Update README.md
Browse files
README.md
CHANGED
@@ -3,8 +3,8 @@ license: mit
|
|
3 |
pipeline_tag: object-detection
|
4 |
tags:
|
5 |
- License-Plate-Recognizer
|
6 |
-
-
|
7 |
-
-
|
8 |
---
|
9 |
**License Plate Detection Model using YOLOv8**
|
10 |
=============================================
|
@@ -32,14 +32,15 @@ The model was trained using the YOLOv8 architecture with the following hyperpara
|
|
32 |
|
33 |
**Model Performance**
|
34 |
---------------------
|
35 |
-
|
36 |
The model achieves the following performance metrics on the validation set:
|
|
|
37 |
|
38 |
* mAP (mean Average Precision): 0.92
|
39 |
* AP (Average Precision) for license plates: 0.95
|
40 |
* Recall: 0.93
|
41 |
* Precision: 0.94
|
42 |
-
|
43 |
**Usage**
|
44 |
-----
|
45 |
|
|
|
3 |
pipeline_tag: object-detection
|
4 |
tags:
|
5 |
- License-Plate-Recognizer
|
6 |
+
- Yolov8m
|
7 |
+
- Object detection
|
8 |
---
|
9 |
**License Plate Detection Model using YOLOv8**
|
10 |
=============================================
|
|
|
32 |
|
33 |
**Model Performance**
|
34 |
---------------------
|
35 |
+
![confusion_matrix.png](https://cdn-uploads.huggingface.co/production/uploads/6537b44c01281b544234189c/6Wr5WE6dPC_6AisU07hEy.png)
|
36 |
The model achieves the following performance metrics on the validation set:
|
37 |
+
![val_batch1_pred.jpg](https://cdn-uploads.huggingface.co/production/uploads/6537b44c01281b544234189c/V37GbUwKr-CXaNunUOdqc.jpeg)
|
38 |
|
39 |
* mAP (mean Average Precision): 0.92
|
40 |
* AP (Average Precision) for license plates: 0.95
|
41 |
* Recall: 0.93
|
42 |
* Precision: 0.94
|
43 |
+
![results.png](https://cdn-uploads.huggingface.co/production/uploads/6537b44c01281b544234189c/_dDT5Bp5l4nGoTf8k9kMs.png)
|
44 |
**Usage**
|
45 |
-----
|
46 |
|