Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- Qwen/Qwen1.5_1.8B_amazon/README.md +72 -0
- Qwen/Qwen1.5_1.8B_amazon/added_tokens.json +5 -0
- Qwen/Qwen1.5_1.8B_amazon/all_results.json +23 -0
- Qwen/Qwen1.5_1.8B_amazon/checkpoint-350/added_tokens.json +5 -0
- Qwen/Qwen1.5_1.8B_amazon/checkpoint-350/config.json +81 -0
- Qwen/Qwen1.5_1.8B_amazon/checkpoint-350/global_step350/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- Qwen/Qwen1.5_1.8B_amazon/checkpoint-350/global_step350/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- Qwen/Qwen1.5_1.8B_amazon/checkpoint-350/global_step350/mp_rank_00_model_states.pt +3 -0
- Qwen/Qwen1.5_1.8B_amazon/checkpoint-350/latest +1 -0
- Qwen/Qwen1.5_1.8B_amazon/checkpoint-350/merges.txt +0 -0
- Qwen/Qwen1.5_1.8B_amazon/checkpoint-350/model.safetensors +3 -0
- Qwen/Qwen1.5_1.8B_amazon/checkpoint-350/rng_state_0.pth +3 -0
- Qwen/Qwen1.5_1.8B_amazon/checkpoint-350/rng_state_1.pth +3 -0
- Qwen/Qwen1.5_1.8B_amazon/checkpoint-350/scheduler.pt +3 -0
- Qwen/Qwen1.5_1.8B_amazon/checkpoint-350/special_tokens_map.json +14 -0
- Qwen/Qwen1.5_1.8B_amazon/checkpoint-350/tokenizer.json +0 -0
- Qwen/Qwen1.5_1.8B_amazon/checkpoint-350/tokenizer_config.json +43 -0
- Qwen/Qwen1.5_1.8B_amazon/checkpoint-350/trainer_state.json +343 -0
- Qwen/Qwen1.5_1.8B_amazon/checkpoint-350/training_args.bin +3 -0
- Qwen/Qwen1.5_1.8B_amazon/checkpoint-350/vocab.json +0 -0
- Qwen/Qwen1.5_1.8B_amazon/checkpoint-350/zero_to_fp32.py +604 -0
- Qwen/Qwen1.5_1.8B_amazon/config.json +81 -0
- Qwen/Qwen1.5_1.8B_amazon/eval_results.json +11 -0
- Qwen/Qwen1.5_1.8B_amazon/merges.txt +0 -0
- Qwen/Qwen1.5_1.8B_amazon/model.safetensors +3 -0
- Qwen/Qwen1.5_1.8B_amazon/run.log +4 -0
- Qwen/Qwen1.5_1.8B_amazon/special_tokens_map.json +14 -0
- Qwen/Qwen1.5_1.8B_amazon/test_results.json +10 -0
- Qwen/Qwen1.5_1.8B_amazon/tokenizer.json +0 -0
- Qwen/Qwen1.5_1.8B_amazon/tokenizer_config.json +43 -0
- Qwen/Qwen1.5_1.8B_amazon/train_results.json +8 -0
- Qwen/Qwen1.5_1.8B_amazon/trainer_state.json +373 -0
- Qwen/Qwen1.5_1.8B_amazon/training_args.bin +3 -0
- Qwen/Qwen1.5_1.8B_amazon/vocab.json +0 -0
- Qwen/Qwen1.5_1.8B_patent/README.md +88 -0
- Qwen/Qwen1.5_1.8B_patent/added_tokens.json +5 -0
- Qwen/Qwen1.5_1.8B_patent/all_results.json +23 -0
- Qwen/Qwen1.5_1.8B_patent/checkpoint-750/added_tokens.json +5 -0
- Qwen/Qwen1.5_1.8B_patent/checkpoint-750/config.json +53 -0
- Qwen/Qwen1.5_1.8B_patent/checkpoint-750/global_step750/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- Qwen/Qwen1.5_1.8B_patent/checkpoint-750/global_step750/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- Qwen/Qwen1.5_1.8B_patent/checkpoint-750/global_step750/mp_rank_00_model_states.pt +3 -0
- Qwen/Qwen1.5_1.8B_patent/checkpoint-750/latest +1 -0
- Qwen/Qwen1.5_1.8B_patent/checkpoint-750/merges.txt +0 -0
- Qwen/Qwen1.5_1.8B_patent/checkpoint-750/pytorch_model.bin +3 -0
- Qwen/Qwen1.5_1.8B_patent/checkpoint-750/rng_state_0.pth +3 -0
