
| 2371 |
+
"joel",
|
| 2372 |
+
"joey",
|
| 2373 |
+
"john",
|
| 2374 |
+
"johnny",
|
| 2375 |
+
"johnson",
|
| 2376 |
+
"join",
|
| 2377 |
+
"joined",
|
| 2378 |
+
"joke",
|
| 2379 |
+
"jon",
|
| 2380 |
+
"jonathan",
|
| 2381 |
+
"jones",
|
| 2382 |
+
"jordan",
|
| 2383 |
+
"joseph",
|
| 2384 |
+
"josh",
|
| 2385 |
+
"journalist",
|
| 2386 |
+
"journey",
|
| 2387 |
+
"joy",
|
| 2388 |
+
"jr",
|
| 2389 |
+
"judge",
|
| 2390 |
+
"judging",
|
| 2391 |
+
"judgment",
|
| 2392 |
+
"judy",
|
| 2393 |
+
"julia",
|
| 2394 |
+
"julian",
|
| 2395 |
+
"julie",
|
| 2396 |
+
"juliet",
|
| 2397 |
+
"july",
|
| 2398 |
+
"jump",
|
| 2399 |
+
"jumped",
|
| 2400 |
+
"jumping",
|
| 2401 |
+
"june",
|
| 2402 |
+
"jungle",
|
| 2403 |
+
"junior",
|
| 2404 |
+
"junk",
|
| 2405 |
+
"justice",
|
| 2406 |
+
"justify",
|
| 2407 |
+
"justin",
|
| 2408 |
+
"juvenile",
|
| 2409 |
+
"kane",
|
| 2410 |
+
"karate",
|
| 2411 |
+
"karen",
|
| 2412 |
+
"karloff",
|
| 2413 |
+
"kate",
|
| 2414 |
+
"kathy",
|
| 2415 |
+
"keaton",
|
| 2416 |
+
"keep",
|
| 2417 |
+
"keeping",
|
| 2418 |
+
"keith",
|
| 2419 |
+
"kelly",
|
| 2420 |
+
"ken",
|
| 2421 |
+
"kennedy",
|
| 2422 |
+
"kenneth",
|
| 2423 |
+
"kept",
|
| 2424 |
+
"kevin",
|
| 2425 |
+
"key",
|
| 2426 |
+
"khan",
|
| 2427 |
+
"kick",
|
| 2428 |
+
"kicked",
|
| 2429 |
+
"kicking",
|
| 2430 |
+
"kid",
|
| 2431 |
+
"kidding",
|
| 2432 |
+
"kidnapped",
|
| 2433 |
+
"kill",
|
| 2434 |
+
"killed",
|
| 2435 |
+
"killer",
|
| 2436 |
+
"killing",
|
| 2437 |
+
"kim",
|
| 2438 |
+
"kind",
|
| 2439 |
+
"kinda",
|
| 2440 |
+
"king",
|
| 2441 |
+
"kingdom",
|
| 2442 |
+
"kirk",
|
| 2443 |
+
"kiss",
|
| 2444 |
+
"kissing",
|
| 2445 |
+
"kitchen",
|
| 2446 |
+
"kitty",
|
| 2447 |
+
"knew",
|
| 2448 |
+
"knife",
|
| 2449 |
+
"knight",
|
| 2450 |
+
"knock",
|
| 2451 |
+
"knocked",
|
| 2452 |
+
"know",
|
| 2453 |
+
"knowing",
|
| 2454 |
+
"knowledge",
|
| 2455 |
+
"known",
|
| 2456 |
+
"kong",
|
| 2457 |
+
"korean",
|
| 2458 |
+
"kramer",
|
| 2459 |
+
"kubrick",
|
| 2460 |
+
"kudos",
|
| 2461 |
+
"kung",
|
| 2462 |
+
"kurt",
|
| 2463 |
+
"kyle",
|
| 2464 |
+
"la",
|
| 2465 |
+
"lab",
|
| 2466 |
+
"label",
|
| 2467 |
+
"labor",
|
| 2468 |
+
"lack",
|
| 2469 |
+
"lacked",
|
| 2470 |
+
"lacking",
|
| 2471 |
+
"lackluster",
|
| 2472 |
+
"lady",
|
| 2473 |
+
"laid",
|
| 2474 |
+
"lake",
|
| 2475 |
+
"lame",
|
| 2476 |
+
"lance",
|
| 2477 |
+
"land",
|
| 2478 |
+
"landing",
|
| 2479 |
+
"landscape",
|
| 2480 |
+
"lane",
|
| 2481 |
+
"language",
|
| 2482 |
+
"large",
|
| 2483 |
+
"largely",
|
| 2484 |
+
"larger",
|
| 2485 |
+
"larry",
|
| 2486 |
+
"last",
|
| 2487 |
+
"lasted",
|
| 2488 |
+
"late",
|
| 2489 |
+
"lately",
|
| 2490 |
+
"later",
|
| 2491 |
+
"latest",
|
| 2492 |
+
"latin",
|
| 2493 |
+
"latter",
|
| 2494 |
+
"laugh",
|
| 2495 |
+
"laughable",
|
| 2496 |
+
"laughably",
|
| 2497 |
+
"laughed",
|
| 2498 |
+
"laughing",
|
| 2499 |
+
"laughter",
|
| 2500 |
+
"laura",
|
| 2501 |
+
"laurel",
|
| 2502 |
+
"lauren",
|
| 2503 |
+
"law",
|
| 2504 |
+
"lawrence",
|
| 2505 |
+
"lawyer",
|
| 2506 |
+
"lay",
|
| 2507 |
+
"layer",
|
| 2508 |
+
"lazy",
|
| 2509 |
+
"le",
|
| 2510 |
+
"lead",
|
| 2511 |
+
"leader",
|
| 2512 |
+
"leading",
|
| 2513 |
+
"leaf",
|
| 2514 |
+
"league",
|
| 2515 |
+
"leap",
|
| 2516 |
+
"learn",
|
| 2517 |
+
"learned",
|
| 2518 |
+
"learning",
|
| 2519 |
+
"learns",
|
| 2520 |
+
"least",
|
| 2521 |
+
"leave",
|
| 2522 |
+
"leaving",
|
| 2523 |
+
"led",
|
| 2524 |
+
"lee",
|
| 2525 |
+
"left",
|
| 2526 |
+
"leg",
|
| 2527 |
+
"legacy",
|
| 2528 |
+
"legal",
|
| 2529 |
+
"legend",
|
| 2530 |
+
"legendary",
|
| 2531 |
+
"leigh",
|
| 2532 |
+
"lemmon",
|
| 2533 |
+
"length",
|
| 2534 |
+
"lengthy",
|
| 2535 |
+
"leo",
|
| 2536 |
+
"leonard",
|
| 2537 |
+
"lesbian",
|
| 2538 |
+
"leslie",
|
| 2539 |
+
"less",
|
| 2540 |
+
"lesser",
|
| 2541 |
+
"lesson",
|
| 2542 |
+
"let",
|
| 2543 |
+
"letter",
|
| 2544 |
+
"letting",
|
| 2545 |
+
"level",
|
| 2546 |
+
"lewis",
|
| 2547 |
+
"li",
|
| 2548 |
+
"liberal",
|
| 2549 |
+
"liberty",
|
| 2550 |
+
"library",
|
| 2551 |
+
"lie",
|
| 2552 |
+
"life",
|
| 2553 |
+
"lifebr",
|
| 2554 |
+
"lifeless",
|
| 2555 |
+
"lifestyle",
|
| 2556 |
+
"lifetime",
|
| 2557 |
+
"lift",
|
| 2558 |
+
"lifted",
|
| 2559 |
+
"light",
|
| 2560 |
+
"lighthearted",
|
| 2561 |
+
"lighting",
|
| 2562 |
+
"likable",
|
| 2563 |
+
"like",
|
| 2564 |
+
"liked",
|
| 2565 |
+
"likely",
|
| 2566 |
+
"likewise",
|
| 2567 |
+
"liking",
|
| 2568 |
+
"lily",
|
| 2569 |
+
"limit",
|
| 2570 |
+
"limited",
|
| 2571 |
+
"lincoln",
|
| 2572 |
+
"linda",
|
| 2573 |
+
"line",
|
| 2574 |
+
"liner",
|
| 2575 |
+
"link",
|
| 2576 |
+
"lion",
|
| 2577 |
+
"lip",
|
| 2578 |
+
"lisa",
|
| 2579 |
+
"list",
|
| 2580 |
+
"listed",
|
| 2581 |
+
"listen",
|
| 2582 |
+
"listening",
|
| 2583 |
+
"lit",
|
| 2584 |
+
"literally",
|
| 2585 |
+
"literary",
|
| 2586 |
+
"literature",
|
| 2587 |
+
"little",
|
| 2588 |
+
"live",
|
| 2589 |
+
"lived",
|
| 2590 |
+
"lively",
|
| 2591 |
+
"living",
|
| 2592 |
+
"lloyd",
|
| 2593 |
+
"load",
|
| 2594 |
+
"loaded",
|
| 2595 |
+
"local",
|
| 2596 |
+
"located",
|
| 2597 |
+
"location",
|
| 2598 |
+
"lock",
|
| 2599 |
+
"locked",
|
| 2600 |
+
"logic",
|
| 2601 |
+
"logical",
|
| 2602 |
+
"lol",
|
| 2603 |
+
"london",
|
| 2604 |
+
"lone",
|
| 2605 |
+
"loneliness",
|
| 2606 |
+
"lonely",
|
| 2607 |
+
"long",
|
| 2608 |
+
"longer",
|
| 2609 |
+
"look",
|
| 2610 |
+
"looked",
|
| 2611 |
+
"looking",
|
| 2612 |
+
"loose",
|
| 2613 |
+
"loosely",
|
| 2614 |
+
"lord",
|
| 2615 |
+
"los",
|
| 2616 |
+
"lose",
|
| 2617 |
+
"loser",
|
| 2618 |
+
"loses",
|
| 2619 |
+
"losing",
|
| 2620 |
+
"loss",
|
| 2621 |
+
"lost",
|
| 2622 |
+
"lot",
|
| 2623 |
+
"lou",
|
| 2624 |
+
"loud",
|
| 2625 |
+
"louis",
|
| 2626 |
+
"lousy",
|
| 2627 |
+
"lovable",
|
| 2628 |
+
"love",
|
| 2629 |
+
"loved",
|
| 2630 |
+
"lovely",
|
| 2631 |
+
"lover",
|
| 2632 |
+
"loving",
|
| 2633 |
+
"low",
|
| 2634 |
+
"lowbudget",
|
| 2635 |
+
"lower",
|
| 2636 |
+
"lowest",
|
| 2637 |
+
"loyal",
|
| 2638 |
+
"loyalty",
|
| 2639 |
+
"lucas",
|
| 2640 |
+
"luck",
|
| 2641 |
+
"luckily",
|
| 2642 |
+
"lucky",
|
| 2643 |
+
"lucy",
|
| 2644 |
+
"ludicrous",
|
| 2645 |
+
"lugosi",
|
| 2646 |
+
"luke",
|
| 2647 |
+
"lust",
|
| 2648 |
+
"lying",
|
| 2649 |
+
"lynch",
|
| 2650 |
+
"lyric",
|
| 2651 |
+
"macbeth",
|
| 2652 |
+
"machine",
|
| 2653 |
+
"macy",
|
| 2654 |
+
"mad",
|
| 2655 |
+
"made",
|
| 2656 |
+
"madebr",
|
| 2657 |
+
"madefortv",
|
| 2658 |
+
"madness",
|
| 2659 |
+
"madonna",
|
| 2660 |
+
"mafia",
|
| 2661 |
+
"magazine",
|
| 2662 |
+
"maggie",
|
| 2663 |
+
"magic",
|
| 2664 |
+
"magical",
|
| 2665 |
+
"magnificent",
|
| 2666 |
+
"maid",
|
| 2667 |
+
"mail",
|
| 2668 |
+
"main",
|
| 2669 |
+
"mainly",
|
| 2670 |
+
"mainstream",
|
| 2671 |
+
"maintain",
|
| 2672 |
+
"major",
|
| 2673 |
+
"majority",
|
| 2674 |
+
"make",
|
| 2675 |
+
"maker",
|
| 2676 |
+
"makeup",
|
| 2677 |
+
"making",
|
| 2678 |
+
"male",
|
| 2679 |
+
"man",
|
| 2680 |
+
"manage",
|
| 2681 |
+
"managed",
|
| 2682 |
+
"manager",
|
| 2683 |
+
"manages",
|
| 2684 |
+
"manhattan",
|
| 2685 |
+
"maniac",
|
| 2686 |
+
"manipulative",
|
| 2687 |
+
"mankind",
|
| 2688 |
+
"mann",
|
| 2689 |
+
"manner",
|
| 2690 |
+
"mansion",
|
| 2691 |
+
"many",
|
| 2692 |
+
"map",
|
| 2693 |
+
"mar",
|
| 2694 |
+
"march",
|
| 2695 |
+
"margaret",
|
| 2696 |
+
"maria",
|
| 2697 |
+
"marie",
|
| 2698 |
+
"marine",
|
| 2699 |
+
"mario",
|
| 2700 |
+
"marion",
|
| 2701 |
+
"mark",
|
| 2702 |
+
"market",
|
| 2703 |
+
"marketing",
|
| 2704 |
+
"marriage",
|
| 2705 |
+
"married",
|
| 2706 |
+
"marry",
|
| 2707 |
+
"marshall",
|
| 2708 |
+
"martha",
|
| 2709 |
+
"martial",
|
| 2710 |
+
"martin",
|
| 2711 |
+
"marty",
|
| 2712 |
+
"marvel",
|
| 2713 |
+
"marvelous",
|
| 2714 |
+
"mary",
|
| 2715 |
+
"mask",
|
| 2716 |
+
"mason",
|
| 2717 |
+
"mass",
|
| 2718 |
+
"massacre",
|
| 2719 |
+
"massive",
|
| 2720 |
+
"master",
|
| 2721 |
+
"masterful",
|
| 2722 |
+
"masterpiece",
|
| 2723 |
+
"match",
|
| 2724 |
+
"mate",
|
| 2725 |
+
"material",
|
| 2726 |
+
"matrix",
|
| 2727 |
+
"matt",
|
| 2728 |
+
"matter",
|
| 2729 |
+
"matthau",
|
| 2730 |
+
"matthew",
|
| 2731 |
+
"mature",
|
| 2732 |
+
"max",
|
| 2733 |
+
"may",
|
| 2734 |
+
"maybe",
|
| 2735 |
+
"mayhem",
|
| 2736 |
+
"mayor",
|
| 2737 |
+
"meal",
|
| 2738 |
+
"mean",
|
| 2739 |
+
"meaning",
|
| 2740 |
+
"meaningful",
|
| 2741 |
+
"meaningless",
|
| 2742 |
+
"meant",
|
| 2743 |
+
"meanwhile",
|
| 2744 |
+
"measure",
|
| 2745 |
+
"meat",
|
| 2746 |
+
"mebr",
|
| 2747 |
+
"medical",
|
| 2748 |
+
"mediocre",
|
| 2749 |
+
"medium",
|
| 2750 |
+
"meet",
|
| 2751 |
+
"meeting",
|
| 2752 |
+
"meg",
|
| 2753 |
+
"mel",
|
| 2754 |
+
"melodrama",
|
| 2755 |
+
"melodramatic",
|
| 2756 |
+
"member",
|
| 2757 |
+
"memorable",
|
| 2758 |
+
"memory",
|
| 2759 |
+
"men",
|
| 2760 |
+
"menace",
|
| 2761 |
+
"menacing",
|
| 2762 |
+
"mental",
|
| 2763 |
+
"mentally",
|
| 2764 |
+
"mention",
|
| 2765 |
+
"mentioned",
|
| 2766 |
+
"mentioning",
|
| 2767 |
+
"mere",
|
| 2768 |
+
"merely",
|
| 2769 |
+
"merit",
|
| 2770 |
+
"meryl",
|
| 2771 |
+
"mess",
|
| 2772 |
+
"message",
|
| 2773 |
+
"messed",
|
| 2774 |
+
"met",
|
| 2775 |
+
"metal",
|
| 2776 |
+
"metaphor",
|
| 2777 |
+
"method",
|
| 2778 |
+
"mexican",
|
| 2779 |
+
"mexico",
|
| 2780 |
+
"mgm",
|
| 2781 |
+
"michael",
|
| 2782 |
+
"michelle",
|
| 2783 |
+
"mickey",
|
| 2784 |
+
"mid",
|
| 2785 |
+
"middle",
|
| 2786 |
+
"middleaged",
|
| 2787 |
+
"midnight",
|
| 2788 |
+
"might",
|
| 2789 |
+
"mighty",
|
| 2790 |
+
"mike",
|
| 2791 |
+
"mild",
|
| 2792 |
+
"mildly",
|
| 2793 |
+
"mile",
|
| 2794 |
+
"military",
|
| 2795 |
+
"milk",
|
| 2796 |
+
"mill",
|
| 2797 |
+
"miller",
|
| 2798 |
+
"million",
|
| 2799 |
+
"milo",
|
| 2800 |
+
"min",
|
| 2801 |
+
"mind",
|
| 2802 |
+
"mindless",
|
| 2803 |
+
"mine",
|
| 2804 |
+
"mini",
|
| 2805 |
+
"minimal",
|
| 2806 |
+
"minimum",
|
| 2807 |
+
"miniseries",
|
| 2808 |
+
"minister",
|
| 2809 |
+
"minor",
|
| 2810 |
+
"minority",
|
| 2811 |
+
"minus",
|
| 2812 |
+
"minute",
|
| 2813 |
+
"minutesbr",
|
| 2814 |
+
"miracle",
|
| 2815 |
+
"mirror",
|
| 2816 |
+
"miscast",
|
| 2817 |
+
"miserable",
|
| 2818 |
+
"miserably",
|
| 2819 |
+
"misery",
|
| 2820 |
+
"misleading",
|
| 2821 |
+
"miss",
|
| 2822 |
+
"missed",
|
| 2823 |
+
"missile",
|
| 2824 |
+
"missing",
|
| 2825 |
+
"mission",
|
| 2826 |
+
"mistake",
|
| 2827 |
+
"mistaken",
|
| 2828 |
+
"mistress",
|
| 2829 |
+
"mitchell",
|
| 2830 |
+
"mitchum",
|
| 2831 |
+
"mix",
|
| 2832 |
+
"mixed",
|
| 2833 |
+
"mixture",
|
| 2834 |
+
"mm",
|
| 2835 |
+
"mob",
|
| 2836 |
+
"mobster",
|
| 2837 |
+
"mode",
|
| 2838 |
+
"model",
|
| 2839 |
+
"modern",
|
| 2840 |
+
"modest",
|
| 2841 |
+
"molly",
|
| 2842 |
+
"mom",
