ppo-LunarLander-v2 / config.json
MNG92's picture
Upload PPO LunarLander-v2 trained agent
bada7e9 verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7eb5ded111b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7eb5ded11240>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7eb5ded112d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7eb5ded11360>", "_build": "<function ActorCriticPolicy._build at 0x7eb5ded113f0>", "forward": "<function ActorCriticPolicy.forward at 0x7eb5ded11480>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7eb5ded11510>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7eb5ded115a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7eb5ded11630>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7eb5ded116c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7eb5ded11750>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7eb5ded117e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7eb5dec96580>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1713461217657601953, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKA7tT6ZTmY/bKuLPg7xyb4HR5I+H8uavAAAAAAAAAAAQEMNPrvzND96Kmc8OzG1vn5ZRD3mHAy+AAAAAAAAAAAAnYS8Ft+7P1LK672S/IE9L/jmvPPQ7r0AAAAAAAAAAACLaz32jB+6V4wDOv2TgjVIdKk7pzcbuQAAAAAAAIA/TcOAPRABmz+2go8+xzjAvolcuzxzHmA9AAAAAAAAAADtosO+kW5jP6vdKz6P6bm+3PMFvvbCTj0AAAAAAAAAANrY9D3bll8/cgwEPivDn75DMgQ+hmOavAAAAAAAAAAAmq1sPI9uOLrmPj23NGndshUmHzoLA1s2AACAPwAAgD+zGxa9tSWuP3P6Or53IJG+YehNvXKGHb4AAAAAAAAAAADIBLz2aGS6DfbPuTPYpLSFyoG7Bg70OAAAgD8AAIA/gOS0vcP1JjekF4687RalPC+kBjvhFIi8AACAPwAAgD9Nt0q9XBpPvMakgL2CFT48OulbPd6TujwAAIA/AACAP5rzDL1sF4m79jG0O4cUBTxOd7y8wyflPAAAgD8AAIA/BuBEPpVChj9yuh4+SYXAvtRo+z3r8BG7AAAAAAAAAAAaTCk9Uk+Uu1AWsr7hTUK+w8nVvAD1MT8AAIA/AAAAAPPTjj20juk+0+QNPZJpZb5yLL88nP4fvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG2gN16mfoSMAWyUTTgBjAF0lEdAkjfcq8UVSHV9lChoBkdAcCOa2nbZe2gHTSMBaAhHQJI4RZV4oql1fZQoaAZHQF6fcSoOx0NoB03oA2gIR0CSOOuGsV+JdX2UKGgGR0Bw4+criEQHaAdNNwFoCEdAkjlmvKU3XXV9lChoBkdAcpGAt4A0bmgHTV4BaAhHQJI5kxASnLt1fZQoaAZHQESWD7qIJqtoB0v7aAhHQJI64ovzvql1fZQoaAZHQHCly2QXAM5oB02dAmgIR0CSO1SThYNidX2UKGgGR0Bw5HohY/3WaAdNsgFoCEdAkjwbdnCfpXV9lChoBkdAb8HhQWN3n2gHTSUBaAhHQJI8iMXJo011fZQoaAZHQHINBew9q1xoB007AWgIR0CSTjhgmZ3LdX2UKGgGR0Bu8Qj4YaYNaAdNLgFoCEdAkk+3aSLZSXV9lChoBkdAcPqq2SdOI2gHTTIBaAhHQJJRov9LpRp1fZQoaAZHQHKiRwMpgCxoB00iAWgIR0CSVBi48U22dX2UKGgGR0BtmAddVvMsaAdNLAFoCEdAklVgWac7Q3V9lChoBkdAcJMBNVR1o2gHTWkBaAhHQJJWEPH1e0J1fZQoaAZHQG8DWm51/2FoB01MAWgIR0CSVlcbzbvgdX2UKGgGR0Bt70rmQr+YaAdNUgFoCEdAklb127nPmnV9lChoBkdAcTllLOAy22gHTS8BaAhHQJJXXCfpUxV1fZQoaAZHQHHSwood+5RoB01jAWgIR0CSWLBMi8nNdX2UKGgGR0BvIgDNhVlxaAdNVwFoCEdAklj+T7l7t3V9lChoBkdAa489V3ljmWgHTSUBaAhHQJJZJrYXfqJ1fZQoaAZHQHB1ZNoJzDJoB03RAWgIR0CSWh9vS+g2dX2UKGgGR0By9fcclw98aAdNPwFoCEdAklq3TiKiwnV9lChoBkdAcZNtZV4oqmgHTW8BaAhHQJJa7L/0dzZ1fZQoaAZHQHHs1ndweeZoB01YAWgIR0CSXGfWcz68dX2UKGgGR0AwREaESM99aAdL7WgIR0CSXhQ3PzFudX2UKGgGR0AiA78Nx2jgaAdL5GgIR0CSXktMwlBydX2UKGgGR0Axzy/bj94vaAdL8mgIR0CSXymTTvy9dX2UKGgGR0BrTsBltj0+aAdNRgFoCEdAkmAZsoDxLHV9lChoBkdAcCA89Oh0yWgHTXkBaAhHQJJgPWOIZZV1fZQoaAZHQHCFXbItDlZoB01DAWgIR0CSYK1Tzd1udX2UKGgGR0BwGF59mYjTaAdNuAFoCEdAkmD5yIYWL3V9lChoBkdAb5NnAZbY9WgHTVoBaAhHQJJh4hQm/nJ1fZQoaAZHQHIJoUJv5xloB002AWgIR0CSYuj94u9OdX2UKGgGR0BwPhDeCTUzaAdNTQFoCEdAkmNo+8oQWnV9lChoBkdAanvP4VRDTmgHTSoBaAhHQJJkmTwDvE11fZQoaAZHQG+hh/iHZbpoB004AWgIR0CSZWe4kNWmdX2UKGgGR0BvPaXOW0JGaAdNeAFoCEdAkmWKgRK6F3V9lChoBkdAcAIOdoWYW2gHTWEBaAhHQJJl0jPfKp11fZQoaAZHQGzP2+GoJiRoB00dAWgIR0CSaAYBeXzEdX2UKGgGR0BxFntQbdadaAdNXgFoCEdAkmhXvx6OYXV9lChoBkdAa74Q0XP7emgHTUYBaAhHQJJpToUzsQd1fZQoaAZHQG+v2k8A7xNoB001AWgIR0CSatM72cridX2UKGgGR0BxQDDBMzuXaAdNTwFoCEdAkmrUP1+RYHV9lChoBkdAbpWZqmCROmgHTToBaAhHQJJrI90Rvm51fZQoaAZHQHFEU7CBPKxoB01XAWgIR0CSbKvi97F9dX2UKGgGR0Av/RqoIfKZaAdLzWgIR0CSbMZzPrv9dX2UKGgGR0BybU80UGmlaAdNXAFoCEdAkm47XDm8unV9lChoBkdAcl+/2TPjXGgHTVYBaAhHQJJvOcVgx8F1fZQoaAZHQHAdHU6PsAxoB01QAWgIR0CSb4qD9OyndX2UKGgGR0BxSoYFaB7NaAdNKwFoCEdAknAkAtFrmHV9lChoBkdAcxmxCpm29mgHTWgBaAhHQJJxjLLZBcB1fZQoaAZHQHI+D3IuGsVoB01FAWgIR0CScY3Hq/ucdX2