- Qwen/Qwen1.5_1.8B_patent/checkpoint-750/rng_state_1.pth +3 -0
- Qwen/Qwen1.5_1.8B_patent/checkpoint-750/scheduler.pt +3 -0
- Qwen/Qwen1.5_1.8B_patent/checkpoint-750/special_tokens_map.json +14 -0
- Qwen/Qwen1.5_1.8B_patent/checkpoint-750/tokenizer.json +0 -0
Qwen/Qwen1.5_1.8B_amazon/README.md
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
base_model: Qwen/Qwen1.5-1.8B
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
model-index:
|
9 |
+
- name: Qwen1.5_1.8B_amazon
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# Qwen1.5_1.8B_amazon
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [Qwen/Qwen1.5-1.8B](https://huggingface.co/Qwen/Qwen1.5-1.8B) on an unknown dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.5073
|
21 |
+
- Accuracy: 0.8524
|
22 |
+
- F1 Macro: 0.8290
|
23 |
+
- F1 Micro: 0.8524
|
24 |
+
|
25 |
+
## Model description
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Intended uses & limitations
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training and evaluation data
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training procedure
|
38 |
+
|
39 |
+
### Training hyperparameters
|
40 |
+
|
41 |
+
The following hyperparameters were used during training:
|
42 |
+
- learning_rate: 5e-06
|
43 |
+
- train_batch_size: 16
|
44 |
+
- eval_batch_size: 16
|
45 |
+
- seed: 42
|
46 |
+
- distributed_type: multi-GPU
|
47 |
+
- num_devices: 2
|
48 |
+
- total_train_batch_size: 32
|
49 |
+
- total_eval_batch_size: 32
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- num_epochs: 1.0
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | F1 Micro |
|
57 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:--------:|
|
58 |
+
| 1.5641 | 0.13 | 50 | 1.2905 | 0.6476 | 0.5589 | 0.6476 |
|
59 |
+
| 0.744 | 0.26 | 100 | 0.7994 | 0.7694 | 0.7166 | 0.7694 |
|
60 |
+
| 0.7245 | 0.39 | 150 | 0.6846 | 0.7997 | 0.7450 | 0.7997 |
|
61 |
+
| 0.6491 | 0.53 | 200 | 0.6406 | 0.8155 | 0.7679 | 0.8155 |
|
62 |
+
| 0.6193 | 0.66 | 250 | 0.5427 | 0.8399 | 0.7970 | 0.8399 |
|
63 |
+
| 0.4828 | 0.79 | 300 | 0.5453 | 0.8366 | 0.8114 | 0.8366 |
|
64 |
+
| 0.6122 | 0.92 | 350 | 0.5073 | 0.8524 | 0.8290 | 0.8524 |
|
65 |
+
|
66 |
+
|
67 |
+
### Framework versions
|
68 |
+
|
69 |
+
- Transformers 4.39.0.dev0
|
70 |
+
- Pytorch 2.2.1+cu121
|
71 |
+
- Datasets 2.18.0
|
72 |
+
- Tokenizers 0.15.2
|
Qwen/Qwen1.5_1.8B_amazon/added_tokens.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|endoftext|>": 151643,
|
3 |
+
"<|im_end|>": 151645,
|
4 |
+
"<|im_start|>": 151644
|
5 |
+
}
|
Qwen/Qwen1.5_1.8B_amazon/all_results.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 1.0,
|
3 |
+
"eval_accuracy": 0.852437417654809,
|
4 |
+
"eval_f1_macro": 0.8289709215944268,
|
5 |
+
"eval_f1_micro": 0.852437417654809,
|
6 |
+
"eval_loss": 0.5073133111000061,
|
7 |
+
"eval_runtime": 3.9722,
|
8 |
+
"eval_samples": 1518,
|
9 |
+
"eval_samples_per_second": 382.155,
|
10 |
+
"eval_steps_per_second": 12.084,