|
| 2843 |
+
"moment",
|
| 2844 |
+
"money",
|
| 2845 |
+
"monk",
|
| 2846 |
+
"monkey",
|
| 2847 |
+
"monologue",
|
| 2848 |
+
"monster",
|
| 2849 |
+
"montage",
|
| 2850 |
+
"montgomery",
|
| 2851 |
+
"month",
|
| 2852 |
+
"monty",
|
| 2853 |
+
"mood",
|
| 2854 |
+
"moody",
|
| 2855 |
+
"moon",
|
| 2856 |
+
"moore",
|
| 2857 |
+
"moral",
|
| 2858 |
+
"morality",
|
| 2859 |
+
"morebr",
|
| 2860 |
+
"moreover",
|
| 2861 |
+
"morgan",
|
| 2862 |
+
"mormon",
|
| 2863 |
+
"morning",
|
| 2864 |
+
"moron",
|
| 2865 |
+
"moronic",
|
| 2866 |
+
"morris",
|
| 2867 |
+
"mostly",
|
| 2868 |
+
"mother",
|
| 2869 |
+
"motif",
|
| 2870 |
+
"motion",
|
| 2871 |
+
"motivation",
|
| 2872 |
+
"motorcycle",
|
| 2873 |
+
"mountain",
|
| 2874 |
+
"mouse",
|
| 2875 |
+
"mouth",
|
| 2876 |
+
"move",
|
| 2877 |
+
"moved",
|
| 2878 |
+
"movement",
|
| 2879 |
+
"movie",
|
| 2880 |
+
"moviebr",
|
| 2881 |
+
"moviegoer",
|
| 2882 |
+
"moviesbr",
|
| 2883 |
+
"moving",
|
| 2884 |
+
"mr",
|
| 2885 |
+
"mstk",
|
| 2886 |
+
"mtv",
|
| 2887 |
+
"much",
|
| 2888 |
+
"muchbr",
|
| 2889 |
+
"muddled",
|
| 2890 |
+
"multiple",
|
| 2891 |
+
"mummy",
|
| 2892 |
+
"mundane",
|
| 2893 |
+
"muppet",
|
| 2894 |
+
"muppets",
|
| 2895 |
+
"murder",
|
| 2896 |
+
"murdered",
|
| 2897 |
+
"murderer",
|
| 2898 |
+
"murdering",
|
| 2899 |
+
"murderous",
|
| 2900 |
+
"murphy",
|
| 2901 |
+
"murray",
|
| 2902 |
+
"museum",
|
| 2903 |
+
"music",
|
| 2904 |
+
"musical",
|
| 2905 |
+
"musician",
|
| 2906 |
+
"muslim",
|
| 2907 |
+
"must",
|
| 2908 |
+
"mustsee",
|
| 2909 |
+
"mutant",
|
| 2910 |
+
"mute",
|
| 2911 |
+
"myers",
|
| 2912 |
+
"mysterious",
|
| 2913 |
+
"mystery",
|
| 2914 |
+
"myth",
|
| 2915 |
+
"na",
|
| 2916 |
+
"nail",
|
| 2917 |
+
"naive",
|
| 2918 |
+
"naked",
|
| 2919 |
+
"name",
|
| 2920 |
+
"named",
|
| 2921 |
+
"namely",
|
| 2922 |
+
"nancy",
|
| 2923 |
+
"narration",
|
| 2924 |
+
"narrative",
|
| 2925 |
+
"narrator",
|
| 2926 |
+
"nasty",
|
| 2927 |
+
"natalie",
|
| 2928 |
+
"nation",
|
| 2929 |
+
"national",
|
| 2930 |
+
"native",
|
| 2931 |
+
"natural",
|
| 2932 |
+
"naturally",
|
| 2933 |
+
"nature",
|
| 2934 |
+
"navy",
|
| 2935 |
+
"nazi",
|
| 2936 |
+
"nbc",
|
| 2937 |
+
"nd",
|
| 2938 |
+
"near",
|
| 2939 |
+
"nearby",
|
| 2940 |
+
"nearly",
|
| 2941 |
+
"neat",
|
| 2942 |
+
"necessarily",
|
| 2943 |
+
"necessary",
|
| 2944 |
+
"neck",
|
| 2945 |
+
"ned",
|
| 2946 |
+
"need",
|
| 2947 |
+
"needed",
|
| 2948 |
+
"needless",
|
| 2949 |
+
"negative",
|
| 2950 |
+
"neighbor",
|
| 2951 |
+
"neighborhood",
|
| 2952 |
+
"neil",
|
| 2953 |
+
"neither",
|
| 2954 |
+
"nelson",
|
| 2955 |
+
"nemesis",
|
| 2956 |
+
"nephew",
|
| 2957 |
+
"nerd",
|
| 2958 |
+
"nerve",
|
| 2959 |
+
"nervous",
|
| 2960 |
+
"net",
|
| 2961 |
+
"network",
|
| 2962 |
+
"never",
|
| 2963 |
+
"nevertheless",
|
| 2964 |
+
"new",
|
| 2965 |
+
"newcomer",
|
| 2966 |
+
"newly",
|
| 2967 |
+
"newman",
|
| 2968 |
+
"news",
|
| 2969 |
+
"newspaper",
|
| 2970 |
+
"next",
|
| 2971 |
+
"nice",
|
| 2972 |
+
"nicely",
|
| 2973 |
+
"nicholas",
|
| 2974 |
+
"nicholson",
|
| 2975 |
+
"nick",
|
| 2976 |
+
"nicole",
|
| 2977 |
+
"niece",
|
| 2978 |
+
"night",
|
| 2979 |
+
"nightclub",
|
| 2980 |
+
"nightmare",
|
| 2981 |
+
"nine",
|
| 2982 |
+
"ninety",
|
| 2983 |
+
"ninja",
|
| 2984 |
+
"niro",
|
| 2985 |
+
"noble",
|
| 2986 |
+
"nobody",
|
| 2987 |
+
"nod",
|
| 2988 |
+
"noir",
|
| 2989 |
+
"noise",
|
| 2990 |
+
"nominated",
|
| 2991 |
+
"nomination",
|
| 2992 |
+
"non",
|
| 2993 |
+
"none",
|
| 2994 |
+
"nonetheless",
|
| 2995 |
+
"nonexistent",
|
| 2996 |
+
"nonsense",
|
| 2997 |
+
"nonsensical",
|
| 2998 |
+
"nonstop",
|
| 2999 |
+
"noone",
|
| 3000 |
+
"normal",
|
| 3001 |
+
"normally",
|
| 3002 |
+
"norman",
|
| 3003 |
+
"norris",
|
| 3004 |
+
"north",
|
| 3005 |
+
"northern",
|
| 3006 |
+
"nose",
|
| 3007 |
+
"nostalgia",
|
| 3008 |
+
"nostalgic",
|
| 3009 |
+
"notable",
|
| 3010 |
+
"notably",
|
| 3011 |
+
"notbr",
|
| 3012 |
+
"notch",
|
| 3013 |
+
"note",
|
| 3014 |
+
"noted",
|
| 3015 |
+
"nothing",
|
| 3016 |
+
"notice",
|
| 3017 |
+
"noticed",
|
| 3018 |
+
"notion",
|
| 3019 |
+
"notorious",
|
| 3020 |
+
"novel",
|
| 3021 |
+
"nowadays",
|
| 3022 |
+
"nowbr",
|
| 3023 |
+
"nowhere",
|
| 3024 |
+
"nuance",
|
| 3025 |
+
"nuclear",
|
| 3026 |
+
"nude",
|
| 3027 |
+
"nudity",
|
| 3028 |
+
"number",
|
| 3029 |
+
"numerous",
|
| 3030 |
+
"nun",
|
| 3031 |
+
"nurse",
|
| 3032 |
+
"nut",
|
| 3033 |
+
"nyc",
|
| 3034 |
+
"object",
|
| 3035 |
+
"objective",
|
| 3036 |
+
"obligatory",
|
| 3037 |
+
"obnoxious",
|
| 3038 |
+
"obscure",
|
| 3039 |
+
"observation",
|
| 3040 |
+
"obsessed",
|
| 3041 |
+
"obsession",
|
| 3042 |
+
"obvious",
|
| 3043 |
+
"obviously",
|
| 3044 |
+
"occasion",
|
| 3045 |
+
"occasional",
|
| 3046 |
+
"occasionally",
|
| 3047 |
+
"occur",
|
| 3048 |
+
"occurred",
|
| 3049 |
+
"occurs",
|
| 3050 |
+
"ocean",
|
| 3051 |
+
"odd",
|
| 3052 |
+
"oddly",
|
| 3053 |
+
"odds",
|
| 3054 |
+
"odyssey",
|
| 3055 |
+
"offbr",
|
| 3056 |
+
"offended",
|
| 3057 |
+
"offensive",
|
| 3058 |
+
"offer",
|
| 3059 |
+
"offered",
|
| 3060 |
+
"offering",
|
| 3061 |
+
"office",
|
| 3062 |
+
"officer",
|
| 3063 |
+
"official",
|
| 3064 |
+
"often",
|
| 3065 |
+
"oh",
|
| 3066 |
+
"oil",
|
| 3067 |
+
"ok",
|
| 3068 |
+
"okay",
|
| 3069 |
+
"old",
|
| 3070 |
+
"older",
|
| 3071 |
+
"oliver",
|
| 3072 |
+
"olivia",
|
| 3073 |
+
"olivier",
|
| 3074 |
+
"onbr",
|
| 3075 |
+
"one",
|
| 3076 |
+
"onebr",
|
| 3077 |
+
"onedimensional",
|
| 3078 |
+
"oneliners",
|
| 3079 |
+
"online",
|
| 3080 |
+
"onscreen",
|
| 3081 |
+
"onto",
|
| 3082 |
+
"open",
|
| 3083 |
+
"opened",
|
| 3084 |
+
"opening",
|
| 3085 |
+
"opera",
|
| 3086 |
+
"operation",
|
| 3087 |
+
"opinion",
|
| 3088 |
+
"opportunity",
|
| 3089 |
+
"opposed",
|
| 3090 |
+
"opposite",
|
| 3091 |
+
"option",
|
| 3092 |
+
"orange",
|
| 3093 |
+
"order",
|
| 3094 |
+
"ordered",
|
| 3095 |
+
"ordinary",
|
| 3096 |
+
"origin",
|
| 3097 |
+
"original",
|
| 3098 |
+
"originality",
|
| 3099 |
+
"originally",
|
| 3100 |
+
"oscar",
|
| 3101 |
+
"otherbr",
|
| 3102 |
+
"others",
|
| 3103 |
+
"otherwise",
|
| 3104 |
+
"ought",
|
| 3105 |
+
"outbr",
|
| 3106 |
+
"outcome",
|
| 3107 |
+
"outer",
|
| 3108 |
+
"outfit",
|
| 3109 |
+
"outing",
|
| 3110 |
+
"outrageous",
|
| 3111 |
+
"outside",
|
| 3112 |
+
"outstanding",
|
| 3113 |
+
"overacting",
|
| 3114 |
+
"overall",
|
| 3115 |
+
"overcome",
|
| 3116 |
+
"overdone",
|
| 3117 |
+
"overlong",
|
| 3118 |
+
"overlook",
|
| 3119 |
+
"overlooked",
|
| 3120 |
+
"overly",
|
| 3121 |
+
"overrated",
|
| 3122 |
+
"overthetop",
|
| 3123 |
+
"overwhelming",
|
| 3124 |
+
"owen",
|
| 3125 |
+
"owned",
|
| 3126 |
+
"owner",
|
| 3127 |
+
"owns",
|
| 3128 |
+
"oz",
|
| 3129 |
+
"pace",
|
| 3130 |
+
"paced",
|
| 3131 |
+
"pacing",
|
| 3132 |
+
"pacino",
|
| 3133 |
+
"pack",
|
| 3134 |
+
"package",
|
| 3135 |
+
"packed",
|
| 3136 |
+
"page",
|
| 3137 |
+
"paid",
|
| 3138 |
+
"pain",
|
| 3139 |
+
"painful",
|
| 3140 |
+
"painfully",
|
| 3141 |
+
"paint",
|
| 3142 |
+
"painted",
|
| 3143 |
+
"painter",
|
| 3144 |
+
"painting",
|
| 3145 |
+
"pair",
|
| 3146 |
+
"pal",
|
| 3147 |
+
"pale",
|
| 3148 |
+
"pan",
|
| 3149 |
+
"panic",
|
| 3150 |
+
"pant",
|
| 3151 |
+
"paper",
|
| 3152 |
+
"par",
|
| 3153 |
+
"parade",
|
| 3154 |
+
"paradise",
|
| 3155 |
+
"parallel",
|
| 3156 |
+
"paranoia",
|
| 3157 |
+
"parent",
|
| 3158 |
+
"paris",
|
| 3159 |
+
"park",
|
| 3160 |
+
"parker",
|
| 3161 |
+
"parody",
|
| 3162 |
+
"part",
|
| 3163 |
+
"particular",
|
| 3164 |
+
"particularly",
|
| 3165 |
+
"partly",
|
| 3166 |
+
"partner",
|
| 3167 |
+
"party",
|
| 3168 |
+
"pas",
|
| 3169 |
+
"pass",
|
| 3170 |
+
"passable",
|
| 3171 |
+
"passage",
|
| 3172 |
+
"passed",
|
| 3173 |
+
"passenger",
|
| 3174 |
+
"passing",
|
| 3175 |
+
"passion",
|
| 3176 |
+
"passionate",
|
| 3177 |
+
"past",
|
| 3178 |
+
"pat",
|
| 3179 |
+
"path",
|
| 3180 |
+
"pathetic",
|
| 3181 |
+
"patience",
|
| 3182 |
+
"patient",
|
| 3183 |
+
"patricia",
|
| 3184 |
+
"patrick",
|
| 3185 |
+
"pattern",
|
| 3186 |
+
"paul",
|
| 3187 |
+
"pause",
|
| 3188 |
+
"pay",
|
| 3189 |
+
"paying",
|
| 3190 |
+
"peace",
|
| 3191 |
+
"peak",
|
| 3192 |
+
"pearl",
|
| 3193 |
+
"penguin",
|
| 3194 |
+
"penn",
|
| 3195 |
+
"penny",
|
| 3196 |
+
"people",
|
| 3197 |
+
"peoplebr",
|
| 3198 |
+
"per",
|
| 3199 |
+
"perception",
|
| 3200 |
+
"perfect",
|
| 3201 |
+
"perfection",
|
| 3202 |
+
"perfectly",
|
| 3203 |
+
"perform",
|
| 3204 |
+
"performance",
|
| 3205 |
+
"performed",
|
| 3206 |
+
"performer",
|
| 3207 |
+
"performing",
|
| 3208 |
+
"performs",
|
| 3209 |
+
"perhaps",
|
| 3210 |
+
"period",
|
| 3211 |
+
"perry",
|
| 3212 |
+
"person",
|
| 3213 |
+
"persona",
|
| 3214 |
+
"personal",
|
| 3215 |
+
"personality",
|
| 3216 |
+
"personally",
|
| 3217 |
+
"perspective",
|
| 3218 |
+
"pet",
|
| 3219 |
+
"pete",
|
| 3220 |
+
"peter",
|
| 3221 |
+
"petty",
|
| 3222 |
+
"pg",
|
| 3223 |
+
"phantom",
|
| 3224 |
+
"phenomenon",
|
| 3225 |
+
"phil",
|
| 3226 |
+
"philip",
|
| 3227 |
+
"phillips",
|
| 3228 |
+
"philosophical",
|
| 3229 |
+
"philosophy",
|
| 3230 |
+
"phone",
|
| 3231 |
+
"phony",
|
| 3232 |
+
"photo",
|
| 3233 |
+
"photograph",
|
| 3234 |
+
"photographed",
|
| 3235 |
+
"photographer",
|
| 3236 |
+
"photography",
|
| 3237 |
+
"phrase",
|
| 3238 |
+
"physical",
|
| 3239 |
+
"physically",
|
| 3240 |
+
"piano",
|
| 3241 |
+
"pick",
|
| 3242 |
+
"picked",
|
| 3243 |
+
"picking",
|
| 3244 |
+
"picture",
|
| 3245 |
+
"pie",
|
| 3246 |
+
"piece",
|
| 3247 |
+
"pig",
|
| 3248 |
+
"pile",
|
| 3249 |
+
"pilot",
|
| 3250 |
+
"pink",
|
| 3251 |
+
"pirate",
|
| 3252 |
+
"pit",
|
| 3253 |
+
"pitch",
|
| 3254 |
+
"pitiful",
|
| 3255 |
+
"pitt",
|
| 3256 |
+
"pity",
|
| 3257 |
+
"place",
|
| 3258 |
+
"placed",
|
| 3259 |
+
"plague",
|
| 3260 |
+
"plain",
|
| 3261 |
+
"plan",
|
| 3262 |
+
"plane",
|
| 3263 |
+
"planet",
|
| 3264 |
+
"planned",
|
| 3265 |
+
"planning",
|
| 3266 |
+
"plant",
|
| 3267 |
+
"plastic",
|
| 3268 |
+
"plausible",
|
| 3269 |
+
"play",
|
| 3270 |
+
"playboy",
|
| 3271 |
+
"played",
|
| 3272 |
+
"player",
|
| 3273 |
+
"playing",
|
| 3274 |
+
"pleasant",
|
| 3275 |
+
"pleasantly",
|
| 3276 |
+
"please",
|
| 3277 |
+
"pleased",
|
| 3278 |
+
"pleasure",
|
| 3279 |
+
"plenty",
|
| 3280 |
+
"plight",
|
| 3281 |
+
"plot",
|
| 3282 |
+
"plotbr",
|
| 3283 |
+
"plus",
|
| 3284 |
+
"poem",
|
| 3285 |
+
"poetic",
|
| 3286 |
+
"poetry",
|
| 3287 |
+
"poignant",
|
| 3288 |
+
"point",
|
| 3289 |
+
"pointed",
|
| 3290 |
+
"pointless",
|
| 3291 |
+
"poison",
|
| 3292 |
+
"police",
|
| 3293 |
+
"policeman",
|
| 3294 |
+
"polish",
|
| 3295 |
+
"polished",
|
| 3296 |
+
"political",
|
| 3297 |
+
"politically",
|
| 3298 |
+
"politician",
|
| 3299 |
+
"politics",
|
| 3300 |
+
"pool",
|
| 3301 |
