|
import math |
|
import tensorflow as tf |
|
import numpy as np |
|
import dnnlib.tflib as tflib |
|
from functools import partial |
|
|
|
|
|
def create_stub(name, batch_size): |
|
return tf.constant(0, dtype='float32', shape=(batch_size, 0)) |
|
|
|
|
|
def create_variable_for_generator(name, batch_size, tiled_dlatent, model_scale=18, tile_size = 1): |
|
if tiled_dlatent: |
|
low_dim_dlatent = tf.get_variable('learnable_dlatents', |
|
shape=(batch_size, tile_size, 512), |
|
dtype='float32', |
|
initializer=tf.initializers.random_normal()) |
|
return tf.tile(low_dim_dlatent, [1, model_scale // tile_size, 1]) |
|
else: |
|
return tf.get_variable('learnable_dlatents', |
|
shape=(batch_size, model_scale, 512), |
|
dtype='float32', |
|
initializer=tf.initializers.random_normal()) |
|
|
|
|
|
class Generator: |
|
def __init__(self, model, batch_size, custom_input=None, clipping_threshold=2, tiled_dlatent=False, model_res=1024, randomize_noise=False): |
|
self.batch_size = batch_size |
|
self.tiled_dlatent=tiled_dlatent |
|
self.model_scale = int(2*(math.log(model_res,2)-1)) |
|
|
|
if tiled_dlatent: |
|
self.initial_dlatents = np.zeros((self.batch_size, 512)) |
|
model.components.synthesis.run(np.zeros((self.batch_size, self.model_scale, 512)), |
|
randomize_noise=randomize_noise, minibatch_size=self.batch_size, |
|
custom_inputs=[partial(create_variable_for_generator, batch_size=batch_size, tiled_dlatent=True), |
|
partial(create_stub, batch_size=batch_size)], |
|
structure='fixed') |
|
else: |
|
self.initial_dlatents = np.zeros((self.batch_size, self.model_scale, 512)) |
|
if custom_input is not None: |
|
model.components.synthesis.run(self.initial_dlatents, |
|
randomize_noise=randomize_noise, minibatch_size=self.batch_size, |
|
custom_inputs=[partial(custom_input.eval(), batch_size=batch_size), partial(create_stub, batch_size=batch_size)], |
|
structure='fixed') |
|
else: |
|
model.components.synthesis.run(self.initial_dlatents, |
|
randomize_noise=randomize_noise, minibatch_size=self.batch_size, |
|
custom_inputs=[partial(create_variable_for_generator, batch_size=batch_size, tiled_dlatent=False, model_scale=self.model_scale), |
|
partial(create_stub, batch_size=batch_size)], |
|
structure='fixed') |
|
|
|
self.dlatent_avg_def = model.get_var('dlatent_avg') |
|
self.reset_dlatent_avg() |
|
self.sess = tf.compat.v1.get_default_session() |
|
self.graph = tf.compat.v1.get_default_graph() |
|
|
|
self.dlatent_variable = next(v for v in tf.compat.v1.global_variables() if 'learnable_dlatents' in v.name) |
|
self._assign_dlatent_ph = tf.compat.v1.placeholder(tf.float32, name="assign_dlatent_ph") |
|
self._assign_dlantent = tf.assign(self.dlatent_variable, self._assign_dlatent_ph) |
|
self.set_dlatents(self.initial_dlatents) |
|
|
|
def get_tensor(name): |
|
try: |
|
return self.graph.get_tensor_by_name(name) |
|
except KeyError: |
|
return None |
|
|
|
self.generator_output = get_tensor('G_synthesis_1/_Run/concat:0') |
|
if self.generator_output is None: |
|
self.generator_output = get_tensor('G_synthesis_1/_Run/concat/concat:0') |
|
if self.generator_output is None: |
|
self.generator_output = get_tensor('G_synthesis_1/_Run/concat_1/concat:0') |
|
|
|
if self.generator_output is None: |
|
self.generator_output = get_tensor('G_synthesis/_Run/concat:0') |
|
if self.generator_output is None: |
|
self.generator_output = get_tensor('G_synthesis/_Run/concat/concat:0') |
|
if self.generator_output is None: |
|
self.generator_output = get_tensor('G_synthesis/_Run/concat_1/concat:0') |
|
if self.generator_output is None: |
|
for op in self.graph.get_operations(): |
|
print(op) |
|
raise Exception("Couldn't find G_synthesis_1/_Run/concat tensor output") |
|
self.generated_image = tflib.convert_images_to_uint8(self.generator_output, nchw_to_nhwc=True, uint8_cast=False) |
|
self.generated_image_uint8 = tf.saturate_cast(self.generated_image, tf.uint8) |
|
|
|
|
|
|
|
|
|
clipping_mask = tf.math.logical_or(self.dlatent_variable > clipping_threshold, self.dlatent_variable < -clipping_threshold) |
|
clipped_values = tf.where(clipping_mask, tf.random.normal(shape=self.dlatent_variable.shape), self.dlatent_variable) |
|
self.stochastic_clip_op = tf.assign(self.dlatent_variable, clipped_values) |
|
|
|
def reset_dlatents(self): |
|
self.set_dlatents(self.initial_dlatents) |
|
|
|
def set_dlatents(self, dlatents): |
|
if self.tiled_dlatent: |
|
if (dlatents.shape != (self.batch_size, 512)) and (dlatents.shape[1] != 512): |
|
dlatents = np.mean(dlatents, axis=1) |
|
if (dlatents.shape != (self.batch_size, 512)): |
|
dlatents = np.vstack([dlatents, np.zeros((self.batch_size-dlatents.shape[0], 512))]) |
|
assert (dlatents.shape == (self.batch_size, 512)) |
|
else: |
|
if (dlatents.shape[1] > self.model_scale): |
|
dlatents = dlatents[:,:self.model_scale,:] |
|
if (isinstance(dlatents.shape[0], int)): |
|
if (dlatents.shape != (self.batch_size, self.model_scale, 512)): |
|
dlatents = np.vstack([dlatents, np.zeros((self.batch_size-dlatents.shape[0], self.model_scale, 512))]) |
|
assert (dlatents.shape == (self.batch_size, self.model_scale, 512)) |
|
self.sess.run([self._assign_dlantent], {self._assign_dlatent_ph: dlatents}) |
|
return |
|
else: |
|
self._assign_dlantent = tf.assign(self.dlatent_variable, dlatents) |
|
return |
|
self.sess.run([self._assign_dlantent], {self._assign_dlatent_ph: dlatents}) |
|
|
|
def stochastic_clip_dlatents(self): |
|
self.sess.run(self.stochastic_clip_op) |
|
|
|
def get_dlatents(self): |
|
return self.sess.run(self.dlatent_variable) |
|
|
|
def get_dlatent_avg(self): |
|
return self.dlatent_avg |
|
|
|
def set_dlatent_avg(self, dlatent_avg): |
|
self.dlatent_avg = dlatent_avg |
|
|
|
def reset_dlatent_avg(self): |
|
self.dlatent_avg = self.dlatent_avg_def |
|
|
|
def generate_images(self, dlatents=None): |
|
if dlatents is not None: |
|
self.set_dlatents(dlatents) |
|
return self.sess.run(self.generated_image_uint8) |
|
|