|
11 |
+
"test_accuracy": 0.8656126482213439,
|
12 |
+
"test_f1_macro": 0.8295835523548035,
|
13 |
+
"test_f1_micro": 0.8656126482213439,
|
14 |
+
"test_loss": 0.4794342815876007,
|
15 |
+
"test_runtime": 4.0382,
|
16 |
+
"test_samples_per_second": 375.908,
|
17 |
+
"test_steps_per_second": 11.886,
|
18 |
+
"train_loss": 1.0740083393297697,
|
19 |
+
"train_runtime": 415.974,
|
20 |
+
"train_samples": 12144,
|
21 |
+
"train_samples_per_second": 29.194,
|
22 |
+
"train_steps_per_second": 0.914
|
23 |
+
}
|
Qwen/Qwen1.5_1.8B_amazon/checkpoint-350/added_tokens.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|endoftext|>": 151643,
|
3 |
+
"<|im_end|>": 151645,
|
4 |
+
"<|im_start|>": 151644
|
5 |
+
}
|
Qwen/Qwen1.5_1.8B_amazon/checkpoint-350/config.json
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "Qwen/Qwen1.5-1.8B",
|
3 |
+
"architectures": [
|
4 |
+
"Qwen2ForSequenceClassification"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 151643,
|
8 |
+
"eos_token_id": 151643,
|
9 |
+
"finetuning_task": "text-classification",
|
10 |
+
"hidden_act": "silu",
|
11 |
+
"hidden_size": 2048,
|
12 |
+
"id2label": {
|
13 |
+
"0": "0",
|
14 |
+
"1": "1",
|
15 |
+
"2": "10",
|
16 |
+
"3": "11",
|
17 |
+
"4": "12",
|
18 |
+
"5": "13",
|
19 |
+
"6": "14",
|
20 |
+
"7": "15",
|
21 |
+
"8": "16",
|
22 |
+
"9": "17",
|
23 |
+
"10": "18",
|
24 |
+
"11": "19",
|
25 |
+
"12": "2",
|
26 |
+
"13": "20",
|
27 |
+
"14": "21",
|
28 |
+
"15": "22",
|
29 |
+
"16": "3",
|
30 |
+
"17": "4",
|
31 |
+
"18": "5",
|
32 |
+
"19": "6",
|
33 |
+
"20": "7",
|
34 |
+
"21": "8",
|
35 |
+
"22": "9"
|
36 |
+
},
|
37 |
+
"initializer_range": 0.02,
|
38 |
+
"intermediate_size": 5504,
|
39 |
+
"label2id": {
|
40 |
+
"0": 0,
|
41 |
+
"1": 1,
|
42 |
+
"10": 2,
|
43 |
+
"11": 3,
|
44 |
+
"12": 4,
|
45 |
+
"13": 5,
|
46 |
+
"14": 6,
|
47 |
+
"15": 7,
|
48 |
+
"16": 8,
|
49 |
+
"17": 9,
|
50 |
+
"18": 10,
|
51 |
+
"19": 11,
|
52 |
+
"2": 12,
|
53 |
+
"20": 13,
|
54 |
+
"21": 14,
|
55 |
+
"22": 15,
|
56 |
+
"3": 16,
|
57 |
+
"4": 17,
|
58 |
+
"5": 18,
|
59 |
+
"6": 19,
|
60 |
+
"7": 20,
|
61 |
+
"8": 21,
|
62 |
+
"9": 22
|
63 |
+
},
|
64 |
+
"max_position_embeddings": 32768,
|
65 |
+
"max_window_layers": 21,
|
66 |
+
"model_type": "qwen2",
|
67 |
+
"num_attention_heads": 16,
|
68 |
+
"num_hidden_layers": 24,
|
69 |
+
"num_key_value_heads": 16,
|
70 |
+
"pad_token_id": 151643,
|
71 |
+
"problem_type": "single_label_classification",
|
72 |
+
"rms_norm_eps": 1e-06,
|
73 |
+
"rope_theta": 1000000.0,
|
74 |
+
"sliding_window": 32768,
|
75 |
+
"tie_word_embeddings": false,
|
76 |
+
"torch_dtype": "bfloat16",
|
77 |
+
"transformers_version": "4.39.0.dev0",
|
78 |
+
"use_cache": true,
|
79 |
+
"use_sliding_window": false,
|
80 |
+
"vocab_size": 151646
|
81 |
+
}
|
Qwen/Qwen1.5_1.8B_amazon/checkpoint-350/global_step350/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e08f9ddeb9dca9bf94cdc457dd21a296528f54c1a28b8af27f936599ebc5e46d