+
"poor",
|
| 3302 |
+
"poorly",
|
| 3303 |
+
"pop",
|
| 3304 |
+
"popcorn",
|
| 3305 |
+
"popular",
|
| 3306 |
+
"popularity",
|
| 3307 |
+
"population",
|
| 3308 |
+
"porn",
|
| 3309 |
+
"porno",
|
| 3310 |
+
"portion",
|
| 3311 |
+
"portrait",
|
| 3312 |
+
"portray",
|
| 3313 |
+
"portrayal",
|
| 3314 |
+
"portrayed",
|
| 3315 |
+
"portraying",
|
| 3316 |
+
"portrays",
|
| 3317 |
+
"pose",
|
| 3318 |
+
"position",
|
| 3319 |
+
"positive",
|
| 3320 |
+
"positively",
|
| 3321 |
+
"possessed",
|
| 3322 |
+
"possession",
|
| 3323 |
+
"possibility",
|
| 3324 |
+
"possible",
|
| 3325 |
+
"possibly",
|
| 3326 |
+
"post",
|
| 3327 |
+
"posted",
|
| 3328 |
+
"poster",
|
| 3329 |
+
"pot",
|
| 3330 |
+
"potential",
|
| 3331 |
+
"potentially",
|
| 3332 |
+
"pound",
|
| 3333 |
+
"poverty",
|
| 3334 |
+
"powell",
|
| 3335 |
+
"power",
|
| 3336 |
+
"powerful",
|
| 3337 |
+
"practically",
|
| 3338 |
+
"practice",
|
| 3339 |
+
"praise",
|
| 3340 |
+
"prank",
|
| 3341 |
+
"precious",
|
| 3342 |
+
"precisely",
|
| 3343 |
+
"predator",
|
| 3344 |
+
"predecessor",
|
| 3345 |
+
"predictable",
|
| 3346 |
+
"prefer",
|
| 3347 |
+
"pregnant",
|
| 3348 |
+
"prejudice",
|
| 3349 |
+
"premiere",
|
| 3350 |
+
"premise",
|
| 3351 |
+
"prepare",
|
| 3352 |
+
"prepared",
|
| 3353 |
+
"presence",
|
| 3354 |
+
"present",
|
| 3355 |
+
"presentation",
|
| 3356 |
+
"presented",
|
| 3357 |
+
"presenting",
|
| 3358 |
+
"president",
|
| 3359 |
+
"press",
|
| 3360 |
+
"pressure",
|
| 3361 |
+
"presumably",
|
| 3362 |
+
"pretend",
|
| 3363 |
+
"pretending",
|
| 3364 |
+
"pretentious",
|
| 3365 |
+
"pretty",
|
| 3366 |
+
"prevent",
|
| 3367 |
+
"preview",
|
| 3368 |
+
"previous",
|
| 3369 |
+
"previously",
|
| 3370 |
+
"prey",
|
| 3371 |
+
"price",
|
| 3372 |
+
"priceless",
|
| 3373 |
+
"pride",
|
| 3374 |
+
"priest",
|
| 3375 |
+
"primarily",
|
| 3376 |
+
"primary",
|
| 3377 |
+
"prime",
|
| 3378 |
+
"primitive",
|
| 3379 |
+
"prince",
|
| 3380 |
+
"princess",
|
| 3381 |
+
"principal",
|
| 3382 |
+
"principle",
|
| 3383 |
+
"print",
|
| 3384 |
+
"prior",
|
| 3385 |
+
"prison",
|
| 3386 |
+
"prisoner",
|
| 3387 |
+
"private",
|
| 3388 |
+
"prize",
|
| 3389 |
+
"pro",
|
| 3390 |
+
"probably",
|
| 3391 |
+
"problem",
|
| 3392 |
+
"proceeding",
|
| 3393 |
+
"proceeds",
|
| 3394 |
+
"process",
|
| 3395 |
+
"produce",
|
| 3396 |
+
"produced",
|
| 3397 |
+
"producer",
|
| 3398 |
+
"producing",
|
| 3399 |
+
"product",
|
| 3400 |
+
"production",
|
| 3401 |
+
"prof",
|
| 3402 |
+
"profanity",
|
| 3403 |
+
"professional",
|
| 3404 |
+
"professor",
|
| 3405 |
+
"profound",
|
| 3406 |
+
"program",
|
| 3407 |
+
"programme",
|
| 3408 |
+
"progress",
|
| 3409 |
+
"project",
|
| 3410 |
+
"prom",
|
| 3411 |
+
"prominent",
|
| 3412 |
+
"promise",
|
| 3413 |
+
"promised",
|
| 3414 |
+
"promising",
|
| 3415 |
+
"proof",
|
| 3416 |
+
"prop",
|
| 3417 |
+
"propaganda",
|
| 3418 |
+
"proper",
|
| 3419 |
+
"properly",
|
| 3420 |
+
"property",
|
| 3421 |
+
"prostitute",
|
| 3422 |
+
"protagonist",
|
| 3423 |
+
"protect",
|
| 3424 |
+
"proud",
|
| 3425 |
+
"prove",
|
| 3426 |
+
"proved",
|
| 3427 |
+
"provide",
|
| 3428 |
+
"provided",
|
| 3429 |
+
"provides",
|
| 3430 |
+
"providing",
|
| 3431 |
+
"provoking",
|
| 3432 |
+
"psychiatrist",
|
| 3433 |
+
"psychic",
|
| 3434 |
+
"psycho",
|
| 3435 |
+
"psychological",
|
| 3436 |
+
"psychopath",
|
| 3437 |
+
"psychotic",
|
| 3438 |
+
"public",
|
| 3439 |
+
"pull",
|
| 3440 |
+
"pulled",
|
| 3441 |
+
"pulling",
|
| 3442 |
+
"pulp",
|
| 3443 |
+
"pun",
|
| 3444 |
+
"punch",
|
| 3445 |
+
"punishment",
|
| 3446 |
+
"punk",
|
| 3447 |
+
"puppet",
|
| 3448 |
+
"purchase",
|
| 3449 |
+
"purchased",
|
| 3450 |
+
"pure",
|
| 3451 |
+
"purely",
|
| 3452 |
+
"purple",
|
| 3453 |
+
"purpose",
|
| 3454 |
+
"pursuit",
|
| 3455 |
+
"push",
|
| 3456 |
+
"pushed",
|
| 3457 |
+
"pushing",
|
| 3458 |
+
"put",
|
| 3459 |
+
"putting",
|
| 3460 |
+
"puzzle",
|
| 3461 |
+
"quaid",
|
| 3462 |
+
"quality",
|
| 3463 |
+
"quarter",
|
| 3464 |
+
"queen",
|
| 3465 |
+
"quest",
|
| 3466 |
+
"question",
|
| 3467 |
+
"questionable",
|
| 3468 |
+
"quick",
|
| 3469 |
+
"quickly",
|
| 3470 |
+
"quiet",
|
| 3471 |
+
"quietly",
|
| 3472 |
+
"quinn",
|
| 3473 |
+
"quirky",
|
| 3474 |
+
"quit",
|
| 3475 |
+
"quite",
|
| 3476 |
+
"quote",
|
| 3477 |
+
"rabbit",
|
| 3478 |
+
"race",
|
| 3479 |
+
"rachel",
|
| 3480 |
+
"racial",
|
| 3481 |
+
"racism",
|
| 3482 |
+
"racist",
|
| 3483 |
+
"radio",
|
| 3484 |
+
"rage",
|
| 3485 |
+
"rain",
|
| 3486 |
+
"raise",
|
| 3487 |
+
"raised",
|
| 3488 |
+
"raising",
|
| 3489 |
+
"ralph",
|
| 3490 |
+
"ran",
|
| 3491 |
+
"random",
|
| 3492 |
+
"randomly",
|
| 3493 |
+
"randy",
|
| 3494 |
+
"range",
|
| 3495 |
+
"ranger",
|
| 3496 |
+
"rank",
|
| 3497 |
+
"rap",
|
| 3498 |
+
"rape",
|
| 3499 |
+
"raped",
|
| 3500 |
+
"rare",
|
| 3501 |
+
"rarely",
|
| 3502 |
+
"rat",
|
| 3503 |
+
"rate",
|
| 3504 |
+
"rated",
|
| 3505 |
+
"rather",
|
| 3506 |
+
"rating",
|
| 3507 |
+
"raw",
|
| 3508 |
+
"ray",
|
| 3509 |
+
"raymond",
|
| 3510 |
+
"rd",
|
| 3511 |
+
"reach",
|
| 3512 |
+
"reached",
|
| 3513 |
+
"reaching",
|
| 3514 |
+
"react",
|
| 3515 |
+
"reaction",
|
| 3516 |
+
"read",
|
| 3517 |
+
"reader",
|
| 3518 |
+
"reading",
|
| 3519 |
+
"ready",
|
| 3520 |
+
"real",
|
| 3521 |
+
"realise",
|
| 3522 |
+
"realised",
|
| 3523 |
+
"realism",
|
| 3524 |
+
"realistic",
|
| 3525 |
+
"reality",
|
| 3526 |
+
"realize",
|
| 3527 |
+
"realized",
|
| 3528 |
+
"realizes",
|
| 3529 |
+
"realizing",
|
| 3530 |
+
"reallife",
|
| 3531 |
+
"really",
|
| 3532 |
+
"realm",
|
| 3533 |
+
"reason",
|
| 3534 |
+
"reasonable",
|
| 3535 |
+
"reasonably",
|
| 3536 |
+
"rebel",
|
| 3537 |
+
"recall",
|
| 3538 |
+
"receive",
|
| 3539 |
+
"received",
|
| 3540 |
+
"receives",
|
| 3541 |
+
"recent",
|
| 3542 |
+
"recently",
|
| 3543 |
+
"recognition",
|
| 3544 |
+
"recognize",
|
| 3545 |
+
"recognized",
|
| 3546 |
+
"recommend",
|
| 3547 |
+
"recommendation",
|
| 3548 |
+
"recommended",
|
| 3549 |
+
"record",
|
| 3550 |
+
"recorded",
|
| 3551 |
+
"recording",
|
| 3552 |
+
"recycled",
|
| 3553 |
+
"red",
|
| 3554 |
+
"redeeming",
|
| 3555 |
+
"redemption",
|
| 3556 |
+
"redneck",
|
| 3557 |
+
"reduced",
|
| 3558 |
+
"reed",
|
| 3559 |
+
"reef",
|
| 3560 |
+
"reel",
|
| 3561 |
+
"refer",
|
| 3562 |
+
"reference",
|
| 3563 |
+
"referred",
|
| 3564 |
+
"reflect",
|
| 3565 |
+
"reflection",
|
| 3566 |
+
"refreshing",
|
| 3567 |
+
"refuse",
|
| 3568 |
+
"refused",
|
| 3569 |
+
"regard",
|
| 3570 |
+
"regarded",
|
| 3571 |
+
"regarding",
|
| 3572 |
+
"regardless",
|
| 3573 |
+
"region",
|
| 3574 |
+
"regret",
|
| 3575 |
+
"regular",
|
| 3576 |
+
"reign",
|
| 3577 |
+
"reject",
|
| 3578 |
+
"rejected",
|
| 3579 |
+
"relate",
|
| 3580 |
+
"related",
|
| 3581 |
+
"relation",
|
| 3582 |
+
"relationship",
|
| 3583 |
+
"relative",
|
| 3584 |
+
"relatively",
|
| 3585 |
+
"relax",
|
| 3586 |
+
"release",
|
| 3587 |
+
"released",
|
| 3588 |
+
"relevant",
|
| 3589 |
+
"relief",
|
| 3590 |
+
"relies",
|
| 3591 |
+
"religion",
|
| 3592 |
+
"religious",
|
| 3593 |
+
"rely",
|
| 3594 |
+
"remade",
|
| 3595 |
+
"remain",
|
| 3596 |
+
"remained",
|
| 3597 |
+
"remaining",
|
| 3598 |
+
"remains",
|
| 3599 |
+
"remake",
|
| 3600 |
+
"remark",
|
| 3601 |
+
"remarkable",
|
| 3602 |
+
"remarkably",
|
| 3603 |
+
"remember",
|
| 3604 |
+
"remembered",
|
| 3605 |
+
"remind",
|
| 3606 |
+
"reminded",
|
| 3607 |
+
"reminds",
|
| 3608 |
+
"reminiscent",
|
| 3609 |
+
"remote",
|
| 3610 |
+
"remotely",
|
| 3611 |
+
"remove",
|
| 3612 |
+
"removed",
|
| 3613 |
+
"rendered",
|
| 3614 |
+
"rendition",
|
| 3615 |
+
"rent",
|
| 3616 |
+
"rental",
|
| 3617 |
+
"rented",
|
| 3618 |
+
"renting",
|
| 3619 |
+
"repeat",
|
| 3620 |
+
"repeated",
|
| 3621 |
+
"repeatedly",
|
| 3622 |
+
"repeating",
|
| 3623 |
+
"repetitive",
|
| 3624 |
+
"replace",
|
| 3625 |
+
"replaced",
|
| 3626 |
+
"reply",
|
| 3627 |
+
"report",
|
| 3628 |
+
"reporter",
|
| 3629 |
+
"represent",
|
| 3630 |
+
"representation",
|
| 3631 |
+
"represented",
|
| 3632 |
+
"represents",
|
| 3633 |
+
"reputation",
|
| 3634 |
+
"require",
|
| 3635 |
+
"required",
|
| 3636 |
+
"requires",
|
| 3637 |
+
"rerun",
|
| 3638 |
+
"rescue",
|
| 3639 |
+
"research",
|
| 3640 |
+
"resemblance",
|
| 3641 |
+
"resemble",
|
| 3642 |
+
"resembles",
|
| 3643 |
+
"resident",
|
| 3644 |
+
"resist",
|
| 3645 |
+
"resolution",
|
| 3646 |
+
"resort",
|
| 3647 |
+
"resource",
|
| 3648 |
+
"respect",
|
| 3649 |
+
"respectable",
|
| 3650 |
+
"respected",
|
| 3651 |
+
"respective",
|
| 3652 |
+
"response",
|
| 3653 |
+
"responsibility",
|
| 3654 |
+
"responsible",
|
| 3655 |
+
"rest",
|
| 3656 |
+
"restaurant",
|
| 3657 |
+
"restored",
|
| 3658 |
+
"result",
|
| 3659 |
+
"resulting",
|
| 3660 |
+
"retarded",
|
| 3661 |
+
"retired",
|
| 3662 |
+
"return",
|
| 3663 |
+
"returned",
|
| 3664 |
+
"returning",
|
| 3665 |
+
"reunion",
|
| 3666 |
+
"reveal",
|
| 3667 |
+
"revealed",
|
| 3668 |
+
"revealing",
|
| 3669 |
+
"reveals",
|
| 3670 |
+
"revelation",
|
| 3671 |
+
"revenge",
|
| 3672 |
+
"review",
|
| 3673 |
+
"reviewer",
|
| 3674 |
+
"revolution",
|
| 3675 |
+
"revolutionary",
|
| 3676 |
+
"revolves",
|
| 3677 |
+
"reward",
|
| 3678 |
+
"rex",
|
| 3679 |
+
"reynolds",
|
| 3680 |
+
"rhythm",
|
| 3681 |
+
"rich",
|
| 3682 |
+
"richard",
|
| 3683 |
+
"richards",
|
| 3684 |
+
"rick",
|
| 3685 |
+
"rid",
|
| 3686 |
+
"ride",
|
| 3687 |
+
"rider",
|
| 3688 |
+
"ridiculous",
|
| 3689 |
+
"ridiculously",
|
| 3690 |
+
"riding",
|
| 3691 |
+
"rifle",
|
| 3692 |
+
"right",
|
| 3693 |
+
"rightbr",
|
| 3694 |
+
"ring",
|
| 3695 |
+
"riot",
|
| 3696 |
+
"rip",
|
| 3697 |
+
"ripoff",
|
| 3698 |
+
"ripped",
|
| 3699 |
+
"rise",
|
| 3700 |
+
"rising",
|
| 3701 |
+
"risk",
|
| 3702 |
+
"rita",
|
| 3703 |
+
"ritter",
|
| 3704 |
+
"ritual",
|
| 3705 |
+
"rival",
|
| 3706 |
+
"river",
|
| 3707 |
+
"riveting",
|
| 3708 |
+
"road",
|
| 3709 |
+
"rob",
|
| 3710 |
+
"robber",
|
| 3711 |
+
"robbery",
|
| 3712 |
+
"robbins",
|
| 3713 |
+
"robert",
|
| 3714 |
+
"robin",
|
| 3715 |
+
"robinson",
|
| 3716 |
+
"robot",
|
| 3717 |
+
"rochester",
|
| 3718 |
+
"rock",
|
| 3719 |
+
"rocket",
|
| 3720 |
+
"rocky",
|
| 3721 |
+
"rod",
|
| 3722 |
+
"roger",
|
| 3723 |
+
"rogers",
|
| 3724 |
+
"role",
|
| 3725 |
+
"roll",
|
| 3726 |
+
"rolled",
|
| 3727 |
+
"rolling",
|
| 3728 |
+
"roman",
|
| 3729 |
+
"romance",
|
| 3730 |
+
"romantic",
|
| 3731 |
+
"rome",
|
| 3732 |
+
"romp",
|
| 3733 |
+
"ron",
|
| 3734 |
+
"ronald",
|
| 3735 |
+
"roof",
|
| 3736 |
+
"room",
|
| 3737 |
+
"roommate",
|
| 3738 |
+
"root",
|
| 3739 |
+
"rope",
|
| 3740 |
+
"rose",
|
| 3741 |
+
"ross",
|
| 3742 |
+
"rotten",
|
| 3743 |
+
"rough",
|
| 3744 |
+
"round",
|
| 3745 |
+
"route",
|
| 3746 |
+
"routine",
|
| 3747 |
+
"row",
|
| 3748 |
+
"roy",
|
| 3749 |
