|
import dlib |
|
|
|
|
|
class LandmarksDetector: |
|
def __init__(self, predictor_model_path): |
|
""" |
|
:param predictor_model_path: path to shape_predictor_68_face_landmarks.dat file |
|
""" |
|
self.detector = dlib.get_frontal_face_detector() |
|
self.shape_predictor = dlib.shape_predictor(predictor_model_path) |
|
|
|
def get_landmarks(self, image): |
|
img = dlib.load_rgb_image(image) |
|
dets = self.detector(img, 1) |
|
|
|
for detection in dets: |
|
try: |
|
face_landmarks = [(item.x, item.y) for item in self.shape_predictor(img, detection).parts()] |
|
yield face_landmarks |
|
except: |
|
print("Exception in get_landmarks()!") |
|
|