|
3 |
+
size 9150715276
|
Qwen/Qwen1.5_1.8B_amazon/checkpoint-350/global_step350/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0e7e454f14efa9979ff8e981a3dac6698bd7f776065bdc719c7e7d2ff8fd9a1e
|
3 |
+
size 9150720140
|
Qwen/Qwen1.5_1.8B_amazon/checkpoint-350/global_step350/mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d8f80552d860681d5289ac4fcfaa66284b26fcd501aea94b38410446e3284d61
|
3 |
+
size 3050314104
|
Qwen/Qwen1.5_1.8B_amazon/checkpoint-350/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step350
|
Qwen/Qwen1.5_1.8B_amazon/checkpoint-350/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Qwen/Qwen1.5_1.8B_amazon/checkpoint-350/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:808b083c2b74b6e447184a8246a4f99aa1838fe9f48beb716cd8d58963f8bbdd
|
3 |
+
size 3050267112
|
Qwen/Qwen1.5_1.8B_amazon/checkpoint-350/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ef1d637e319354543bdf6602f8671d0efc3f4c6a598f00c1d5dcff1b2ab0526b
|
3 |
+
size 14512
|
Qwen/Qwen1.5_1.8B_amazon/checkpoint-350/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5a10e91fc2fde9de5ea613418b9d98240dbbdab43b35a47dfeeda62762dc069e
|
3 |
+
size 14512
|
Qwen/Qwen1.5_1.8B_amazon/checkpoint-350/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:93c1c646c9b712a4834345fe22046fc71096a5565a8a35ccaa0f8943b016cf5a
|
3 |
+
size 1064
|
Qwen/Qwen1.5_1.8B_amazon/checkpoint-350/special_tokens_map.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>"
|
5 |
+
],
|
6 |
+
"eos_token": {
|
7 |
+
"content": "<|endoftext|>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false
|
12 |
+
},
|
13 |
+
"pad_token": "<|endoftext|>"
|
14 |
+
}
|
Qwen/Qwen1.5_1.8B_amazon/checkpoint-350/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Qwen/Qwen1.5_1.8B_amazon/checkpoint-350/tokenizer_config.json
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"151643": {
|
5 |
+
"content": "<|endoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"151644": {
|
13 |
+
"content": "<|im_start|>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"151645": {
|
21 |
+
"content": "<|im_end|>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
}
|
28 |
+
},
|
29 |
+
"additional_special_tokens": [
|
30 |
+
"<|im_start|>",
|
31 |
+
"<|im_end|>"
|
32 |
+
],
|
33 |
+
"bos_token": null,
|
34 |
+
"chat_template": "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
|
35 |
+
"clean_up_tokenization_spaces": false,
|
36 |
+
"eos_token": "<|endoftext|>",
|
37 |
+
"errors": "replace",
|
38 |
+
"model_max_length": 32768,
|
39 |
+
"pad_token": "<|endoftext|>",
|
40 |
+
"split_special_tokens": false,
|
41 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
42 |
+
"unk_token": null
|
43 |
+
}
|
Qwen/Qwen1.5_1.8B_amazon/checkpoint-350/trainer_state.json
ADDED
@@ -0,0 +1,343 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 0.5073133111000061,
|
3 |
+
"best_model_checkpoint": "../../experiments_checkpoints/MAdAiLab/Qwen/Qwen1.5_1.8B_amazon/checkpoint-350",
