MKgoud commited on
Commit
e120406
·
verified ·
1 Parent(s): f781eeb

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -4
README.md CHANGED
@@ -3,8 +3,8 @@ license: mit
3
  pipeline_tag: object-detection
4
  tags:
5
  - License-Plate-Recognizer
6
- - YOLOv8
7
- - DeepLearning
8
  ---
9
  **License Plate Detection Model using YOLOv8**
10
  =============================================
@@ -32,14 +32,15 @@ The model was trained using the YOLOv8 architecture with the following hyperpara
32
 
33
  **Model Performance**
34
  ---------------------
35
-
36
  The model achieves the following performance metrics on the validation set:
 
37
 
38
  * mAP (mean Average Precision): 0.92
39
  * AP (Average Precision) for license plates: 0.95
40
  * Recall: 0.93
41
  * Precision: 0.94
42
-
43
  **Usage**
44
  -----
45
 
 
3
  pipeline_tag: object-detection
4
  tags:
5
  - License-Plate-Recognizer
6
+ - Yolov8m
7
+ - Object detection
8
  ---
9
  **License Plate Detection Model using YOLOv8**
10
  =============================================
 
32
 
33
  **Model Performance**
34
  ---------------------
35
+ ![confusion_matrix.png](https://cdn-uploads.huggingface.co/production/uploads/6537b44c01281b544234189c/6Wr5WE6dPC_6AisU07hEy.png)
36
  The model achieves the following performance metrics on the validation set:
37
+ ![val_batch1_pred.jpg](https://cdn-uploads.huggingface.co/production/uploads/6537b44c01281b544234189c/V37GbUwKr-CXaNunUOdqc.jpeg)
38
 
39
  * mAP (mean Average Precision): 0.92
40
  * AP (Average Precision) for license plates: 0.95
41
  * Recall: 0.93
42
  * Precision: 0.94
43
+ ![results.png](https://cdn-uploads.huggingface.co/production/uploads/6537b44c01281b544234189c/_dDT5Bp5l4nGoTf8k9kMs.png)
44
  **Usage**
45
  -----
46