+
"royal",
|
| 3750 |
+
"rubber",
|
| 3751 |
+
"rubbish",
|
| 3752 |
+
"ruby",
|
| 3753 |
+
"rude",
|
| 3754 |
+
"ruin",
|
| 3755 |
+
"ruined",
|
| 3756 |
+
"rule",
|
| 3757 |
+
"run",
|
| 3758 |
+
"runner",
|
| 3759 |
+
"running",
|
| 3760 |
+
"rupert",
|
| 3761 |
+
"rural",
|
| 3762 |
+
"rush",
|
| 3763 |
+
"rushed",
|
| 3764 |
+
"russell",
|
| 3765 |
+
"russia",
|
| 3766 |
+
"russian",
|
| 3767 |
+
"ruth",
|
| 3768 |
+
"ruthless",
|
| 3769 |
+
"ryan",
|
| 3770 |
+
"sacrifice",
|
| 3771 |
+
"sad",
|
| 3772 |
+
"sadistic",
|
| 3773 |
+
"sadly",
|
| 3774 |
+
"sadness",
|
| 3775 |
+
"safe",
|
| 3776 |
+
"safety",
|
| 3777 |
+
"saga",
|
| 3778 |
+
"said",
|
| 3779 |
+
"sailor",
|
| 3780 |
+
"saint",
|
| 3781 |
+
"sake",
|
| 3782 |
+
"sale",
|
| 3783 |
+
"sally",
|
| 3784 |
+
"salman",
|
| 3785 |
+
"sam",
|
| 3786 |
+
"samuel",
|
| 3787 |
+
"samurai",
|
| 3788 |
+
"san",
|
| 3789 |
+
"sand",
|
| 3790 |
+
"sandler",
|
| 3791 |
+
"sandra",
|
| 3792 |
+
"santa",
|
| 3793 |
+
"sappy",
|
| 3794 |
+
"sarah",
|
| 3795 |
+
"sarandon",
|
| 3796 |
+
"sat",
|
| 3797 |
+
"satan",
|
| 3798 |
+
"satire",
|
| 3799 |
+
"satisfied",
|
| 3800 |
+
"satisfy",
|
| 3801 |
+
"satisfying",
|
| 3802 |
+
"saturday",
|
| 3803 |
+
"savage",
|
| 3804 |
+
"save",
|
| 3805 |
+
"saved",
|
| 3806 |
+
"saving",
|
| 3807 |
+
"saw",
|
| 3808 |
+
"say",
|
| 3809 |
+
"saying",
|
| 3810 |
+
"sbr",
|
| 3811 |
+
"scale",
|
| 3812 |
+
"scare",
|
| 3813 |
+
"scarecrow",
|
| 3814 |
+
"scared",
|
| 3815 |
+
"scarlett",
|
| 3816 |
+
"scary",
|
| 3817 |
+
"scenario",
|
| 3818 |
+
"scene",
|
| 3819 |
+
"scenebr",
|
| 3820 |
+
"scenery",
|
| 3821 |
+
"scenesbr",
|
| 3822 |
+
"scheme",
|
| 3823 |
+
"school",
|
| 3824 |
+
"science",
|
| 3825 |
+
"scientific",
|
| 3826 |
+
"scientist",
|
| 3827 |
+
"scifi",
|
| 3828 |
+
"scope",
|
| 3829 |
+
"score",
|
| 3830 |
+
"scott",
|
| 3831 |
+
"scottish",
|
| 3832 |
+
"scratch",
|
| 3833 |
+
"scream",
|
| 3834 |
+
"screaming",
|
| 3835 |
+
"screen",
|
| 3836 |
+
"screenbr",
|
| 3837 |
+
"screening",
|
| 3838 |
+
"screenplay",
|
| 3839 |
+
"screenwriter",
|
| 3840 |
+
"screw",
|
| 3841 |
+
"script",
|
| 3842 |
+
"scripted",
|
| 3843 |
+
"scriptwriter",
|
| 3844 |
+
"sea",
|
| 3845 |
+
"seagal",
|
| 3846 |
+
"sean",
|
| 3847 |
+
"search",
|
| 3848 |
+
"searching",
|
| 3849 |
+
"season",
|
| 3850 |
+
"seat",
|
| 3851 |
+
"second",
|
| 3852 |
+
"secondary",
|
| 3853 |
+
"secondly",
|
| 3854 |
+
"secret",
|
| 3855 |
+
"secretary",
|
| 3856 |
+
"secretly",
|
| 3857 |
+
"section",
|
| 3858 |
+
"security",
|
| 3859 |
+
"see",
|
| 3860 |
+
"seed",
|
| 3861 |
+
"seeing",
|
| 3862 |
+
"seek",
|
| 3863 |
+
"seeking",
|
| 3864 |
+
"seem",
|
| 3865 |
+
"seemed",
|
| 3866 |
+
"seemingly",
|
| 3867 |
+
"seems",
|
| 3868 |
+
"seen",
|
| 3869 |
+
"seenbr",
|
| 3870 |
+
"segment",
|
| 3871 |
+
"seldom",
|
| 3872 |
+
"selection",
|
| 3873 |
+
"self",
|
| 3874 |
+
"selfish",
|
| 3875 |
+
"sell",
|
| 3876 |
+
"seller",
|
| 3877 |
+
"selling",
|
| 3878 |
+
"send",
|
| 3879 |
+
"sending",
|
| 3880 |
+
"sends",
|
| 3881 |
+
"sens",
|
| 3882 |
+
"sense",
|
| 3883 |
+
"senseless",
|
| 3884 |
+
"sensibility",
|
| 3885 |
+
"sensitive",
|
| 3886 |
+
"sent",
|
| 3887 |
+
"sentence",
|
| 3888 |
+
"sentiment",
|
| 3889 |
+
"sentimental",
|
| 3890 |
+
"separate",
|
| 3891 |
+
"sequel",
|
| 3892 |
+
"sequence",
|
| 3893 |
+
"serf",
|
| 3894 |
+
"sergeant",
|
| 3895 |
+
"serial",
|
| 3896 |
+
"series",
|
| 3897 |
+
"seriesbr",
|
| 3898 |
+
"serious",
|
| 3899 |
+
"seriously",
|
| 3900 |
+
"servant",
|
| 3901 |
+
"serve",
|
| 3902 |
+
"served",
|
| 3903 |
+
"service",
|
| 3904 |
+
"serving",
|
| 3905 |
+
"session",
|
| 3906 |
+
"set",
|
| 3907 |
+
"setting",
|
| 3908 |
+
"settle",
|
| 3909 |
+
"setup",
|
| 3910 |
+
"seven",
|
| 3911 |
+
"seventy",
|
| 3912 |
+
"several",
|
| 3913 |
+
"severe",
|
| 3914 |
+
"severely",
|
| 3915 |
+
"sex",
|
| 3916 |
+
"sexual",
|
| 3917 |
+
"sexuality",
|
| 3918 |
+
"sexually",
|
| 3919 |
+
"sexy",
|
| 3920 |
+
"shade",
|
| 3921 |
+
"shadow",
|
| 3922 |
+
"shake",
|
| 3923 |
+
"shakespeare",
|
| 3924 |
+
"shall",
|
| 3925 |
+
"shallow",
|
| 3926 |
+
"shame",
|
| 3927 |
+
"shape",
|
| 3928 |
+
"share",
|
| 3929 |
+
"shared",
|
| 3930 |
+
"shark",
|
| 3931 |
+
"sharp",
|
| 3932 |
+
"shaw",
|
| 3933 |
+
"shed",
|
| 3934 |
+
"sheen",
|
| 3935 |
+
"sheer",
|
| 3936 |
+
"shelf",
|
| 3937 |
+
"shell",
|
| 3938 |
+
"sheriff",
|
| 3939 |
+
"shes",
|
| 3940 |
+
"shift",
|
| 3941 |
+
"shine",
|
| 3942 |
+
"shining",
|
| 3943 |
+
"ship",
|
| 3944 |
+
"shirley",
|
| 3945 |
+
"shirt",
|
| 3946 |
+
"shock",
|
| 3947 |
+
"shocked",
|
| 3948 |
+
"shocking",
|
| 3949 |
+
"shoddy",
|
| 3950 |
+
"shoe",
|
| 3951 |
+
"shoot",
|
| 3952 |
+
"shooting",
|
| 3953 |
+
"shootout",
|
| 3954 |
+
"shop",
|
| 3955 |
+
"shore",
|
| 3956 |
+
"short",
|
| 3957 |
+
"shortcoming",
|
| 3958 |
+
"shortly",
|
| 3959 |
+
"shot",
|
| 3960 |
+
"shoulder",
|
| 3961 |
+
"shouldnt",
|
| 3962 |
+
"shouldve",
|
| 3963 |
+
"shout",
|
| 3964 |
+
"shouting",
|
| 3965 |
+
"show",
|
| 3966 |
+
"showbr",
|
| 3967 |
+
"showcase",
|
| 3968 |
+
"showdown",
|
| 3969 |
+
"showed",
|
| 3970 |
+
"shower",
|
| 3971 |
+
"showing",
|
| 3972 |
+
"shown",
|
| 3973 |
+
"shut",
|
| 3974 |
+
"shy",
|
| 3975 |
+
"sibling",
|
| 3976 |
+
"sick",
|
| 3977 |
+
"side",
|
| 3978 |
+
"sidekick",
|
| 3979 |
+
"sidney",
|
| 3980 |
+
"sight",
|
| 3981 |
+
"sign",
|
| 3982 |
+
"signed",
|
| 3983 |
+
"significance",
|
| 3984 |
+
"significant",
|
| 3985 |
+
"silence",
|
| 3986 |
+
"silent",
|
| 3987 |
+
"silliness",
|
| 3988 |
+
"silly",
|
| 3989 |
+
"silver",
|
| 3990 |
+
"similar",
|
| 3991 |
+
"similarity",
|
| 3992 |
+
"similarly",
|
| 3993 |
+
"simmons",
|
| 3994 |
+
"simon",
|
| 3995 |
+
"simple",
|
| 3996 |
+
"simplicity",
|
| 3997 |
+
"simplistic",
|
| 3998 |
+
"simply",
|
| 3999 |
+
"simpson",
|
| 4000 |
+
"simultaneously",
|
| 4001 |
+
"sin",
|
| 4002 |
+
"sinatra",
|
| 4003 |
+
"since",
|
| 4004 |
+
"sincere",
|
| 4005 |
+
"sing",
|
| 4006 |
+
"singer",
|
| 4007 |
+
"singing",
|
| 4008 |
+
"single",
|
| 4009 |
+
"sings",
|
| 4010 |
+
"sinister",
|
| 4011 |
+
"sink",
|
| 4012 |
+
"sir",
|
| 4013 |
+
"sister",
|
| 4014 |
+
"sit",
|
| 4015 |
+
"sitcom",
|
| 4016 |
+
"site",
|
| 4017 |
+
"sits",
|
| 4018 |
+
"sitting",
|
| 4019 |
+
"situation",
|
| 4020 |
+
"six",
|
| 4021 |
+
"sixty",
|
| 4022 |
+
"size",
|
| 4023 |
+
"skeleton",
|
| 4024 |
+
"sketch",
|
| 4025 |
+
"skill",
|
| 4026 |
+
"skin",
|
| 4027 |
+
"skip",
|
| 4028 |
+
"skit",
|
| 4029 |
+
"skull",
|
| 4030 |
+
"sky",
|
| 4031 |
+
"slap",
|
| 4032 |
+
"slapstick",
|
| 4033 |
+
"slasher",
|
| 4034 |
+
"slaughter",
|
| 4035 |
+
"slave",
|
| 4036 |
+
"sleaze",
|
| 4037 |
+
"sleazy",
|
| 4038 |
+
"sleep",
|
| 4039 |
+
"sleeping",
|
| 4040 |
+
"slice",
|
| 4041 |
+
"slick",
|
| 4042 |
+
"slight",
|
| 4043 |
+
"slightest",
|
| 4044 |
+
"slightly",
|
| 4045 |
+
"slip",
|
| 4046 |
+
"sloppy",
|
| 4047 |
+
"slow",
|
| 4048 |
+
"slowly",
|
| 4049 |
+
"small",
|
| 4050 |
+
"smaller",
|
| 4051 |
+
"smart",
|
| 4052 |
+
"smell",
|
| 4053 |
+
"smile",
|
| 4054 |
+
"smiling",
|
| 4055 |
+
"smith",
|
| 4056 |
+
"smoke",
|
| 4057 |
+
"smoking",
|
| 4058 |
+
"smooth",
|
| 4059 |
+
"snake",
|
| 4060 |
+
"sneak",
|
| 4061 |
+
"snipe",
|
| 4062 |
+
"snow",
|
| 4063 |
+
"snowman",
|
| 4064 |
+
"soap",
|
| 4065 |
+
"socalled",
|
| 4066 |
+
"soccer",
|
| 4067 |
+
"social",
|
| 4068 |
+
"society",
|
| 4069 |
+
"soft",
|
| 4070 |
+
"softcore",
|
| 4071 |
+
"sold",
|
| 4072 |
+
"soldier",
|
| 4073 |
+
"sole",
|
| 4074 |
+
"solely",
|
| 4075 |
+
"solid",
|
| 4076 |
+
"solo",
|
| 4077 |
+
"solution",
|
| 4078 |
+
"solve",
|
| 4079 |
+
"somebody",
|
| 4080 |
+
"someday",
|
| 4081 |
+
"somehow",
|
| 4082 |
+
"someone",
|
| 4083 |
+
"something",
|
| 4084 |
+
"sometime",
|
| 4085 |
+
"sometimes",
|
| 4086 |
+
"somewhat",
|
| 4087 |
+
"somewhere",
|
| 4088 |
+
"son",
|
| 4089 |
+
"song",
|
| 4090 |
+
"soon",
|
| 4091 |
+
"sophisticated",
|
| 4092 |
+
"soprano",
|
| 4093 |
+
"sorry",
|
| 4094 |
+
"sort",
|
| 4095 |
+
"soul",
|
| 4096 |
+
"sound",
|
| 4097 |
+
"sounded",
|
| 4098 |
+
"sounding",
|
| 4099 |
+
"soundtrack",
|
| 4100 |
+
"source",
|
| 4101 |
+
"south",
|
| 4102 |
+
"southern",
|
| 4103 |
+
"soviet",
|
| 4104 |
+
"space",
|
| 4105 |
+
"spaceship",
|
| 4106 |
+
"spacey",
|
| 4107 |
+
"spade",
|
| 4108 |
+
"spaghetti",
|
| 4109 |
+
"spain",
|
| 4110 |
+
"span",
|
| 4111 |
+
"spanish",
|
| 4112 |
+
"spare",
|
| 4113 |
+
"spark",
|
| 4114 |
+
"speak",
|
| 4115 |
+
"speaking",
|
| 4116 |
+
"speaks",
|
| 4117 |
+
"special",
|
| 4118 |
+
"specially",
|
| 4119 |
+
"specie",
|
| 4120 |
+
"specific",
|
| 4121 |
+
"specifically",
|
| 4122 |
+
"spectacle",
|
| 4123 |
+
"spectacular",
|
| 4124 |
+
"speech",
|
| 4125 |
+
"speed",
|
| 4126 |
+
"spell",
|
| 4127 |
+
"spend",
|
| 4128 |
+
"spending",
|
| 4129 |
+
"spends",
|
| 4130 |
+
"spent",
|
| 4131 |
+
"spider",
|
| 4132 |
+
"spielberg",
|
| 4133 |
+
"spike",
|
| 4134 |
+
"spin",
|
| 4135 |
+
"spiral",
|
| 4136 |
+
"spirit",
|
| 4137 |
+
"spirited",
|
| 4138 |
+
"spiritual",
|
| 4139 |
+
"spite",
|
| 4140 |
+
"splatter",
|
| 4141 |
+
"splendid",
|
| 4142 |
+
"split",
|
| 4143 |
+
"spock",
|
| 4144 |
+
"spoil",
|
| 4145 |
+
"spoiled",
|
| 4146 |
+
"spoiler",
|
| 4147 |
+
"spoilersbr",
|
| 4148 |
+
"spoke",
|
| 4149 |
+
"spoken",
|
| 4150 |
+
"spoof",
|
| 4151 |
+
"spooky",
|
| 4152 |
+
"sport",
|
| 4153 |
+
"spot",
|
| 4154 |
+
"spread",
|
| 4155 |
+
"spring",
|
| 4156 |
+
"spy",
|
| 4157 |
+
"squad",
|
| 4158 |
+
"square",
|
| 4159 |
+
"st",
|
| 4160 |
+
"stab",
|
| 4161 |
+
"staff",
|
| 4162 |
+
"stage",
|
| 4163 |
+
"staged",
|
| 4164 |
+
"stake",
|
| 4165 |
+
"stale",
|
| 4166 |
+
"stan",
|
| 4167 |
+
"stand",
|
| 4168 |
+
"standard",
|
| 4169 |
+
"standing",
|
| 4170 |
+
"standout",
|
| 4171 |
+
"standup",
|
| 4172 |
+
"stanley",
|
| 4173 |
+
"stanwyck",
|
| 4174 |
+
"star",
|
| 4175 |
+
"stare",
|
| 4176 |
+
"staring",
|
| 4177 |
+
"stark",
|
| 4178 |
+
"starred",
|
| 4179 |
+
"starring",
|
| 4180 |
+
"start",
|
| 4181 |
+
"started",
|
| 4182 |
+
"starting",
|
| 4183 |
+
"state",
|
| 4184 |
+
"stated",
|
| 4185 |
+
"statement",
|
| 4186 |
+
"static",
|
| 4187 |
+
"station",
|
| 4188 |
+
"statue",
|
| 4189 |
+
"status",
|
| 4190 |
+
"stay",
|
| 4191 |
+
"stayed",
|
| 4192 |
+
"staying",
|
| 4193 |
+
"steal",
|
| 4194 |
+
"stealing",
|
| 4195 |
+
"steel",
|
| 4196 |
+
"stellar",
|
| 4197 |
+
"step",
|
| 4198 |
+
"stephen",
|
| 4199 |
+
"stereotype",
|
| 4200 |
+
"stereotypical",
|
| 4201 |
+
"steve",
|
| 4202 |
+
"steven",
|
| 4203 |
+
"stevens",
|
| 4204 |
+
"stewart",
|
| 4205 |
+
"stick",
|
| 4206 |
+
"stiff",
|
| 4207 |
+
"still",
|
| 4208 |
+
"stiller",
|
| 4209 |
+
"stilted",
|
| 4210 |
+
"stink",
|
| 4211 |
+
"stinker",
|
| 4212 |
