ppo-LunarLander-v2 / config.json
MEgooneh's picture
Upload PPO LunarLander-v2 trained agent
38d998e
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b2c08629480>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b2c08629510>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b2c086295a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b2c08629630>", "_build": "<function ActorCriticPolicy._build at 0x7b2c086296c0>", "forward": "<function ActorCriticPolicy.forward at 0x7b2c08629750>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b2c086297e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b2c08629870>", "_predict": "<function ActorCriticPolicy._predict at 0x7b2c08629900>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b2c08629990>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b2c08629a20>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b2c08629ab0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b2c0861e180>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1693760724681119601, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABp3pb2uOZu6kpZKuS8LPbSxq0y6gvNpOAAAgD8AAIA/DSCBPeFIrrrtYQO8D3tBNlDA3zg7FK61AACAPwAAgD9N5QU9Xt4ZP+ZFILrg0Y2+f68Nu05Pir0AAAAAAAAAADPzFz2ue4+6icJKOoCzeDV0+QY7hmdruQAAgD8AAIA/zfz/uxTEr7oOjR48FqDANmdZKLpYQLQ1AACAPwAAgD/NS7+8PUp/ueWTirlzTLqzBG4vu8WYoTgAAIA/AACAP8CDfj7I7VA/uTc6PrC4vL7xe1c+AgL3vQAAAAAAAAAAZqaRuq6dgrrq7Ze3nvknslzi27pAaK02AACAPwAAgD/NAMQ79lg7umZYYDoKYag1DTaHu+Hug7kAAIA/AACAPzMQBj2Piny6IKYpvIP0BTW94CQ7Lqd8tAAAgD8AAIA/ZqwpvXtUgzkQKJK5Zo0ntBK/Cryns7U4AACAPwAAgD8AyLU8j8Iauj4Myzky9Vozaxv4ulINATMAAIA/AACAP2bmBL32JGy6RkCTOpWuSDUenpg5FNiouQAAgD8AAIA/mhALvXvIibqgE2o61HiFOR/te7sb2AS5AACAPwAAgD+AvCW94SCFulmfk7vgclo4C5bMOXeSuDgAAIA/AACAP5o33LwplAG6DjstPDt8M7ZzPqQ7VocwtQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGCj/k3juKKMAWyUTegDjAF0lEdApP/9jTa0yHV9lChoBkdAZeAaxX4j8mgHTegDaAhHQKUIa7L+xW11fZQoaAZHQF9Uxi5NGmVoB03oA2gIR0ClCOZ08vEkdX2UKGgGR0BjBYfSx7iRaAdN6ANoCEdApQ5PcUM5O3V9lChoBkdAZOruXNTtLWgHTegDaAhHQKUTIPS2H+J1fZQoaAZHQGY30Qsf7rNoB03oA2gIR0ClE/JYLb5/dX2UKGgGR0BiIFDIBBAwaAdN6ANoCEdApRT3KwIMSnV9lChoBkdAYdMpc5bQkWgHTegDaAhHQKUV/MQmNR51fZQoaAZHQGApNj0+TvBoB03oA2gIR0ClGv6hYeT3dX2UKGgGR0Bj6vj2i+L4aAdN6ANoCEdApR0Iz+FUQ3V9lChoBkdAY7y7K7qY7mgHTegDaAhHQKUdfozN2Tx1fZQoaAZHQDyPtgKF7D5oB00EAWgIR0ClHjb5VOsUdX2UKGgGR0BX0G4Ajps5aAdN6ANoCEdApR51X5nDi3V9lChoBkdAYx+msvIwNGgHTegDaAhHQKUfYOdXko51fZQoaAZHQGWGCBoVVPxoB03oA2gIR0ClInPC2tuDdX2UKGgGR0Bj5b7qIJqqaAdN6ANoCEdApSPUY2sJY3V9lChoBkdAZr1WCmMwUWgHTegDaAhHQKUwhDm8ujB1fZQoaAZHQGMvJE6T4cpoB03oA2gIR0ClMfnmq5skdX2UKGgGR0AiwbxVhkRSaAdNFQFoCEdApTbOJaaCtnV9lChoBkdANYbMcIZ62WgHS/VoCEdApTgclolD4XV9lChoBkdAZjtH5JsfrGgHTegDaAhHQKU43fwZwXJ1fZQoaAZHQGZj9UKiPABoB03oA2gIR0ClOSZq20AtdX2UKGgGR0BloFfE4vOAaAdN6ANoCEdApTxwDgZTAHV9lChoBkdAZAcUg0TDfmgHTegDaAhHQKU/26xxDLN1fZQoaAZHQGNY90JWvKVoB03oA2gIR0ClQInmRvFWdX2UKGgGR0Bl++GZeAuqaAdN6ANoCEdApUJZBVuJlHV9lChoBkdAYNEX/HYHxGgHTegDaAhHQKVI4u5jH4p1fZQoaAZHQGWV5eqrBCVoB03oA2gIR0ClS7Pd/J/5dX2UKGgGR0BhQuCPIXCTaAdN6ANoCEdApUxYx+KCQXV9lChoBkdAYZ3hfjS5RWgHTegDaAhHQKVNXJhfBvd1fZQoaAZHQGWVhgNPP9loB03oA2gIR0ClTa0VJtiydX2UKGgGR0Bkrn3evZAZaAdN6ANoCEdApU7chFEy+HV9lChoBkdAWd1nCfpUxWgHTegDaAhHQKVTaNBnjAB1fZQoaAZHQCQn/95yEL9oB0vbaAhHQKVTfAxi5NJ1fZQoaAZHQGKQuBUaQ3hoB03oA2gIR0ClXtm2TgVHdX2UKGgGR0BekJ48lolEaAdN6ANoCEdApWVKp3os7XV9lChoBkdARBKGahHskmgHS/loCEdApWY8xREWqXV9lChoBkdAYllsRg7YCmgHTegDaAhHQKVnQ9QGfPJ1fZQoaAZHQGQtKbjLjghoB03oA2gIR0ClaGVMmF8HdX2UKGgGR0BkupfKISDiaAdN6ANoCEdApWjbdcjZ+XV9lChoBkdAYp6k+HJtBWgHTegDaAhHQKVt6ckMTex1fZQoaAZHQGP2BNM495hoB03oA2gIR0ClcfTQ/oq1dX2UKGgGR0BhJpYT0xubaAdN6ANoCEdApXK6TQmeDnV9lChoBkdAZLsgPEsJ6mgHTegDaAhHQKV01LU1AJN1fZQoaAZHQFqyeiSJTERoB03oA2gIR0Clej3vhIe6dX2UKGgGR0BidlRR/EwWaAdN6ANoCEdApXzrK7qY7nV9lChoBkdAYU64yXUpeGgHTegDaAhHQKV9stq59Vp1fZQoaAZHQGGwkfs/pt9oB03oA2gIR0ClffbmlqJudX2UKGgGR0Bg/VVktmL+aAdN6ANoCEdApX8AdIXj2nV9lChoBkdAYe4flp48l2gHTegDaAhHQKWFEWEbo8p1fZQoaAZHQEfZF5OafBhoB0v3aAhHQKWTPG0eEIx1fZQoaAZHQGE1rg4wRGtoB03oA2gIR0Clk3qFAVwhdX2UKGgGR0Bjyc8NhE0BaAdN6ANoCEdApZmmd3B55nV9