FaceGAN / encode_images.py
MHesho's picture
Added base files
db534ca
raw
history blame
15.3 kB
import os
import argparse
import pickle
from tqdm import tqdm
import PIL.Image
from PIL import ImageFilter
import numpy as np
import dnnlib
import dnnlib.tflib as tflib
import config
from encoder.generator_model import Generator
from encoder.perceptual_model import PerceptualModel, load_images
#from tensorflow.keras.models import load_model
from keras.models import load_model
from keras.applications.resnet50 import preprocess_input
def split_to_batches(l, n):
for i in range(0, len(l), n):
yield l[i:i + n]
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def main():
parser = argparse.ArgumentParser(description='Find latent representation of reference images using perceptual losses', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('src_dir', help='Directory with images for encoding')
parser.add_argument('generated_images_dir', help='Directory for storing generated images')
parser.add_argument('dlatent_dir', help='Directory for storing dlatent representations')
parser.add_argument('--data_dir', default='data', help='Directory for storing optional models')
parser.add_argument('--mask_dir', default='masks', help='Directory for storing optional masks')
parser.add_argument('--load_last', default='', help='Start with embeddings from directory')
parser.add_argument('--dlatent_avg', default='', help='Use dlatent from file specified here for truncation instead of dlatent_avg from Gs')
parser.add_argument('--model_url', default='./data/karras2019stylegan-ffhq-1024x1024.pkl', help='Fetch a StyleGAN model to train on from this URL')
parser.add_argument('--architecture', default='./data/vgg16_zhang_perceptual.pkl', help='Сonvolutional neural network model from this URL')
parser.add_argument('--model_res', default=1024, help='The dimension of images in the StyleGAN model', type=int)
parser.add_argument('--batch_size', default=1, help='Batch size for generator and perceptual model', type=int)
parser.add_argument('--optimizer', default='ggt', help='Optimization algorithm used for optimizing dlatents')
# Perceptual model params
parser.add_argument('--image_size', default=256, help='Size of images for perceptual model', type=int)
parser.add_argument('--resnet_image_size', default=256, help='Size of images for the Resnet model', type=int)
parser.add_argument('--lr', default=0.25, help='Learning rate for perceptual model', type=float)
parser.add_argument('--decay_rate', default=0.9, help='Decay rate for learning rate', type=float)
parser.add_argument('--iterations', default=100, help='Number of optimization steps for each batch', type=int)
parser.add_argument('--decay_steps', default=4, help='Decay steps for learning rate decay (as a percent of iterations)', type=float)
parser.add_argument('--early_stopping', default=True, help='Stop early once training stabilizes', type=str2bool, nargs='?', const=True)
parser.add_argument('--early_stopping_threshold', default=0.5, help='Stop after this threshold has been reached', type=float)
parser.add_argument('--early_stopping_patience', default=10, help='Number of iterations to wait below threshold', type=int)
parser.add_argument('--load_effnet', default='data/finetuned_effnet.h5', help='Model to load for EfficientNet approximation of dlatents')
parser.add_argument('--load_resnet', default='data/finetuned_resnet.h5', help='Model to load for ResNet approximation of dlatents')
parser.add_argument('--use_preprocess_input', default=True, help='Call process_input() first before using feed forward net', type=str2bool, nargs='?', const=True)
parser.add_argument('--use_best_loss', default=True, help='Output the lowest loss value found as the solution', type=str2bool, nargs='?', const=True)
parser.add_argument('--average_best_loss', default=0.25, help='Do a running weighted average with the previous best dlatents found', type=float)
parser.add_argument('--sharpen_input', default=True, help='Sharpen the input images', type=str2bool, nargs='?', const=True)
# Loss function options
parser.add_argument('--use_vgg_loss', default=0.4, help='Use VGG perceptual loss; 0 to disable, > 0 to scale.', type=float)
parser.add_argument('--use_vgg_layer', default=9, help='Pick which VGG layer to use.', type=int)
parser.add_argument('--use_pixel_loss', default=1.5, help='Use logcosh image pixel loss; 0 to disable, > 0 to scale.', type=float)