|
4 |
+
"epoch": 0.9210526315789473,
|
5 |
+
"eval_steps": 50,
|
6 |
+
"global_step": 350,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.03,
|
13 |
+
"grad_norm": 129.14089965820312,
|
14 |
+
"learning_rate": 4.8684210526315795e-06,
|
15 |
+
"loss": 7.3844,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.05,
|
20 |
+
"grad_norm": 123.16605377197266,
|
21 |
+
"learning_rate": 4.736842105263158e-06,
|
22 |
+
"loss": 4.8281,
|
23 |
+
"step": 20
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.08,
|
27 |
+
"grad_norm": 73.3310546875,
|
28 |
+
"learning_rate": 4.605263157894737e-06,
|
29 |
+
"loss": 3.2703,
|
30 |
+
"step": 30
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.11,
|
34 |
+
"grad_norm": 79.52980041503906,
|
35 |
+
"learning_rate": 4.473684210526316e-06,
|
36 |
+
"loss": 2.0736,
|
37 |
+
"step": 40
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.13,
|
41 |
+
"grad_norm": 65.27238464355469,
|
42 |
+
"learning_rate": 4.342105263157895e-06,
|
43 |
+
"loss": 1.5641,
|
44 |
+
"step": 50
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.13,
|
48 |
+
"eval_accuracy": 0.647562582345191,
|
49 |
+
"eval_f1_macro": 0.5588571972473421,
|
50 |
+
"eval_f1_micro": 0.647562582345191,
|
51 |
+
"eval_loss": 1.2904983758926392,
|
52 |
+
"eval_runtime": 4.0513,
|
53 |
+
"eval_samples_per_second": 374.697,
|
54 |
+
"eval_steps_per_second": 11.848,
|
55 |
+
"step": 50
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"epoch": 0.16,
|
59 |
+
"grad_norm": 50.00752258300781,
|
60 |
+
"learning_rate": 4.210526315789474e-06,
|
61 |
+
"loss": 1.1144,
|
62 |
+
"step": 60
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"epoch": 0.18,
|
66 |
+
"grad_norm": 39.85783386230469,
|
67 |
+
"learning_rate": 4.078947368421053e-06,
|
68 |
+
"loss": 1.1287,
|
69 |
+
"step": 70
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.21,
|
73 |
+
"grad_norm": 62.46803665161133,
|
74 |
+
"learning_rate": 3.947368421052632e-06,
|
75 |
+
"loss": 0.8914,
|
76 |
+
"step": 80
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.24,
|
80 |
+
"grad_norm": 42.484432220458984,
|
81 |
+
"learning_rate": 3.815789473684211e-06,
|
82 |
+
"loss": 0.8281,
|
83 |
+
"step": 90
|
84 |
+
},
|
85 |
+
{
|
86 |
+
"epoch": 0.26,
|
87 |
+
"grad_norm": 48.54948043823242,
|
88 |
+
"learning_rate": 3.6842105263157896e-06,
|
89 |
+
"loss": 0.744,
|
90 |
+
"step": 100
|
91 |
+
},
|
92 |
+
{
|
93 |
+
"epoch": 0.26,
|
94 |
+
"eval_accuracy": 0.769433465085639,
|
95 |
+
"eval_f1_macro": 0.716629286760697,
|
96 |
+
"eval_f1_micro": 0.769433465085639,
|
97 |
+
"eval_loss": 0.7993608117103577,
|
98 |
+
"eval_runtime": 4.0452,
|
99 |
+
"eval_samples_per_second": 375.256,
|
100 |
+
"eval_steps_per_second": 11.866,
|
101 |
+
"step": 100
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"epoch": 0.29,
|
105 |
+
"grad_norm": 47.28898239135742,
|
106 |
+
"learning_rate": 3.5526315789473687e-06,
|
107 |
+
"loss": 0.9268,