+
"stock",
|
| 4213 |
+
"stole",
|
| 4214 |
+
"stolen",
|
| 4215 |
+
"stomach",
|
| 4216 |
+
"stone",
|
| 4217 |
+
"stood",
|
| 4218 |
+
"stooge",
|
| 4219 |
+
"stop",
|
| 4220 |
+
"stopped",
|
| 4221 |
+
"store",
|
| 4222 |
+
"storm",
|
| 4223 |
+
"story",
|
| 4224 |
+
"storybr",
|
| 4225 |
+
"storyline",
|
| 4226 |
+
"storytelling",
|
| 4227 |
+
"straight",
|
| 4228 |
+
"straightforward",
|
| 4229 |
+
"stranded",
|
| 4230 |
+
"strange",
|
| 4231 |
+
"strangely",
|
| 4232 |
+
"stranger",
|
| 4233 |
+
"streep",
|
| 4234 |
+
"street",
|
| 4235 |
+
"streisand",
|
| 4236 |
+
"strength",
|
| 4237 |
+
"stress",
|
| 4238 |
+
"stretch",
|
| 4239 |
+
"strictly",
|
| 4240 |
+
"strike",
|
| 4241 |
+
"striking",
|
| 4242 |
+
"string",
|
| 4243 |
+
"strip",
|
| 4244 |
+
"stroke",
|
| 4245 |
+
"strong",
|
| 4246 |
+
"stronger",
|
| 4247 |
+
"strongest",
|
| 4248 |
+
"strongly",
|
| 4249 |
+
"struck",
|
| 4250 |
+
"structure",
|
| 4251 |
+
"struggle",
|
| 4252 |
+
"struggling",
|
| 4253 |
+
"stuart",
|
| 4254 |
+
"stuck",
|
| 4255 |
+
"student",
|
| 4256 |
+
"studio",
|
| 4257 |
+
"study",
|
| 4258 |
+
"studying",
|
| 4259 |
+
"stuff",
|
| 4260 |
+
"stumble",
|
| 4261 |
+
"stumbled",
|
| 4262 |
+
"stunned",
|
| 4263 |
+
"stunning",
|
| 4264 |
+
"stunt",
|
| 4265 |
+
"stupid",
|
| 4266 |
+
"stupidity",
|
| 4267 |
+
"style",
|
| 4268 |
+
"stylish",
|
| 4269 |
+
"sub",
|
| 4270 |
+
"subject",
|
| 4271 |
+
"subjected",
|
| 4272 |
+
"subpar",
|
| 4273 |
+
"subplot",
|
| 4274 |
+
"subplots",
|
| 4275 |
+
"subsequent",
|
| 4276 |
+
"substance",
|
| 4277 |
+
"subtitle",
|
| 4278 |
+
"subtle",
|
| 4279 |
+
"subtlety",
|
| 4280 |
+
"succeed",
|
| 4281 |
+
"succeeded",
|
| 4282 |
+
"succeeds",
|
| 4283 |
+
"success",
|
| 4284 |
+
"successful",
|
| 4285 |
+
"successfully",
|
| 4286 |
+
"suck",
|
| 4287 |
+
"sucked",
|
| 4288 |
+
"sudden",
|
| 4289 |
+
"suddenly",
|
| 4290 |
+
"sue",
|
| 4291 |
+
"suffer",
|
| 4292 |
+
"suffered",
|
| 4293 |
+
"suffering",
|
| 4294 |
+
"suffers",
|
| 4295 |
+
"suffice",
|
| 4296 |
+
"suggest",
|
| 4297 |
+
"suggested",
|
| 4298 |
+
"suggestion",
|
| 4299 |
+
"suggests",
|
| 4300 |
+
"suicide",
|
| 4301 |
+
"suit",
|
| 4302 |
+
"suitable",
|
| 4303 |
+
"suited",
|
| 4304 |
+
"sullivan",
|
| 4305 |
+
"sum",
|
| 4306 |
+
"summary",
|
| 4307 |
+
"summer",
|
| 4308 |
+
"sun",
|
| 4309 |
+
"sunday",
|
| 4310 |
+
"sung",
|
| 4311 |
+
"sunny",
|
| 4312 |
+
"sunshine",
|
| 4313 |
+
"super",
|
| 4314 |
+
"superb",
|
| 4315 |
+
"superbly",
|
| 4316 |
+
"superficial",
|
| 4317 |
+
"superhero",
|
| 4318 |
+
"superior",
|
| 4319 |
+
"superman",
|
| 4320 |
+
"supernatural",
|
| 4321 |
+
"supply",
|
| 4322 |
+
"support",
|
| 4323 |
+
"supported",
|
| 4324 |
+
"supporting",
|
| 4325 |
+
"suppose",
|
| 4326 |
+
"supposed",
|
| 4327 |
+
"supposedly",
|
| 4328 |
+
"sure",
|
| 4329 |
+
"surely",
|
| 4330 |
+
"surface",
|
| 4331 |
+
"surfing",
|
| 4332 |
+
"surgery",
|
| 4333 |
+
"surprise",
|
| 4334 |
+
"surprised",
|
| 4335 |
+
"surprising",
|
| 4336 |
+
"surprisingly",
|
| 4337 |
+
"surreal",
|
| 4338 |
+
"surround",
|
| 4339 |
+
"surrounded",
|
| 4340 |
+
"surrounding",
|
| 4341 |
+
"survival",
|
| 4342 |
+
"survive",
|
| 4343 |
+
"survived",
|
| 4344 |
+
"surviving",
|
| 4345 |
+
"survivor",
|
| 4346 |
+
"susan",
|
| 4347 |
+
"suspect",
|
| 4348 |
+
"suspend",
|
| 4349 |
+
"suspense",
|
| 4350 |
+
"suspenseful",
|
| 4351 |
+
"suspension",
|
| 4352 |
+
"suspicion",
|
| 4353 |
+
"suspicious",
|
| 4354 |
+
"sutherland",
|
| 4355 |
+
"swear",
|
| 4356 |
+
"swedish",
|
| 4357 |
+
"sweet",
|
| 4358 |
+
"swim",
|
| 4359 |
+
"swimming",
|
| 4360 |
+
"swing",
|
| 4361 |
+
"switch",
|
| 4362 |
+
"sword",
|
| 4363 |
+
"symbol",
|
| 4364 |
+
"symbolic",
|
| 4365 |
+
"symbolism",
|
| 4366 |
+
"sympathetic",
|
| 4367 |
+
"sympathy",
|
| 4368 |
+
"synopsis",
|
| 4369 |
+
"system",
|
| 4370 |
+
"ta",
|
| 4371 |
+
"table",
|
| 4372 |
+
"tacky",
|
| 4373 |
+
"tactic",
|
| 4374 |
+
"tad",
|
| 4375 |
+
"tag",
|
| 4376 |
+
"tail",
|
| 4377 |
+
"take",
|
| 4378 |
+
"taken",
|
| 4379 |
+
"taking",
|
| 4380 |
+
"tale",
|
| 4381 |
+
"talent",
|
| 4382 |
+
"talented",
|
| 4383 |
+
"talk",
|
| 4384 |
+
"talked",
|
| 4385 |
+
"talking",
|
| 4386 |
+
"tall",
|
| 4387 |
+
"tame",
|
| 4388 |
+
"tank",
|
| 4389 |
+
"tap",
|
| 4390 |
+
"tape",
|
| 4391 |
+
"tarantino",
|
| 4392 |
+
"target",
|
| 4393 |
+
"tarzan",
|
| 4394 |
+
"task",
|
| 4395 |
+
"taste",
|
| 4396 |
+
"tasteless",
|
| 4397 |
+
"taught",
|
| 4398 |
+
"taxi",
|
| 4399 |
+
"taylor",
|
| 4400 |
+
"tea",
|
| 4401 |
+
"teach",
|
| 4402 |
+
"teacher",
|
| 4403 |
+
"teaching",
|
| 4404 |
+
"team",
|
| 4405 |
+
"tear",
|
| 4406 |
+
"technical",
|
| 4407 |
+
"technically",
|
| 4408 |
+
"technique",
|
| 4409 |
+
"technology",
|
| 4410 |
+
"ted",
|
| 4411 |
+
"tedious",
|
| 4412 |
+
"teen",
|
| 4413 |
+
"teenage",
|
| 4414 |
+
"teenager",
|
| 4415 |
+
"teeth",
|
| 4416 |
+
"television",
|
| 4417 |
+
"tell",
|
| 4418 |
+
"telling",
|
| 4419 |
+
"temple",
|
| 4420 |
+
"ten",
|
| 4421 |
+
"tend",
|
| 4422 |
+
"tendency",
|
| 4423 |
+
"tender",
|
| 4424 |
+
"tends",
|
| 4425 |
+
"tense",
|
| 4426 |
+
"tension",
|
| 4427 |
+
"term",
|
| 4428 |
+
"terrible",
|
| 4429 |
+
"terribly",
|
| 4430 |
+
"terrific",
|
| 4431 |
+
"terrifying",
|
| 4432 |
+
"territory",
|
| 4433 |
+
"terror",
|
| 4434 |
+
"terrorist",
|
| 4435 |
+
"terry",
|
| 4436 |
+
"test",
|
| 4437 |
+
"testament",
|
| 4438 |
+
"texas",
|
| 4439 |
+
"text",
|
| 4440 |
+
"th",
|
| 4441 |
+
"thank",
|
| 4442 |
+
"thankfully",
|
| 4443 |
+
"thanks",
|
| 4444 |
+
"thatbr",
|
| 4445 |
+
"thats",
|
| 4446 |
+
"theater",
|
| 4447 |
+
"theatre",
|
| 4448 |
+
"theatrical",
|
| 4449 |
+
"thembr",
|
| 4450 |
+
"theme",
|
| 4451 |
+
"theory",
|
| 4452 |
+
"there",
|
| 4453 |
+
"therebr",
|
| 4454 |
+
"therefore",
|
| 4455 |
+
"theyd",
|
| 4456 |
+
"theyll",
|
| 4457 |
+
"theyre",
|
| 4458 |
+
"theyve",
|
| 4459 |
+
"thick",
|
| 4460 |
+
"thief",
|
| 4461 |
+
"thin",
|
| 4462 |
+
"thing",
|
| 4463 |
+
"thingbr",
|
| 4464 |
+
"think",
|
| 4465 |
+
"thinking",
|
| 4466 |
+
"third",
|
| 4467 |
+
"thirty",
|
| 4468 |
+
"thisbr",
|
| 4469 |
+
"thomas",
|
| 4470 |
+
"thompson",
|
| 4471 |
+
"thoroughly",
|
| 4472 |
+
"though",
|
| 4473 |
+
"thought",
|
| 4474 |
+
"thoughtful",
|
| 4475 |
+
"thoughtprovoking",
|
| 4476 |
+
"thousand",
|
| 4477 |
+
"thread",
|
| 4478 |
+
"threat",
|
| 4479 |
+
"threatening",
|
| 4480 |
+
"threatens",
|
| 4481 |
+
"three",
|
| 4482 |
+
"threw",
|
| 4483 |
+
"thrill",
|
| 4484 |
+
"thriller",
|
| 4485 |
+
"thrilling",
|
| 4486 |
+
"throat",
|
| 4487 |
+
"throughout",
|
| 4488 |
+
"throw",
|
| 4489 |
+
"throwing",
|
| 4490 |
+
"thrown",
|
| 4491 |
+
"thru",
|
| 4492 |
+
"thug",
|
| 4493 |
+
"thumb",
|
| 4494 |
+
"thus",
|
| 4495 |
+
"ticket",
|
| 4496 |
+
"tie",
|
| 4497 |
+
"tied",
|
| 4498 |
+
"tiger",
|
| 4499 |
+
"tight",
|
| 4500 |
+
"till",
|
| 4501 |
+
"tim",
|
| 4502 |
+
"time",
|
| 4503 |
+
"timebr",
|
| 4504 |
+
"timeless",
|
| 4505 |
+
"timesbr",
|
| 4506 |
+
"timing",
|
| 4507 |
+
"timothy",
|
| 4508 |
+
"tiny",
|
| 4509 |
+
"tip",
|
| 4510 |
+
"tired",
|
| 4511 |
+
"tiresome",
|
| 4512 |
+
"titanic",
|
| 4513 |
+
"title",
|
| 4514 |
+
"titled",
|
| 4515 |
+
"tobr",
|
| 4516 |
+
"today",
|
| 4517 |
+
"todd",
|
| 4518 |
+
"together",
|
| 4519 |
+
"toilet",
|
| 4520 |
+
"told",
|
| 4521 |
+
"tom",
|
| 4522 |
+
"tomato",
|
| 4523 |
+
"tommy",
|
| 4524 |
+
"tomorrow",
|
| 4525 |
+
"ton",
|
| 4526 |
+
"tone",
|
| 4527 |
+
"tongue",
|
| 4528 |
+
"tonight",
|
| 4529 |
+
"tony",
|
| 4530 |
+
"toobr",
|
| 4531 |
+
"took",
|
| 4532 |
+
"tool",
|
| 4533 |
+
"top",
|
| 4534 |
+
"topic",
|
| 4535 |
+
"topless",
|
| 4536 |
+
"topnotch",
|
| 4537 |
+
"torn",
|
| 4538 |
+
"torture",
|
| 4539 |
+
"tortured",
|
| 4540 |
+
"total",
|
| 4541 |
+
"totally",
|
| 4542 |
+
"touch",
|
| 4543 |
+
"touched",
|
| 4544 |
+
"touching",
|
| 4545 |
+
"tough",
|
| 4546 |
+
"tour",
|
| 4547 |
+
"tourist",
|
| 4548 |
+
"toward",
|
| 4549 |
+
"towards",
|
| 4550 |
+
"tower",
|
| 4551 |
+
"town",
|
| 4552 |
+
"toy",
|
| 4553 |
+
"trace",
|
| 4554 |
+
"track",
|
| 4555 |
+
"tracking",
|
| 4556 |
+
"tracy",
|
| 4557 |
+
"trade",
|
| 4558 |
+
"trademark",
|
| 4559 |
+
"tradition",
|
| 4560 |
+
"traditional",
|
| 4561 |
+
"traffic",
|
| 4562 |
+
"tragedy",
|
| 4563 |
+
"tragic",
|
| 4564 |
+
"trail",
|
| 4565 |
+
"trailer",
|
| 4566 |
+
"train",
|
| 4567 |
+
"trained",
|
| 4568 |
+
"training",
|
| 4569 |
+
"trait",
|
| 4570 |
+
"tramp",
|
| 4571 |
+
"transfer",
|
| 4572 |
+
"transformation",
|
| 4573 |
+
"transformed",
|
| 4574 |
+
"transition",
|
| 4575 |
+
"translation",
|
| 4576 |
+
"trap",
|
| 4577 |
+
"trapped",
|
| 4578 |
+
"trash",
|
| 4579 |
+
"trashy",
|
| 4580 |
+
"travel",
|
| 4581 |
+
"traveling",
|
| 4582 |
+
"travesty",
|
| 4583 |
+
"treasure",
|
| 4584 |
+
"treat",
|
| 4585 |
+
"treated",
|
| 4586 |
+
"treatment",
|
| 4587 |
+
"tree",
|
| 4588 |
+
"trek",
|
| 4589 |
+
"tremendous",
|
| 4590 |
+
"trend",
|
| 4591 |
+
"trial",
|
| 4592 |
+
"triangle",
|
| 4593 |
+
"tribe",
|
| 4594 |
+
"tribute",
|
| 4595 |
+
"trick",
|
| 4596 |
+
"tried",
|
| 4597 |
+
"trilogy",
|
| 4598 |
+
"trio",
|
| 4599 |
+
"trip",
|
| 4600 |
+
"tripe",
|
| 4601 |
+
"trite",
|
| 4602 |
+
"triumph",
|
| 4603 |
+
"troma",
|
| 4604 |
+
"troop",
|
| 4605 |
+
"trouble",
|
| 4606 |
+
"troubled",
|
| 4607 |
+
"truck",
|
| 4608 |
+
"true",
|
| 4609 |
+
"truly",
|
| 4610 |
+
"trust",
|
| 4611 |
+
"truth",
|
| 4612 |
+
"try",
|
| 4613 |
+
"trying",
|
| 4614 |
+
"tube",
|
| 4615 |
+
"tune",
|
| 4616 |
+
"tunnel",
|
| 4617 |
+
"turkey",
|
| 4618 |
+
"turkish",
|
| 4619 |
+
"turn",
|
| 4620 |
+
"turned",
|
| 4621 |
+
"turner",
|
| 4622 |
+
"turning",
|
| 4623 |
+
"tv",
|
| 4624 |
+
"twelve",
|
| 4625 |
+
"twenty",
|
| 4626 |
+
"twice",
|
| 4627 |
+
"twilight",
|
| 4628 |
+
"twin",
|
| 4629 |
+
"twist",
|
| 4630 |
+
"twisted",
|
| 4631 |
+
"two",
|
| 4632 |
+
"tyler",
|
| 4633 |
+
"type",
|
| 4634 |
+
"typical",
|
| 4635 |
+
"typically",
|
| 4636 |
+
"ugly",
|
| 4637 |
+
"uk",
|
| 4638 |
+
"ultimate",
|
| 4639 |
+
"ultimately",
|
| 4640 |
+
"unable",
|
| 4641 |
+
"unaware",
|
| 4642 |
+
"unbearable",
|
| 4643 |
+
"unbelievable",
|
| 4644 |
+
"unbelievably",
|
| 4645 |
+
"uncle",
|
| 4646 |
+
"uncomfortable",
|
| 4647 |
+
"unconvincing",
|
| 4648 |
+
"undead",
|
| 4649 |
+
"underground",
|
| 4650 |
+
"underlying",
|
| 4651 |
+
"underneath",
|
| 4652 |
+
"underrated",
|
| 4653 |
+
"understand",
|
| 4654 |
+
"understandable",
|
| 4655 |
+
"understanding",
|
| 4656 |
+
"understated",
|
| 4657 |
+
"understood",
|
| 4658 |
+
"underwater",
|
| 4659 |
+
"underworld",
|
| 4660 |
+
"undoubtedly",
|
| 4661 |
+
"uneven",
|
| 4662 |
+
"unexpected",
|
| 4663 |
+
"unexpectedly",
|
| 4664 |
+
"unfair",
|
| 4665 |
