Model save
Browse files
README.md
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
base_model: MHGanainy/roberta-base-legal-multi
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
- f1
|
10 |
+
- accuracy
|
11 |
+
model-index:
|
12 |
+
- name: roberta-base-legal-multi-downstream-indian-ner
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# roberta-base-legal-multi-downstream-indian-ner
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [MHGanainy/roberta-base-legal-multi](https://huggingface.co/MHGanainy/roberta-base-legal-multi) on an unknown dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.2526
|
24 |
+
- Precision: 0.6406
|
25 |
+
- Recall: 0.8244
|
26 |
+
- F1: 0.7210
|
27 |
+
- Accuracy: 0.9663
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 3e-05
|
47 |
+
- train_batch_size: 64
|
48 |
+
- eval_batch_size: 64
|
49 |
+
- seed: 1
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- num_epochs: 20.0
|
53 |
+
- mixed_precision_training: Native AMP
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
59 |
+
| No log | 1.0 | 172 | 0.2310 | 0.1233 | 0.4904 | 0.1971 | 0.8307 |
|
60 |
+
| No log | 2.0 | 344 | 0.1929 | 0.1983 | 0.5393 | 0.2900 | 0.8765 |
|
61 |
+
| 0.4324 | 3.0 | 516 | 0.1667 | 0.1773 | 0.4897 | 0.2604 | 0.8738 |
|
62 |
+
| 0.4324 | 4.0 | 688 | 0.1836 | 0.2957 | 0.6059 | 0.3975 | 0.9081 |
|
63 |
+
| 0.4324 | 5.0 | 860 | 0.2005 | 0.2855 | 0.5623 | 0.3787 | 0.9137 |
|
64 |
+
| 0.1106 | 6.0 | 1032 | 0.2003 | 0.3858 | 0.6974 | 0.4968 | 0.9323 |
|
65 |
+
| 0.1106 | 7.0 | 1204 | 0.2224 | 0.4182 | 0.6719 | 0.5155 | 0.9428 |
|
66 |
+
| 0.1106 | 8.0 | 1376 | 0.2221 | 0.3347 | 0.6147 | 0.4334 | 0.9312 |
|
67 |
+
| 0.0589 | 9.0 | 1548 | 0.1960 | 0.4067 | 0.7026 | 0.5152 | 0.9404 |
|
68 |
+
| 0.0589 | 10.0 | 1720 | 0.1904 | 0.5049 | 0.7410 | 0.6006 | 0.9524 |
|
69 |
+
| 0.0589 | 11.0 | 1892 | 0.2274 | 0.5337 | 0.7707 | 0.6307 | 0.9565 |
|
70 |
+
| 0.0359 | 12.0 | 2064 | 0.2471 | 0.5525 | 0.7696 | 0.6432 | 0.9575 |
|
71 |
+
| 0.0359 | 13.0 | 2236 | 0.2352 | 0.5649 | 0.7675 | 0.6508 | 0.9591 |
|
72 |
+
| 0.0359 | 14.0 | 2408 | 0.2297 | 0.5530 | 0.7661 | 0.6424 | 0.9586 |
|
73 |
+
| 0.0224 | 15.0 | 2580 | 0.2349 | 0.5702 | 0.7923 | 0.6632 | 0.9597 |
|
74 |
+
| 0.0224 | 16.0 | 2752 | 0.2465 | 0.6033 | 0.8052 | 0.6898 | 0.9624 |
|
75 |
+
| 0.0224 | 17.0 | 2924 | 0.2428 | 0.6100 | 0.8098 | 0.6959 | 0.9647 |
|
76 |
+
| 0.0143 | 18.0 | 3096 | 0.2543 | 0.6238 | 0.8154 | 0.7068 | 0.9646 |
|
77 |
+
| 0.0143 | 19.0 | 3268 | 0.2526 | 0.6305 | 0.8161 | 0.7114 | 0.9651 |
|
78 |
+
| 0.0143 | 20.0 | 3440 | 0.2526 | 0.6406 | 0.8244 | 0.7210 | 0.9663 |
|
79 |
+
|
80 |
+
|
81 |
+
### Framework versions
|
82 |
+
|
83 |
+
- Transformers 4.44.2
|
84 |
+
- Pytorch 2.4.0+cu121
|
85 |
+
- Datasets 2.21.0
|
86 |
+
- Tokenizers 0.19.1
|