UKGgGR0Bjuat5le4TaAdN6ANoCEdAknLnai9Iw3V9lChoBkdAbtonLJSzgWgHTRMBaAhHQJJzYVIqbz91fZQoaAZHQHD20VvddmhoB01FAWgIR0CSc+We6I3zdX2UKGgGR0Bu6C5TZQHiaAdNTQFoCEdAkodHnyNGVnV9lChoBkdAcqaMbWEsa2gHTSYBaAhHQJKIdDOTq0N1fZQoaAZHQG7MbqyGBWhoB00vAWgIR0CSiHVYp2ECdX2UKGgGR0BwpPqfOD8MaAdNhgFoCEdAkotjynUDuHV9lChoBkdAcyre2NNrTGgHTTQBaAhHQJKL24QSSNh1fZQoaAZHQHC9s50bLlpoB00XAWgIR0CSjJp1ie/YdX2UKGgGR0Bvv/iJfpljaAdNfwFoCEdAko0EkGA09HV9lChoBkdAcTVv2oNutWgHTXkBaAhHQJKPO9RJmNB1fZQoaAZHQHMbpMURFqloB01ZAWgIR0CSkHmwqy4XdX2UKGgGR0BxZtWaMJhOaAdNJwFoCEdAkpHORHPNV3V9lChoBkdAcKMl1KXfImgHTSUBaAhHQJKTSARTS9d1fZQoaAZHQHGpAGwA2htoB02iAWgIR0CSk4kmhM8HdX2UKGgGR0BxiZ8pkPMCaAdNaQFoCEdAkpPf16E8JXV9lChoBkdAcLlEOy3TeGgHTZ4BaAhHQJKUxknTiKl1fZQoaAZHQHKpMDSw4bVoB02UAWgIR0CSlOIN3GGVdX2UKGgGR0BwqAJOWSlnaAdNUgFoCEdAkpT0Rvm5lXV9lChoBkdAbfwp6yB062gHTQUCaAhHQJKVISbpeNV1fZQoaAZHQFKPGwiaAnVoB03oA2gIR0CSl2AT7EYPdX2UKGgGR0BxRnzFuNxVaAdNMQFoCEdAkpe903fhuXV9lChoBkdAcFEoWYWtVGgHTSgBaAhHQJKXz4tYjjd1fZQoaAZHQG78GkFfReFoB01pAWgIR0CSmPESdvsJdX2UKGgGR0BwVS8ujASGaAdNKQFoCEdAkpyh2GIsRXV9lChoBkdAbhuy+HrQgWgHTd0BaAhHQJKdCx3V0911fZQoaAZHQEHsZ9d/rjZoB0vnaAhHQJKdK/5+H8F1fZQoaAZHQHFpL9AHE/BoB01WAWgIR0CSnTdJ8OTadX2UKGgGR0BynQiILw4LaAdNiQFoCEdAkp30Bfa6BnV9lChoBkdAcFT5LytmtmgHTUoBaAhHQJKfb6Ggzxh1fZQoaAZHQHFbG5MDfWNoB00kAWgIR0CSn3qptJnQdX2UKGgGR0BxpRzJZGKAaAdNIwFoCEdAkp+enhsImnV9lChoBkdAcMp8hLXcxmgHTU8BaAhHQJKf6fqX4TN1fZQoaAZHQG6kQXyiEg5oB01vAWgIR0CSoHhhH9WIdX2UKGgGR0Awd6BRQ79yaAdL72gIR0CSoKkT6BRRdX2UKGgGR0ByYpEx7AtWaAdNZwFoCEdAkqFU/OdGzHV9lChoBkdAbfXun/DLsGgHTcUDaAhHQJKiCQRwqAl1fZQoaAZHQEDxiUgSvkloB00LAWgIR0CSolLh73PBdX2UKGgGR0Bwg/FNtZV5aAdNhAFoCEdAkqTdMsYl6nV9lChoBkdAcK+Ud7v5QGgHTSsBaAhHQJKnED/2kBV1fZQoaAZHQHK68Iu5BkZoB01KAWgIR0CSp8Zv1lGxdX2UKGgGR0Bq6sZNwiqyaAdNNgFoCEdAkqhGHck+o3V9lChoBkdAcPZ76pHZsmgHTVUBaAhHQJKoiiGnGbV1fZQoaAZHQHIlhAnlXBBoB034AWgIR0CSqQxeb/fgdX2UKGgGR0By3pi5NGmUaAdNQwFoCEdAkqp7QgLZz3V9lChoBkdAbx7jkMkQgGgHTU0BaAhHQJKqq76Hj6x1fZQoaAZHQHGU4axX4j9oB00zAWgIR0CSqtmFrVOLdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}