lChoBkdAY0fCTEBKc2gHTegDaAhHQKWaXOdGy5Z1fZQoaAZHQFsdI3BHkLhoB03oA2gIR0ClmxLhrFfidX2UKGgGR0BiIh0IToMbaAdN6ANoCEdApZvfWxyGSXV9lChoBkdAW9NBkZrHl2gHTegDaAhHQKWcKf7Jnxt1fZQoaAZHQGGR0MXrMTxoB03oA2gIR0Cln1rNwBHTdX2UKGgGR0BiDSMm4RVZaAdN6ANoCEdApaL/h0hePnV9lChoBkdAZs9/smfGuWgHTegDaAhHQKWj/L2YfGN1fZQoaAZHQGPnbfP5YYBoB03oA2gIR0ClprA7xNItdX2UKGgGR0BmT8g8r7O3aAdN6ANoCEdApa37b+Lm63V9lChoBkdAZDIt2cJ+lWgHTegDaAhHQKWwfsQ/X5F1fZQoaAZHQGNLGe18b71oB03oA2gIR0ClsTw4bS7YdX2UKGgGR0BiBvLTx5LRaAdN6ANoCEdApbJ/6InBtXV9lChoBkdAZeMv9tMwlGgHTegDaAhHQKW3wDIzWPN1fZQoaAZHQGMDz8pCrtFoB03oA2gIR0CluhVdgOSXdX2UKGgGR0Bk0J4jbBXTaAdN6ANoCEdApbpFg0CRwXV9lChoBkdAXwAkUsWfsmgHTegDaAhHQKXLjHMEA5t1fZQoaAZHQF2sDWbwz+FoB03oA2gIR0ClzG8YqG1ydX2UKGgGR0BhSi13MY/FaAdN6ANoCEdApc0dHOKO1nV9lChoBkdAYtT56+nIhmgHTegDaAhHQKXN0Vlf7aZ1fZQoaAZHQGIkq7yxzJZoB03oA2gIR0ClzhaFuejEdX2UKGgGR0BJR89W6shgaAdL7GgIR0ClzmXEIgNgdX2UKGgGR0Bj2nf/FR51aAdN6ANoCEdApdDlf5ULlXV9lChoBkdAY1zrHlwLmmgHTegDaAhHQKXT9q6e5Fx1fZQoaAZHQGRs9mYjSohoB03oA2gIR0Cl1Jo1+AmRdX2UKGgGR0Bk68bT+ee4aAdN6ANoCEdApdZMu14PgHV9lChoBkdAYRc7uDzy0GgHTegDaAhHQKXa4M85jpd1fZQoaAZHQGIRV5a/yoZoB03oA2gIR0Cl3TYVZcLSdX2UKGgGR0BbFIYixFAnaAdN6ANoCEdApd3n+l0o0HV9lChoBkdAZSzQ6ZH/cWgHTegDaAhHQKXfCkbgjyF1fZQoaAZHQGH5b5/LDAJoB03oA2gIR0Cl5YWi1y/9dX2UKGgGR0BiaT7/GVAzaAdN6ANoCEdApej54dIXj3V9lChoBkdAaFBh4t6HCWgHTegDaAhHQKX5OdV/+bV1fZQoaAZHQGdSADRtxdZoB03oA2gIR0Cl+ejxTbWVdX2UKGgGR0Biua1G9YfXaAdN6ANoCEdApfqjsOXmeXV9lChoBkdAZLQndfsu4GgHTegDaAhHQKX7X0lJHy51fZQoaAZHQGb5xbr1M/RoB03oA2gIR0Cl+6cqe9SNdX2UKGgGR0BkEKVfNRm9aAdN6ANoCEdApfwFR77bc3V9lChoBkdAYh0QtjCpFWgHTegDaAhHQKX+xHOryUd1fZQoaAZHQGQsnTZxrBVoB03oA2gIR0CmAw4m9g4PdX2UKGgGR0Bi0bm+0w8GaAdN6ANoCEdApgQPC9AX23V9lChoBkdAZE8O+ZgG8mgHTegDaAhHQKYGwwfyPMl1fZQoaAZHQF4xXm/336BoB03oA2gIR0CmDQOGTLW7dX2UKGgGR0BdItEPUaybaAdN6ANoCEdApg95iqhlDnV9lChoBkdAYkxbg0j1PGgHTegDaAhHQKYQNPuXu3N1fZQoaAZHQGR6MrEtNBZoB03oA2gIR0CmEVs5XEIgdX2UKGgGR0Bd0z4+KTB7aAdN6ANoCEdAphYRmK64D3V9lChoBkdAXo24x1xKhGgHTegDaAhHQKYYOUj9n9N1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}