parser.add_argument('--use_mssim_loss', default=200, help='Use MS-SIM perceptual loss; 0 to disable, > 0 to scale.', type=float)
parser.add_argument('--use_lpips_loss', default=100, help='Use LPIPS perceptual loss; 0 to disable, > 0 to scale.', type=float)
parser.add_argument('--use_l1_penalty', default=0.5, help='Use L1 penalty on latents; 0 to disable, > 0 to scale.', type=float)
parser.add_argument('--use_discriminator_loss', default=0.5, help='Use trained discriminator to evaluate realism.', type=float)
parser.add_argument('--use_adaptive_loss', default=False, help='Use the adaptive robust loss function from Google Research for pixel and VGG feature loss.', type=str2bool, nargs='?', const=True)
# Generator params
parser.add_argument('--randomize_noise', default=False, help='Add noise to dlatents during optimization', type=str2bool, nargs='?', const=True)
parser.add_argument('--tile_dlatents', default=False, help='Tile dlatents to use a single vector at each scale', type=str2bool, nargs='?', const=True)
parser.add_argument('--clipping_threshold', default=2.0, help='Stochastic clipping of gradient values outside of this threshold', type=float)
# Masking params
parser.add_argument('--load_mask', default=False, help='Load segmentation masks', type=str2bool, nargs='?', const=True)
parser.add_argument('--face_mask', default=True, help='Generate a mask for predicting only the face area', type=str2bool, nargs='?', const=True)
parser.add_argument('--use_grabcut', default=True, help='Use grabcut algorithm on the face mask to better segment the foreground', type=str2bool, nargs='?', const=True)
parser.add_argument('--scale_mask', default=1.4, help='Look over a wider section of foreground for grabcut', type=float)
parser.add_argument('--composite_mask', default=True, help='Merge the unmasked area back into the generated image', type=str2bool, nargs='?', const=True)
parser.add_argument('--composite_blur', default=8, help='Size of blur filter to smoothly composite the images', type=int)
# Video params
parser.add_argument('--video_dir', default='videos', help='Directory for storing training videos')
parser.add_argument('--output_video', default=False, help='Generate videos of the optimization process', type=bool)
parser.add_argument('--video_codec', default='MJPG', help='FOURCC-supported video codec name')
parser.add_argument('--video_frame_rate', default=24, help='Video frames per second', type=int)
parser.add_argument('--video_size', default=512, help='Video size in pixels', type=int)
parser.add_argument('--video_skip', default=1, help='Only write every n frames (1 = write every frame)', type=int)
args, other_args = parser.parse_known_args()
args.decay_steps *= 0.01 * args.iterations # Calculate steps as a percent of total iterations
if args.output_video:
import cv2
synthesis_kwargs = dict(output_transform=dict(func=tflib.convert_images_to_uint8, nchw_to_nhwc=False), minibatch_size=args.batch_size)
ref_images = [os.path.join(args.src_dir, x) for x in os.listdir(args.src_dir)]
ref_images = list(filter(os.path.isfile, ref_images))
if len(ref_images) == 0:
raise Exception('%s is empty' % args.src_dir)
os.makedirs(args.data_dir, exist_ok=True)
os.makedirs(args.mask_dir, exist_ok=True)
os.makedirs(args.generated_images_dir, exist_ok=True)
os.makedirs(args.dlatent_dir, exist_ok=True)
os.makedirs(args.video_dir, exist_ok=True)
# Initialize generator and perceptual model
tflib.init_tf()
with dnnlib.util.open_url(args.model_url, cache_dir=config.cache_dir) as f:
generator_network, discriminator_network, Gs_network = pickle.load(f)
generator = Generator(Gs_network, args.batch_size, clipping_threshold=args.clipping_threshold, tiled_dlatent=args.tile_dlatents, model_res=args.model_res, randomize_noise=args.randomize_noise)
if (args.dlatent_avg != ''):
generator.set_dlatent_avg(np.load(args.dlatent_avg))
perc_model = None
if (args.use_lpips_loss > 0.00000001):
with dnnlib.util.open_url(args.architecture, cache_dir=config.cache_dir) as f:
perc_model = pickle.load(f)
perceptual_model = PerceptualModel(args, perc_model=perc_model, batch_size=args.batch_size)
perceptual_model.build_perceptual_model(generator, discriminator_network)
ff_model = None
# Optimize (only) dlatents by minimizing perceptual loss between reference and generated images in feature space
for images_batch in tqdm(split_to_batches(ref_images, args.batch_size), total=len(ref_images)//args.batch_size):