+
"unfold",
|
| 4666 |
+
"unfolds",
|
| 4667 |
+
"unforgettable",
|
| 4668 |
+
"unfortunate",
|
| 4669 |
+
"unfortunately",
|
| 4670 |
+
"unfunny",
|
| 4671 |
+
"unhappy",
|
| 4672 |
+
"uniform",
|
| 4673 |
+
"uninspired",
|
| 4674 |
+
"unintentional",
|
| 4675 |
+
"unintentionally",
|
| 4676 |
+
"uninteresting",
|
| 4677 |
+
"union",
|
| 4678 |
+
"unique",
|
| 4679 |
+
"unit",
|
| 4680 |
+
"united",
|
| 4681 |
+
"universal",
|
| 4682 |
+
"universe",
|
| 4683 |
+
"university",
|
| 4684 |
+
"unknown",
|
| 4685 |
+
"unless",
|
| 4686 |
+
"unlikable",
|
| 4687 |
+
"unlike",
|
| 4688 |
+
"unlikeable",
|
| 4689 |
+
"unlikely",
|
| 4690 |
+
"unnecessary",
|
| 4691 |
+
"unoriginal",
|
| 4692 |
+
"unpleasant",
|
| 4693 |
+
"unpredictable",
|
| 4694 |
+
"unreal",
|
| 4695 |
+
"unrealistic",
|
| 4696 |
+
"unseen",
|
| 4697 |
+
"unsettling",
|
| 4698 |
+
"unusual",
|
| 4699 |
+
"unwatchable",
|
| 4700 |
+
"upbr",
|
| 4701 |
+
"uplifting",
|
| 4702 |
+
"upon",
|
| 4703 |
+
"upper",
|
| 4704 |
+
"ups",
|
| 4705 |
+
"upset",
|
| 4706 |
+
"urban",
|
| 4707 |
+
"urge",
|
| 4708 |
+
"us",
|
| 4709 |
+
"usa",
|
| 4710 |
+
"use",
|
| 4711 |
+
"used",
|
| 4712 |
+
"useful",
|
| 4713 |
+
"useless",
|
| 4714 |
+
"user",
|
| 4715 |
+
"using",
|
| 4716 |
+
"usual",
|
| 4717 |
+
"usually",
|
| 4718 |
+
"utter",
|
| 4719 |
+
"utterly",
|
| 4720 |
+
"uwe",
|
| 4721 |
+
"vacation",
|
| 4722 |
+
"vague",
|
| 4723 |
+
"vaguely",
|
| 4724 |
+
"valentine",
|
| 4725 |
+
"valley",
|
| 4726 |
+
"valuable",
|
| 4727 |
+
"value",
|
| 4728 |
+
"vampire",
|
| 4729 |
+
"van",
|
| 4730 |
+
"variation",
|
| 4731 |
+
"variety",
|
| 4732 |
+
"various",
|
| 4733 |
+
"vast",
|
| 4734 |
+
"vega",
|
| 4735 |
+
"vehicle",
|
| 4736 |
+
"vein",
|
| 4737 |
+
"velvet",
|
| 4738 |
+
"vengeance",
|
| 4739 |
+
"venice",
|
| 4740 |
+
"venture",
|
| 4741 |
+
"version",
|
| 4742 |
+
"versus",
|
| 4743 |
+
"veteran",
|
| 4744 |
+
"vhs",
|
| 4745 |
+
"via",
|
| 4746 |
+
"vice",
|
| 4747 |
+
"vicious",
|
| 4748 |
+
"victim",
|
| 4749 |
+
"victor",
|
| 4750 |
+
"victoria",
|
| 4751 |
+
"victory",
|
| 4752 |
+
"video",
|
| 4753 |
+
"vietnam",
|
| 4754 |
+
"view",
|
| 4755 |
+
"viewed",
|
| 4756 |
+
"viewer",
|
| 4757 |
+
"viewing",
|
| 4758 |
+
"viewpoint",
|
| 4759 |
+
"village",
|
| 4760 |
+
"villain",
|
| 4761 |
+
"vince",
|
| 4762 |
+
"vincent",
|
| 4763 |
+
"violence",
|
| 4764 |
+
"violent",
|
| 4765 |
+
"virgin",
|
| 4766 |
+
"virginia",
|
| 4767 |
+
"virtual",
|
| 4768 |
+
"virtually",
|
| 4769 |
+
"virus",
|
| 4770 |
+
"visible",
|
| 4771 |
+
"vision",
|
| 4772 |
+
"visit",
|
| 4773 |
+
"visiting",
|
| 4774 |
+
"visual",
|
| 4775 |
+
"visually",
|
| 4776 |
+
"visuals",
|
| 4777 |
+
"vivid",
|
| 4778 |
+
"vocal",
|
| 4779 |
+
"voice",
|
| 4780 |
+
"voiced",
|
| 4781 |
+
"voiceover",
|
| 4782 |
+
"voight",
|
| 4783 |
+
"volume",
|
| 4784 |
+
"von",
|
| 4785 |
+
"vote",
|
| 4786 |
+
"voyage",
|
| 4787 |
+
"vulnerable",
|
| 4788 |
+
"wacky",
|
| 4789 |
+
"wagner",
|
| 4790 |
+
"wagon",
|
| 4791 |
+
"wait",
|
| 4792 |
+
"waited",
|
| 4793 |
+
"waiting",
|
| 4794 |
+
"wake",
|
| 4795 |
+
"walk",
|
| 4796 |
+
"walked",
|
| 4797 |
+
"walken",
|
| 4798 |
+
"walker",
|
| 4799 |
+
"walking",
|
| 4800 |
+
"wall",
|
| 4801 |
+
"wallace",
|
| 4802 |
+
"walter",
|
| 4803 |
+
"wan",
|
| 4804 |
+
"wandering",
|
| 4805 |
+
"wannabe",
|
| 4806 |
+
"want",
|
| 4807 |
+
"wanted",
|
| 4808 |
+
"wanting",
|
| 4809 |
+
"war",
|
| 4810 |
+
"ward",
|
| 4811 |
+
"wardrobe",
|
| 4812 |
+
"warm",
|
| 4813 |
+
"warmth",
|
| 4814 |
+
"warn",
|
| 4815 |
+
"warned",
|
| 4816 |
+
"warner",
|
| 4817 |
+
"warning",
|
| 4818 |
+
"warren",
|
| 4819 |
+
"warrior",
|
| 4820 |
+
"wasbr",
|
| 4821 |
+
"washington",
|
| 4822 |
+
"wasnt",
|
| 4823 |
+
"waste",
|
| 4824 |
+
"wasted",
|
| 4825 |
+
"wasting",
|
| 4826 |
+
"watch",
|
| 4827 |
+
"watchable",
|
| 4828 |
+
"watchbr",
|
| 4829 |
+
"watched",
|
| 4830 |
+
"watching",
|
| 4831 |
+
"water",
|
| 4832 |
+
"watson",
|
| 4833 |
+
"wave",
|
| 4834 |
+
"wax",
|
| 4835 |
+
"way",
|
| 4836 |
+
"waybr",
|
| 4837 |
+
"wayne",
|
| 4838 |
+
"weak",
|
| 4839 |
+
"weakest",
|
| 4840 |
+
"weakness",
|
| 4841 |
+
"wealth",
|
| 4842 |
+
"wealthy",
|
| 4843 |
+
"weapon",
|
| 4844 |
+
"wear",
|
| 4845 |
+
"wearing",
|
| 4846 |
+
"weather",
|
| 4847 |
+
"web",
|
| 4848 |
+
"website",
|
| 4849 |
+
"wed",
|
| 4850 |
+
"wedding",
|
| 4851 |
+
"week",
|
| 4852 |
+
"weekend",
|
| 4853 |
+
"weight",
|
| 4854 |
+
"weird",
|
| 4855 |
+
"welcome",
|
| 4856 |
+
"well",
|
| 4857 |
+
"wellbr",
|
| 4858 |
+
"welles",
|
| 4859 |
+
"wellknown",
|
| 4860 |
+
"went",
|
| 4861 |
+
"werent",
|
| 4862 |
+
"werewolf",
|
| 4863 |
+
"wes",
|
| 4864 |
+
"west",
|
| 4865 |
+
"western",
|
| 4866 |
+
"wet",
|
| 4867 |
+
"weve",
|
| 4868 |
+
"whale",
|
| 4869 |
+
"whatever",
|
| 4870 |
+
"whats",
|
| 4871 |
+
"whatsoever",
|
| 4872 |
+
"wheel",
|
| 4873 |
+
"whenever",
|
| 4874 |
+
"whereas",
|
| 4875 |
+
"wheres",
|
| 4876 |
+
"whether",
|
| 4877 |
+
"whilst",
|
| 4878 |
+
"white",
|
| 4879 |
+
"who",
|
| 4880 |
+
"whoever",
|
| 4881 |
+
"whole",
|
| 4882 |
+
"wholly",
|
| 4883 |
+
"whore",
|
| 4884 |
+
"whose",
|
| 4885 |
+
"wicked",
|
| 4886 |
+
"wide",
|
| 4887 |
+
"widely",
|
| 4888 |
+
"widescreen",
|
| 4889 |
+
"widmark",
|
| 4890 |
+
"widow",
|
| 4891 |
+
"wife",
|
| 4892 |
+
"wig",
|
| 4893 |
+
"wild",
|
| 4894 |
+
"wilder",
|
| 4895 |
+
"wildly",
|
| 4896 |
+
"william",
|
| 4897 |
+
"williams",
|
| 4898 |
+
"willie",
|
| 4899 |
+
"willing",
|
| 4900 |
+
"willis",
|
| 4901 |
+
"wilson",
|
| 4902 |
+
"win",
|
| 4903 |
+
"wind",
|
| 4904 |
+
"window",
|
| 4905 |
+
"wine",
|
| 4906 |
+
"wing",
|
| 4907 |
+
"winner",
|
| 4908 |
+
"winning",
|
| 4909 |
+
"winter",
|
| 4910 |
+
"wire",
|
| 4911 |
+
"wisdom",
|
| 4912 |
+
"wise",
|
| 4913 |
+
"wish",
|
| 4914 |
+
"wished",
|
| 4915 |
+
"wishing",
|
| 4916 |
+
"wit",
|
| 4917 |
+
"witch",
|
| 4918 |
+
"withbr",
|
| 4919 |
+
"within",
|
| 4920 |
+
"without",
|
| 4921 |
+
"witness",
|
| 4922 |
+
"witnessed",
|
| 4923 |
+
"witty",
|
| 4924 |
+
"wizard",
|
| 4925 |
+
"wolf",
|
| 4926 |
+
"woman",
|
| 4927 |
+
"womens",
|
| 4928 |
+
"wonder",
|
| 4929 |
+
"wondered",
|
| 4930 |
+
"wonderful",
|
| 4931 |
+
"wonderfully",
|
| 4932 |
+
"wondering",
|
| 4933 |
+
"wong",
|
| 4934 |
+
"wont",
|
| 4935 |
+
"woo",
|
| 4936 |
+
"wood",
|
| 4937 |
+
"wooden",
|
| 4938 |
+
"woody",
|
| 4939 |
+
"word",
|
| 4940 |
+
"wore",
|
| 4941 |
+
"work",
|
| 4942 |
+
"workbr",
|
| 4943 |
+
"worked",
|
| 4944 |
+
"worker",
|
| 4945 |
+
"working",
|
| 4946 |
+
"world",
|
| 4947 |
+
"worldbr",
|
| 4948 |
+
"worn",
|
| 4949 |
+
"worried",
|
| 4950 |
+
"worry",
|
| 4951 |
+
"worse",
|
| 4952 |
+
"worst",
|
| 4953 |
+
"worth",
|
| 4954 |
+
"worthless",
|
| 4955 |
+
"worthwhile",
|
| 4956 |
+
"worthy",
|
| 4957 |
+
"would",
|
| 4958 |
+
"wouldbe",
|
| 4959 |
+
"wouldnt",
|
| 4960 |
+
"wouldve",
|
| 4961 |
+
"wound",
|
| 4962 |
+
"wounded",
|
| 4963 |
+
"wow",
|
| 4964 |
+
"wrap",
|
| 4965 |
+
"wrapped",
|
| 4966 |
+
"wreck",
|
| 4967 |
+
"wrestling",
|
| 4968 |
+
"write",
|
| 4969 |
+
"writer",
|
| 4970 |
+
"writerdirector",
|
| 4971 |
+
"writes",
|
| 4972 |
+
"writing",
|
| 4973 |
+
"written",
|
| 4974 |
+
"wrong",
|
| 4975 |
+
"wrongbr",
|
| 4976 |
+
"wrote",
|
| 4977 |
+
"ww",
|
| 4978 |
+
"wwii",
|
| 4979 |
+
"ya",
|
| 4980 |
+
"yard",
|
| 4981 |
+
"yeah",
|
| 4982 |
+
"year",
|
| 4983 |
+
"yearold",
|
| 4984 |
+
"yearsbr",
|
| 4985 |
+
"yell",
|
| 4986 |
+
"yelling",
|
| 4987 |
+
"yellow",
|
| 4988 |
+
"yes",
|
| 4989 |
+
"yesterday",
|
| 4990 |
+
"yet",
|
| 4991 |
+
"york",
|
| 4992 |
+
"youbr",
|
| 4993 |
+
"youd",
|
| 4994 |
+
"youll",
|
| 4995 |
+
"young",
|
| 4996 |
+
"younger",
|
| 4997 |
+
"youre",
|
| 4998 |
+
"youth",
|
| 4999 |
+
"youve",
|
| 5000 |
+
"zero",
|
| 5001 |
+
"zombie",
|
| 5002 |
+
"zone"
|
| 5003 |
+
],
|
| 5004 |
+
"max_features": 5000,
|
| 5005 |
+
"lr_accuracy": 0.8847,
|
| 5006 |
+
"nb_accuracy": 0.852,
|
| 5007 |
+
"training_samples": 40000,
|
| 5008 |
+
"test_samples": 10000,
|
| 5009 |
+
"preprocessing_steps": [
|
| 5010 |
+
"lowercase",
|
| 5011 |
+
"remove_special_chars",
|
| 5012 |
+
"tokenization",
|
| 5013 |
+
"stopword_removal",
|
| 5014 |
+
"lemmatization"
|
| 5015 |
+
]
|
| 5016 |
+
}
|
saved_models/naive_bayes_model.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d65976fbe5f21a55075052bf62de3fb4e5e9d21c4bb8b8e1fd068a8c966698af
|
| 3 |
+
size 160791
|
saved_models/tfidf_vectorizer.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0ed2a0971c34fdaf9405735f42068e7c219cf0c87acc564f1a8da43d928b4fe6
|
| 3 |
+
size 183223
|
sentiment_analysis.py
ADDED
|
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import nltk
|
| 3 |
+
import re
|
| 4 |
+
from nltk.corpus import stopwords
|
| 5 |
+
from nltk.tokenize import word_tokenize
|
| 6 |
+
from nltk.stem import WordNetLemmatizer
|
| 7 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 8 |
+
from sklearn.model_selection import train_test_split
|
| 9 |
+
from sklearn.linear_model import LogisticRegression
|
| 10 |
+
from sklearn.naive_bayes import MultinomialNB
|
| 11 |
+
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
|
| 12 |
+
import matplotlib.pyplot as plt
|
| 13 |
+
import seaborn as sns
|
| 14 |
+
import streamlit as st
|
| 15 |
+
from collections import Counter
|
| 16 |
+
|
| 17 |
+
# Download NLTK resources (run once)
|
| 18 |
+
try:
|
| 19 |
+
nltk.download('punkt')
|
| 20 |
+
nltk.download('stopwords')
|
| 21 |
+
nltk.download('wordnet')
|
| 22 |
+
nltk.download('punkt_tab')
|
| 23 |
+
except Exception as e:
|
| 24 |
+
print(f"Warning: Could not download NLTK data: {e}")
|
| 25 |
+
print("Please run: import nltk; nltk.download('all') in Python console")
|
| 26 |
+
|
| 27 |
+
# 1. Text Preprocessing Function
|
| 28 |
+
def preprocess_text(text):
|
| 29 |
+
# Lowercase
|
| 30 |
+
text = text.lower()
|
| 31 |
+
# Remove special characters and digits
|
| 32 |
+
text = re.sub(r'[^a-zA-Z\s]', '', text)
|
| 33 |
+
# Tokenize
|
| 34 |
+
tokens = word_tokenize(text)
|
| 35 |
+
# Remove stopwords
|
| 36 |
+
stop_words = set(stopwords.words('english'))
|
| 37 |
+
tokens = [word for word in tokens if word not in stop_words]
|
| 38 |
+
# Lemmatize
|
| 39 |
+
lemmatizer = WordNetLemmatizer()
|
| 40 |
+
tokens = [lemmatizer.lemmatize(word) for word in tokens]
|
| 41 |
+
# Join tokens back to string
|
| 42 |
+
return ' '.join(tokens)
|
| 43 |
+
|
| 44 |
+
# 2. Load and Preprocess Dataset
|
| 45 |
+
def load_and_preprocess_data(file_path="IMDB Dataset.csv"):
|
| 46 |
+
try:
|
| 47 |
+
df = pd.read_csv(file_path)
|
| 48 |
+
except FileNotFoundError:
|
| 49 |
+
print(f"Error: Could not find file '{file_path}'")
|
| 50 |
+
print("Please make sure the CSV file is in the same directory as this script.")