names = [os.path.splitext(os.path.basename(x))[0] for x in images_batch]
if args.output_video:
video_out = {}
for name in names:
video_out[name] = cv2.VideoWriter(os.path.join(args.video_dir, f'{name}.avi'),cv2.VideoWriter_fourcc(*args.video_codec), args.video_frame_rate, (args.video_size,args.video_size))
perceptual_model.set_reference_images(images_batch)
dlatents = None
if (args.load_last != ''): # load previous dlatents for initialization
for name in names:
dl = np.expand_dims(np.load(os.path.join(args.load_last, f'{name}.npy')),axis=0)
if (dlatents is None):
dlatents = dl
else:
dlatents = np.vstack((dlatents,dl))
else:
if (ff_model is None):
if os.path.exists(args.load_resnet):
from keras.applications.resnet50 import preprocess_input
print("Loading ResNet Model:")
ff_model = load_model(args.load_resnet)
if (ff_model is None):
if os.path.exists(args.load_effnet):
import efficientnet
from efficientnet import preprocess_input
print("Loading EfficientNet Model:")
ff_model = load_model(args.load_effnet)
if (ff_model is not None): # predict initial dlatents with ResNet model
if (args.use_preprocess_input):
dlatents = ff_model.predict(preprocess_input(load_images(images_batch,image_size=args.resnet_image_size)))
else:
dlatents = ff_model.predict(load_images(images_batch,image_size=args.resnet_image_size))
if dlatents is not None:
generator.set_dlatents(dlatents)
op = perceptual_model.optimize(generator.dlatent_variable, iterations=args.iterations, use_optimizer=args.optimizer)
pbar = tqdm(op, leave=False, total=args.iterations)
vid_count = 0
best_loss = None
best_dlatent = None
avg_loss_count = 0
if args.early_stopping:
avg_loss = prev_loss = None
for loss_dict in pbar:
if args.early_stopping: # early stopping feature
if prev_loss is not None:
if avg_loss is not None:
avg_loss = 0.5 * avg_loss + (prev_loss - loss_dict["loss"])
if avg_loss < args.early_stopping_threshold: # count while under threshold; else reset
avg_loss_count += 1
else:
avg_loss_count = 0
if avg_loss_count > args.early_stopping_patience: # stop once threshold is reached
print("")
break
else:
avg_loss = prev_loss - loss_dict["loss"]
pbar.set_description(" ".join(names) + ": " + "; ".join(["{} {:.4f}".format(k, v) for k, v in loss_dict.items()]))
if best_loss is None or loss_dict["loss"] < best_loss:
if best_dlatent is None or args.average_best_loss <= 0.00000001:
best_dlatent = generator.get_dlatents()
else:
best_dlatent = 0.25 * best_dlatent + 0.75 * generator.get_dlatents()
if args.use_best_loss:
generator.set_dlatents(best_dlatent)
best_loss = loss_dict["loss"]
if args.output_video and (vid_count % args.video_skip == 0):
batch_frames = generator.generate_images()
for i, name in enumerate(names):
video_frame = PIL.Image.fromarray(batch_frames[i], 'RGB').resize((args.video_size,args.video_size),PIL.Image.LANCZOS)
video_out[name].write(cv2.cvtColor(np.array(video_frame).astype('uint8'), cv2.COLOR_RGB2BGR))
generator.stochastic_clip_dlatents()
prev_loss = loss_dict["loss"]
if not args.use_best_loss:
best_loss = prev_loss
print(" ".join(names), " Loss {:.4f}".format(best_loss))
if args.output_video:
for name in names:
video_out[name].release()
# Generate images from found dlatents and save them
if args.use_best_loss:
generator.set_dlatents(best_dlatent)
generated_images = generator.generate_images()
generated_dlatents = generator.get_dlatents()
for img_array, dlatent, img_path, img_name in zip(generated_images, generated_dlatents, images_batch, names):
mask_img = None
if args.composite_mask and (args.load_mask or args.face_mask):
_, im_name = os.path.split(img_path)
mask_img = os.path.join(args.mask_dir, f'{im_name}')
if args.composite_mask and mask_img is not None and os.path.isfile(mask_img):
orig_img = PIL.Image.open(img_path).convert('RGB')
width, height = orig_img.size
imask = PIL.Image.open(mask_img).convert('L').resize((width, height))
imask = imask.filter(ImageFilter.GaussianBlur(args.composite_blur))
mask = np.array(imask)/255
mask = np.expand_dims(mask,axis=-1)
img_array = mask*np.array(img_array) + (1.0-mask)*np.array(orig_img)
img_array = img_array.astype(np.uint8)
#img_array = np.where(mask, np.array(img_array), orig_img)
img = PIL.Image.fromarray(img_array, 'RGB')
img.save(os.path.join(args.generated_images_dir, f'{img_name}.png'), 'PNG')
np.save(os.path.join(args.dlatent_dir, f'{img_name}.npy'), dlatent)
generator.reset_dlatents()
if __name__ == "__main__":
main()