|
| 51 |
+
return None
|
| 52 |
+
# Apply preprocessing to reviews
|
| 53 |
+
df['cleaned_review'] = df['review'].apply(preprocess_text)
|
| 54 |
+
# Convert sentiment to binary (1 for positive, 0 for negative)
|
| 55 |
+
df['sentiment'] = df['sentiment'].replace({'positive': 1, 'negative': 0})
|
| 56 |
+
return df
|
| 57 |
+
|
| 58 |
+
# 3. Train and Evaluate Models
|
| 59 |
+
def train_and_evaluate(df):
|
| 60 |
+
# Convert text to TF-IDF features
|
| 61 |
+
vectorizer = TfidfVectorizer(max_features=5000)
|
| 62 |
+
X = vectorizer.fit_transform(df['cleaned_review'])
|
| 63 |
+
y = df['sentiment']
|
| 64 |
+
|
| 65 |
+
# Split data
|
| 66 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
| 67 |
+
|
| 68 |
+
# Logistic Regression
|
| 69 |
+
lr_model = LogisticRegression(max_iter=1000)
|
| 70 |
+
lr_model.fit(X_train, y_train)
|
| 71 |
+
lr_predictions = lr_model.predict(X_test)
|
| 72 |
+
lr_accuracy = accuracy_score(y_test, lr_predictions)
|
| 73 |
+
print("Logistic Regression Accuracy:", lr_accuracy)
|
| 74 |
+
print("Logistic Regression Classification Report:\n", classification_report(y_test, lr_predictions))
|
| 75 |
+
|
| 76 |
+
# Naive Bayes
|
| 77 |
+
nb_model = MultinomialNB()
|
| 78 |
+
nb_model.fit(X_train, y_train)
|
| 79 |
+
nb_predictions = nb_model.predict(X_test)
|
| 80 |
+
nb_accuracy = accuracy_score(y_test, nb_predictions)
|
| 81 |
+
print("Naive Bayes Accuracy:", nb_accuracy)
|
| 82 |
+
print("Naive Bayes Classification Report:\n", classification_report(y_test, nb_predictions))
|
| 83 |
+
|
| 84 |
+
return vectorizer, lr_model, nb_model, X_test, y_test
|
| 85 |
+
|
| 86 |
+
# 4. Visualize Frequent Words
|
| 87 |
+
def visualize_frequent_words(df):
|
| 88 |
+
# Separate positive and negative reviews
|
| 89 |
+
positive_reviews = df[df['sentiment'] == 1]['cleaned_review']
|
| 90 |
+
negative_reviews = df[df['sentiment'] == 0]['cleaned_review']
|
| 91 |
+
|
| 92 |
+
# Count words
|
| 93 |
+
positive_words = ' '.join(positive_reviews).split()
|
| 94 |
+
negative_words = ' '.join(negative_reviews).split()
|
| 95 |
+
|
| 96 |
+
# Get top 10 words
|
| 97 |
+
positive_freq = Counter(positive_words).most_common(10)
|
| 98 |
+
negative_freq = Counter(negative_words).most_common(10)
|
| 99 |
+
|
| 100 |
+
# Plot
|
| 101 |
+
plt.figure(figsize=(12, 5))
|
| 102 |
+
|
| 103 |
+
plt.subplot(1, 2, 1)
|
| 104 |
+
sns.barplot(x=[count for word, count in positive_freq], y=[word for word, count in positive_freq])
|
| 105 |
+
plt.title('Top 10 Positive Words')
|
| 106 |
+
|
| 107 |
+
plt.subplot(1, 2, 2)
|
| 108 |
+
sns.barplot(x=[count for word, count in negative_freq], y=[word for word, count in negative_freq])
|
| 109 |
+
plt.title('Top 10 Negative Words')
|
| 110 |
+
|
| 111 |
+
plt.tight_layout()
|
| 112 |
+
plt.savefig('word_frequency.png')
|
| 113 |
+
plt.close()
|
| 114 |
+
|
| 115 |
+
# 5. Streamlit App for Model Deployment
|
| 116 |
+
def run_streamlit_app(vectorizer, lr_model, nb_model):
|
| 117 |
+
st.title("IMDb Review Sentiment Analysis")
|
| 118 |
+
st.write("Enter a movie review to predict its sentiment (positive or negative).")
|
| 119 |
+
|
| 120 |
+
# Text input
|
| 121 |
+
user_input = st.text_area("Enter your review:", "")
|
| 122 |
+
|
| 123 |
+
if st.button("Predict Sentiment"):
|
| 124 |
+
if user_input:
|
| 125 |
+
# Preprocess input
|
| 126 |
+
cleaned_input = preprocess_text(user_input)
|
| 127 |
+
input_vector = vectorizer.transform([cleaned_input])
|
| 128 |
+
|
| 129 |
+
# Predict with both models
|
| 130 |
+
lr_prediction = lr_model.predict(input_vector)[0]
|
| 131 |
+
lr_prob = lr_model.predict_proba(input_vector)[0]
|
| 132 |
+
nb_prediction = nb_model.predict(input_vector)[0]
|
| 133 |
+
nb_prob = nb_model.predict_proba(input_vector)[0]
|
| 134 |
+
|
| 135 |
+
# Display results
|
| 136 |
+
st.write("### Logistic Regression Prediction")
|
| 137 |
+
st.write(f"Sentiment: {'Positive' if lr_prediction == 1 else 'Negative'}")
|
| 138 |
+
st.write(f"Confidence: {max(lr_prob):.2f}")
|
| 139 |
+
|
| 140 |
+
st.write("### Naive Bayes Prediction")
|
| 141 |
+
st.write(f"Sentiment: {'Positive' if nb_prediction == 1 else 'Negative'}")
|
| 142 |
+
st.write(f"Confidence: {max(nb_prob):.2f}")
|
| 143 |
+
else:
|
| 144 |
+
st.write("Please enter a review.")
|
| 145 |
+
|
| 146 |
+
# Main execution
|
| 147 |
+
if __name__ == "__main__":
|
| 148 |
+
file_path = "IMDB Dataset.csv"
|
| 149 |
+
df = load_and_preprocess_data(file_path)
|
| 150 |
+
|
| 151 |
+
if df is not None:
|
| 152 |
+
# Train and evaluate models
|
| 153 |
+
vectorizer, lr_model, nb_model, X_test, y_test = train_and_evaluate(df)
|
| 154 |
+
|
| 155 |
+
# Visualize frequent words
|
| 156 |
+
visualize_frequent_words(df)
|
| 157 |
+
|
| 158 |
+
# Run Streamlit app
|
| 159 |
+
run_streamlit_app(vectorizer, lr_model, nb_model)
|
| 160 |
+
else:
|
| 161 |
+
print("Exiting due to data loading error.")
|
streamlit_app.py
ADDED
|
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import nltk
|
| 3 |
+
import re
|
| 4 |
+
from nltk.corpus import stopwords
|
| 5 |
+
from nltk.tokenize import word_tokenize
|
| 6 |
+
from nltk.stem import WordNetLemmatizer
|
| 7 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 8 |
+
from sklearn.model_selection import train_test_split
|
| 9 |
+
from sklearn.linear_model import LogisticRegression
|
| 10 |
+
from sklearn.naive_bayes import MultinomialNB
|
| 11 |
+
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
|
| 12 |
+
import matplotlib.pyplot as plt
|
| 13 |
+
import seaborn as sns
|
| 14 |
+
import streamlit as st
|
| 15 |
+
from collections import Counter
|
| 16 |
+
import pickle
|
| 17 |
+
import os
|
| 18 |
+
|
| 19 |
+
# Download NLTK resources
|
| 20 |
+
try:
|
| 21 |
+
nltk.download('punkt')
|
| 22 |
+
nltk.download('stopwords')
|
| 23 |
+
nltk.download('wordnet')
|
| 24 |
+
nltk.download('punkt_tab')
|
| 25 |
+
except Exception as e:
|
| 26 |
+
st.error(f"Could not download NLTK data: {e}")
|
| 27 |
+
|
| 28 |
+
# Text Preprocessing Function
|
| 29 |
+
def preprocess_text(text):
|
| 30 |
+
# Lowercase
|
| 31 |
+
text = text.lower()
|
| 32 |
+
# Remove special characters and digits
|
| 33 |
+
text = re.sub(r'[^a-zA-Z\s]', '', text)
|
| 34 |
+
# Tokenize
|
| 35 |
+
tokens = word_tokenize(text)
|
| 36 |
+
# Remove stopwords
|
| 37 |
+
stop_words = set(stopwords.words('english'))
|
| 38 |
+
tokens = [word for word in tokens if word not in stop_words]
|
| 39 |
+
# Lemmatize
|
| 40 |
+
lemmatizer = WordNetLemmatizer()
|
| 41 |
+
tokens = [lemmatizer.lemmatize(word) for word in tokens]
|
| 42 |
+
# Join tokens back to string
|
| 43 |
+
return ' '.join(tokens)
|
| 44 |
+
|
| 45 |
+
# Load and Preprocess Dataset
|
| 46 |
+
def load_and_preprocess_data(file_path="IMDB Dataset.csv"):
|
| 47 |
+
try:
|
| 48 |
+
df = pd.read_csv(file_path)
|
| 49 |
+
# Apply preprocessing to reviews
|
| 50 |
+
df['cleaned_review'] = df['review'].apply(preprocess_text)
|
| 51 |
+
# Convert sentiment to binary (1 for positive, 0 for negative)
|
| 52 |
+
df['sentiment'] = df['sentiment'].replace({'positive': 1, 'negative': 0})
|
| 53 |
+
return df
|
| 54 |
+
except FileNotFoundError:
|
| 55 |
+
st.error(f"Could not find file '{file_path}'")
|
| 56 |
+
return None
|
| 57 |
+
|
| 58 |
+
# Train Models
|
| 59 |
+
def train_models(df):
|
| 60 |
+
# Convert text to TF-IDF features
|
| 61 |
+
vectorizer = TfidfVectorizer(max_features=5000)
|
| 62 |
+
X = vectorizer.fit_transform(df['cleaned_review'])
|
| 63 |
+
y = df['sentiment']
|
| 64 |
+
|
| 65 |
+
# Split data
|
| 66 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
| 67 |
+
|
| 68 |
+
# Logistic Regression
|
| 69 |
+
lr_model = LogisticRegression(max_iter=1000)
|
| 70 |
+
lr_model.fit(X_train, y_train)
|
| 71 |
+
lr_predictions = lr_model.predict(X_test)
|
| 72 |
+
lr_accuracy = accuracy_score(y_test, lr_predictions)
|
| 73 |
+
|
| 74 |
+
# Naive Bayes
|
| 75 |
+
nb_model = MultinomialNB()
|
| 76 |
+
nb_model.fit(X_train, y_train)
|
| 77 |
+
nb_predictions = nb_model.predict(X_test)
|
| 78 |
+
nb_accuracy = accuracy_score(y_test, nb_predictions)
|
| 79 |
+
|
| 80 |
+
return vectorizer, lr_model, nb_model, lr_accuracy, nb_accuracy
|
| 81 |
+
|
| 82 |
+
# Streamlit App
|
| 83 |
+
def main():
|
| 84 |
+
st.title("IMDb Review Sentiment Analysis")
|
| 85 |
+
st.write("This app analyzes movie reviews to predict whether they are positive or negative.")
|
| 86 |
+
|
| 87 |
+
# Load data and train models
|
| 88 |
+
with st.spinner("Loading data and training models..."):
|
| 89 |
+
df = load_and_preprocess_data()
|
| 90 |
+
if df is not None:
|
| 91 |
+
vectorizer, lr_model, nb_model, lr_accuracy, nb_accuracy = train_models(df)
|
| 92 |
+
st.success("Models trained successfully!")
|
| 93 |
+
|
| 94 |
+
# Display model accuracies
|
| 95 |
+
col1, col2 = st.columns(2)
|
| 96 |
+
with col1:
|
| 97 |
+
st.metric("Logistic Regression Accuracy", f"{lr_accuracy:.2%}")
|
| 98 |
+
with col2:
|
| 99 |
+
st.metric("Naive Bayes Accuracy", f"{nb_accuracy:.2%}")
|
| 100 |
+
|
| 101 |
+
# Text input for prediction
|
| 102 |
+
st.subheader("Predict Sentiment")
|
| 103 |
+
user_input = st.text_area("Enter a movie review:", height=150)
|
| 104 |
+
|
| 105 |
+
if st.button("Predict Sentiment"):
|
| 106 |
+
if user_input:
|
| 107 |
+
# Preprocess input
|
| 108 |
+
cleaned_input = preprocess_text(user_input)
|
| 109 |
+
input_vector = vectorizer.transform([cleaned_input])
|
| 110 |
+
|
| 111 |
+
# Predict with both models
|
| 112 |
+
lr_prediction = lr_model.predict(input_vector)[0]
|
| 113 |
+
lr_prob = lr_model.predict_proba(input_vector)[0]
|
| 114 |
+
nb_prediction = nb_model.predict(input_vector)[0]
|
| 115 |
+
nb_prob = nb_model.predict_proba(input_vector)[0]
|
| 116 |
+
|
| 117 |
+
# Display results
|
| 118 |
+
col1, col2 = st.columns(2)
|
| 119 |
+
|
| 120 |
+
with col1:
|
| 121 |
+
st.subheader("Logistic Regression")
|
| 122 |
+
if lr_prediction == 1:
|
| 123 |
+
st.success("Positive Sentiment")
|
| 124 |
+
else:
|
| 125 |
+
st.error("Negative Sentiment")
|
| 126 |
+
st.write(f"Confidence: {max(lr_prob):.2%}")
|
| 127 |
+
|
| 128 |
+
with col2:
|
| 129 |
+
st.subheader("Naive Bayes")
|
| 130 |
+
if nb_prediction == 1:
|
| 131 |
+
st.success("Positive Sentiment")
|
| 132 |
+
else:
|
| 133 |
+
st.error("Negative Sentiment")
|
| 134 |
+
st.write(f"Confidence: {max(nb_prob):.2%}")
|
| 135 |
+
else:
|
| 136 |
+
st.warning("Please enter a review.")
|
| 137 |
+
else:
|
| 138 |
+
st.error("Failed to load data. Please check if 'IMDB Dataset.csv' is in the same directory.")
|
| 139 |
+
|
| 140 |
+
if __name__ == "__main__":
|
| 141 |
+
main()
|
train_and_save_model.py
ADDED
|
@@ -0,0 +1,316 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import nltk
|
| 3 |
+
import re
|
| 4 |
+
import pickle
|
| 5 |
+
import joblib
|
| 6 |
+
import json
|
| 7 |
+
from nltk.corpus import stopwords
|
| 8 |
+
from nltk.tokenize import word_tokenize
|
| 9 |
+
from nltk.stem import WordNetLemmatizer
|
| 10 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 11 |
+
from sklearn.model_selection import train_test_split
|
| 12 |
+
from sklearn.linear_model import LogisticRegression
|
| 13 |
+
from sklearn.naive_bayes import MultinomialNB
|
| 14 |
+
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
|
| 15 |
+
import matplotlib.pyplot as plt
|
| 16 |
+
import seaborn as sns
|
| 17 |
+
from collections import Counter
|
| 18 |
+
import os
|
| 19 |
+
|
| 20 |
+
# Download NLTK resources
|
| 21 |
+
try:
|
| 22 |
+
nltk.download('punkt')
|
| 23 |
+
nltk.download('stopwords')
|
| 24 |
+
nltk.download('wordnet')
|
| 25 |
+
nltk.download('punkt_tab')
|
| 26 |
+
except Exception as e:
|
| 27 |
+
print(f"Warning: Could not download NLTK data: {e}")
|
| 28 |
+
|
| 29 |
+
# Text Preprocessing Function
|
| 30 |
+
def preprocess_text(text):
|
| 31 |
+
# Lowercase
|
| 32 |
+
text = text.lower()
|
| 33 |
+
# Remove special characters and digits
|
| 34 |
+
text = re.sub(r'[^a-zA-Z\s]', '', text)
|
| 35 |
+
# Tokenize
|
| 36 |
+
tokens = word_tokenize(text)
|
| 37 |
+
# Remove stopwords
|
| 38 |
+
stop_words = set(stopwords.words('english'))
|
| 39 |
+
tokens = [word for word in tokens if word not in stop_words]
|
| 40 |
+
# Lemmatize
|
| 41 |
+
lemmatizer = WordNetLemmatizer()
|
| 42 |
+
tokens = [lemmatizer.lemmatize(word) for word in tokens]
|
| 43 |
+
# Join tokens back to string
|
| 44 |
+
return ' '.join(tokens)
|
| 45 |
+
|
| 46 |
+
# Load and Preprocess Dataset
|
| 47 |
+
def load_and_preprocess_data(file_path="IMDB Dataset.csv"):
|
| 48 |
+
try:
|
| 49 |
+
df = pd.read_csv(file_path)
|
| 50 |
+
print(f"Loaded {len(df)} reviews")
|
| 51 |
+
# Apply preprocessing to reviews
|
| 52 |
+
print("Preprocessing reviews...")
|
| 53 |
+
df['cleaned_review'] = df['review'].apply(preprocess_text)
|
| 54 |
+
# Convert sentiment to binary (1 for positive, 0 for negative)
|
| 55 |
+
df['sentiment'] = df['sentiment'].replace({'positive': 1, 'negative': 0})
|
| 56 |
+
return df
|
| 57 |
+
except FileNotFoundError:
|
| 58 |
+
print(f"Error: Could not find file '{file_path}'")
|
| 59 |
+
return None
|
| 60 |
+
|
| 61 |
+
# Train Models and Save
|
| 62 |
+
def train_and_save_models(df, model_dir="saved_models"):
|
| 63 |
+
# Create model directory
|
| 64 |
+
os.makedirs(model_dir, exist_ok=True)
|
| 65 |
+
|
| 66 |
+
# Convert text to TF-IDF features
|
| 67 |
+
print("Vectorizing text data...")
|
| 68 |
+
vectorizer = TfidfVectorizer(max_features=5000)
|
| 69 |
+
X = vectorizer.fit_transform(df['cleaned_review'])
|
| 70 |
+
y = df['sentiment']
|
| 71 |
+
|
| 72 |
+
# Split data
|
| 73 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
| 74 |
+
|
| 75 |
+
# Train Logistic Regression
|
| 76 |
+
print("Training Logistic Regression...")
|
| 77 |
+
lr_model = LogisticRegression(max_iter=1000, random_state=42)
|
| 78 |
+
lr_model.fit(X_train, y_train)
|
| 79 |
+
lr_predictions = lr_model.predict(X_test)
|
| 80 |
+
lr_accuracy = accuracy_score(y_test, lr_predictions)
|
| 81 |
+
|
| 82 |
+
# Train Naive Bayes
|
| 83 |
+
print("Training Naive Bayes...")
|
| 84 |
+
nb_model = MultinomialNB()
|
| 85 |
+
nb_model.fit(X_train, y_train)
|
| 86 |
+
nb_predictions = nb_model.predict(X_test)
|
| 87 |
+
nb_accuracy = accuracy_score(y_test, nb_predictions)
|
| 88 |
+
|
| 89 |
+
# Save models
|
| 90 |
+
print("Saving models...")
|
| 91 |
+
|
| 92 |
+
# Save vectorizer
|
| 93 |
+
joblib.dump(vectorizer, os.path.join(model_dir, 'tfidf_vectorizer.pkl'))
|
| 94 |
+
|
| 95 |
+
# Save Logistic Regression model
|
| 96 |
+
joblib.dump(lr_model, os.path.join(model_dir, 'logistic_regression_model.pkl'))
|
| 97 |
+
|
| 98 |
+
# Save Naive Bayes model
|
| 99 |
+
joblib.dump(nb_model, os.path.join(model_dir, 'naive_bayes_model.pkl'))
|
| 100 |
+
|
| 101 |
+
# Save model metadata
|
| 102 |
+
metadata = {
|
| 103 |
+
'vectorizer_features': vectorizer.get_feature_names_out().tolist(),
|
| 104 |
+
'max_features': 5000,
|
| 105 |
+
'lr_accuracy': float(lr_accuracy),
|
| 106 |
+
'nb_accuracy': float(nb_accuracy),
|
| 107 |
+
'training_samples': X_train.shape[0],
|
| 108 |
+
'test_samples': X_test.shape[0],
|
| 109 |
+
'preprocessing_steps': [
|
| 110 |
+
'lowercase',
|
| 111 |
+
'remove_special_chars',
|
| 112 |
+
'tokenization',
|
| 113 |
+
'stopword_removal',
|
| 114 |
+
'lemmatization'
|
| 115 |
+
]
|
| 116 |
+
}
|
| 117 |
+
|
| 118 |
+
with open(os.path.join(model_dir, 'model_metadata.json'), 'w') as f:
|
| 119 |
+
json.dump(metadata, f, indent=2)
|
| 120 |
+
|
| 121 |
+
# Print results
|
| 122 |
+
print("\n" + "="*50)
|
| 123 |
+
print("MODEL TRAINING RESULTS")
|
| 124 |
+
print("="*50)
|
| 125 |
+
print(f"Logistic Regression Accuracy: {lr_accuracy:.4f}")
|
| 126 |
+
print(f"Naive Bayes Accuracy: {nb_accuracy:.4f}")
|
| 127 |
+
print(f"Models saved to: {model_dir}/")
|
| 128 |
+
print("="*50)
|
| 129 |
+
|
| 130 |
+
return vectorizer, lr_model, nb_model, lr_accuracy, nb_accuracy
|
| 131 |
+
|
| 132 |
+
# Create inference script
|
| 133 |
+
def create_inference_script():
|
| 134 |
+
inference_code = '''import joblib
|
| 135 |
+
import json
|
| 136 |
+
import re
|
| 137 |
+
import nltk
|
| 138 |
+
from nltk.corpus import stopwords
|
| 139 |
+
from nltk.tokenize import word_tokenize
|
| 140 |
+
from nltk.stem import WordNetLemmatizer
|
| 141 |
+
|
| 142 |
+
# Download NLTK resources
|
| 143 |
+
try:
|
| 144 |
+
nltk.download('punkt')
|
| 145 |
+
nltk.download('stopwords')
|
| 146 |
+
nltk.download('wordnet')
|
| 147 |
+
except:
|
| 148 |
+
pass
|
| 149 |
+
|
| 150 |
+
class SentimentAnalyzer:
|
| 151 |
+
def __init__(self, model_dir="saved_models"):
|
| 152 |
+
# Load models
|
| 153 |
+
self.vectorizer = joblib.load(f"{model_dir}/tfidf_vectorizer.pkl")
|
| 154 |
+
self.lr_model = joblib.load(f"{model_dir}/logistic_regression_model.pkl")
|
| 155 |
+
self.nb_model = joblib.load(f"{model_dir}/naive_bayes_model.pkl")
|
| 156 |
+
|
| 157 |
+
# Load metadata
|
| 158 |
+
with open(f"{model_dir}/model_metadata.json", 'r') as f:
|
| 159 |
+
self.metadata = json.load(f)
|
| 160 |
+
|
| 161 |
+
def preprocess_text(self, text):
|
| 162 |
+
# Lowercase
|
| 163 |
+
text = text.lower()
|
| 164 |
+
# Remove special characters and digits
|
| 165 |
+
text = re.sub(r'[^a-zA-Z\\s]', '', text)
|
| 166 |
+
# Tokenize
|
| 167 |
+
tokens = word_tokenize(text)
|
| 168 |
+
# Remove stopwords
|
| 169 |
+
stop_words = set(stopwords.words('english'))
|
| 170 |
+
tokens = [word for word in tokens if word not in stop_words]
|
| 171 |
+
# Lemmatize
|
| 172 |
+
lemmatizer = WordNetLemmatizer()
|
| 173 |
+
tokens = [lemmatizer.lemmatize(word) for word in tokens]
|
| 174 |
+
# Join tokens back to string
|
| 175 |
+
return ' '.join(tokens)
|
| 176 |
+
|
| 177 |
+
def predict(self, text, model_type='both'):
|
| 178 |
+
# Preprocess text
|
| 179 |
+
cleaned_text = self.preprocess_text(text)
|
| 180 |
+
|
| 181 |
+
# Vectorize
|
| 182 |
+
text_vector = self.vectorizer.transform([cleaned_text])
|
| 183 |
+
|
| 184 |
+
results = {}
|
| 185 |
+
|
| 186 |
+
if model_type in ['lr', 'both']:
|
| 187 |
+
lr_pred = self.lr_model.predict(text_vector)[0]
|
| 188 |
+
lr_prob = self.lr_model.predict_proba(text_vector)[0]
|
| 189 |
+
results['logistic_regression'] = {
|
| 190 |
+
'prediction': 'positive' if lr_pred == 1 else 'negative',
|
| 191 |
+
'confidence': float(max(lr_prob)),
|
| 192 |
+
'probabilities': {
|
| 193 |
+
'negative': float(lr_prob[0]),
|
| 194 |
+
'positive': float(lr_prob[1])
|
| 195 |
+
}
|
| 196 |
+
}
|
| 197 |
+
|
| 198 |
+
if model_type in ['nb', 'both']:
|
| 199 |
+
nb_pred = self.nb_model.predict(text_vector)[0]
|
| 200 |
+
nb_prob = self.nb_model.predict_proba(text_vector)[0]
|
| 201 |
+
results['naive_bayes'] = {
|
| 202 |
+
'prediction': 'positive' if nb_pred == 1 else 'negative',
|
| 203 |
+
'confidence': float(max(nb_prob)),
|
| 204 |
+
'probabilities': {
|
| 205 |
+
'negative': float(nb_prob[0]),
|
| 206 |
+
'positive': float(nb_prob[1])
|
| 207 |
+
}
|
| 208 |
+
}
|
| 209 |
+
|
| 210 |
+
return results
|
| 211 |
+
|
| 212 |
+
# Example usage
|
| 213 |
+
if __name__ == "__main__":
|
| 214 |
+
analyzer = SentimentAnalyzer()
|
| 215 |
+
|
| 216 |
+
# Test with sample reviews
|
| 217 |
+
test_reviews = [
|
| 218 |
+
"This movie was absolutely fantastic! I loved every minute of it.",
|
| 219 |
+
"Terrible film, waste of time. Don't watch it.",
|
| 220 |
+
"It was okay, nothing special but not bad either."
|
| 221 |
+
]
|
| 222 |
+
|
| 223 |
+
for review in test_reviews:
|
| 224 |
+
print(f"\\nReview: {review}")
|
| 225 |
+
results = analyzer.predict(review)
|
| 226 |
+
for model, result in results.items():
|
| 227 |
+
print(f"{model}: {result['prediction']} (confidence: {result['confidence']:.2f})")
|
| 228 |
+
'''
|
| 229 |
+
|
| 230 |
+
with open('inference.py', 'w') as f:
|
| 231 |
+
f.write(inference_code)
|
| 232 |
+
|
| 233 |
+
print("Created inference.py for model deployment")
|
| 234 |
+
|
| 235 |
+
# Create requirements.txt
|
| 236 |
+
def create_requirements():
|
| 237 |
+
requirements = '''pandas>=1.3.0
|
| 238 |
+
nltk>=3.6
|
| 239 |
+
scikit-learn>=1.0.0
|
| 240 |
+
joblib>=1.1.0
|
| 241 |
+
numpy>=1.21.0
|
| 242 |
+
streamlit>=1.0.0
|
| 243 |
+
matplotlib>=3.5.0
|
| 244 |
+
seaborn>=0.11.0'''
|
| 245 |
+
|
| 246 |
+
with open('requirements.txt', 'w') as f:
|
| 247 |
+
f.write(requirements)
|
| 248 |
+
|
| 249 |
+
print("Created requirements.txt")
|
| 250 |
+
|
| 251 |
+
# Create README
|
| 252 |
+
def create_readme():
|
| 253 |
+
readme = '''# IMDb Sentiment Analysis Model
|
| 254 |
+
|
| 255 |
+
This repository contains a trained sentiment analysis model for IMDb movie reviews.
|
| 256 |
+
|
| 257 |
+
## Model Performance
|
| 258 |
+
- Logistic Regression: ~88.47% accuracy
|
| 259 |
+
- Naive Bayes: ~85.2% accuracy
|
| 260 |
+
|
| 261 |
+
## Files
|
| 262 |
+
- `saved_models/`: Directory containing trained models
|
| 263 |
+
- `inference.py`: Script for making predictions
|
| 264 |
+
- `train_and_save_model.py`: Script to train and save models
|
| 265 |
+
- `requirements.txt`: Python dependencies
|
| 266 |
+
|
| 267 |
+
## Usage
|
| 268 |
+
|
| 269 |
+
### Load and Use the Model
|
| 270 |
+
```python
|
| 271 |
+
from inference import SentimentAnalyzer
|
| 272 |
+
|
| 273 |
+
# Initialize analyzer
|
| 274 |
+
analyzer = SentimentAnalyzer()
|
| 275 |
+
|
| 276 |
+
# Make prediction
|
| 277 |
+
result = analyzer.predict("This movie was amazing!")
|
| 278 |
+
print(result)
|
| 279 |
+
```
|
| 280 |
+
|
| 281 |
+
### Deploy on Streamlit
|
| 282 |
+
```bash
|
| 283 |
+
streamlit run streamlit_deployment.py
|
| 284 |
+
```
|
| 285 |
+
|
| 286 |
+
## Model Details
|
| 287 |
+
- **Vectorizer**: TF-IDF with 5000 features
|
| 288 |
+
- **Preprocessing**: Lowercase, special char removal, tokenization, stopword removal, lemmatization
|
| 289 |
+
- **Models**: Logistic Regression and Naive Bayes
|
| 290 |
+
'''
|
| 291 |
+
|
| 292 |
+
with open('README.md', 'w') as f:
|
| 293 |
+
f.write(readme)
|
| 294 |
+
|
| 295 |
+
print("Created README.md")
|
| 296 |
+
|
| 297 |
+
if __name__ == "__main__":
|
| 298 |
+
print("Training and saving sentiment analysis models...")
|
| 299 |
+
|
| 300 |
+
# Load data
|
| 301 |
+
df = load_and_preprocess_data()
|
| 302 |
+
|
| 303 |
+
if df is not None:
|
| 304 |
+
# Train and save models
|
| 305 |
+
train_and_save_models(df)
|
| 306 |
+
|
| 307 |
+
# Create deployment files
|
| 308 |
+
create_inference_script()
|
| 309 |
+
create_requirements()
|
| 310 |
+
create_readme()
|
| 311 |
+
|
| 312 |
+
print("\n✅ Model training and saving completed!")
|
| 313 |
+
print("📁 Models saved in 'saved_models/' directory")
|
| 314 |
+
print("🚀 Ready for deployment on Hugging Face, Kaggle, or other platforms")
|
| 315 |
+
else:
|
| 316 |
+
print("❌ Failed to load data. Please check if 'IMDB Dataset.csv' exists.")
|
word_frequency.png
ADDED
|