|
108 |
+
"step": 110
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"epoch": 0.32,
|
112 |
+
"grad_norm": 49.59343338012695,
|
113 |
+
"learning_rate": 3.421052631578948e-06,
|
114 |
+
"loss": 0.7649,
|
115 |
+
"step": 120
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"epoch": 0.34,
|
119 |
+
"grad_norm": 36.2591438293457,
|
120 |
+
"learning_rate": 3.289473684210527e-06,
|
121 |
+
"loss": 0.716,
|
122 |
+
"step": 130
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.37,
|
126 |
+
"grad_norm": 47.06060791015625,
|
127 |
+
"learning_rate": 3.157894736842105e-06,
|
128 |
+
"loss": 0.5508,
|
129 |
+
"step": 140
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.39,
|
133 |
+
"grad_norm": 45.960975646972656,
|
134 |
+
"learning_rate": 3.0263157894736843e-06,
|
135 |
+
"loss": 0.7245,
|
136 |
+
"step": 150
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 0.39,
|
140 |
+
"eval_accuracy": 0.7997364953886693,
|
141 |
+
"eval_f1_macro": 0.744994161609646,
|
142 |
+
"eval_f1_micro": 0.7997364953886693,
|
143 |
+
"eval_loss": 0.6845870614051819,
|
144 |
+
"eval_runtime": 4.0142,
|
145 |
+
"eval_samples_per_second": 378.16,
|
146 |
+
"eval_steps_per_second": 11.958,
|
147 |
+
"step": 150
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"epoch": 0.42,
|
151 |
+
"grad_norm": 49.28917694091797,
|
152 |
+
"learning_rate": 2.8947368421052634e-06,
|
153 |
+
"loss": 0.6837,
|
154 |
+
"step": 160
|
155 |
+
},
|
156 |
+
{
|
157 |
+
"epoch": 0.45,
|
158 |
+
"grad_norm": 34.09211349487305,
|
159 |
+
"learning_rate": 2.7631578947368424e-06,
|
160 |
+
"loss": 0.6589,
|
161 |
+
"step": 170
|
162 |
+
},
|
163 |
+
{
|
164 |
+
"epoch": 0.47,
|
165 |
+
"grad_norm": 38.694705963134766,
|
166 |
+
"learning_rate": 2.631578947368421e-06,
|
167 |
+
"loss": 0.6702,
|
168 |
+
"step": 180
|
169 |
+
},
|
170 |
+
{
|
171 |
+
"epoch": 0.5,
|
172 |
+
"grad_norm": 64.92501068115234,
|
173 |
+
"learning_rate": 2.5e-06,
|
174 |
+
"loss": 0.7353,
|
175 |
+
"step": 190
|
176 |
+
},
|
177 |
+
{
|
178 |
+
"epoch": 0.53,
|
179 |
+
"grad_norm": 39.18191909790039,
|
180 |
+
"learning_rate": 2.368421052631579e-06,
|
181 |
+
"loss": 0.6491,
|
182 |
+
"step": 200
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"epoch": 0.53,
|
186 |
+
"eval_accuracy": 0.8155467720685112,
|
187 |
+
"eval_f1_macro": 0.7679142075529768,
|
188 |
+
"eval_f1_micro": 0.8155467720685112,
|
189 |
+
"eval_loss": 0.640599250793457,
|
190 |
+
"eval_runtime": 4.0408,
|
191 |
+
"eval_samples_per_second": 375.669,
|
192 |
+
"eval_steps_per_second": 11.879,
|
193 |
+
"step": 200
|
194 |
+
},
|
195 |
+
{
|
196 |
+
"epoch": 0.55,
|
197 |
+
"grad_norm": 39.82322311401367,
|
198 |
+
"learning_rate": 2.236842105263158e-06,
|
199 |
+
"loss": 0.545,
|
200 |
+
"step": 210
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"epoch": 0.58,
|
204 |
+
"grad_norm": 60.72475051879883,
|
205 |
+
"learning_rate": 2.105263157894737e-06,
|
206 |
+
"loss": 0.5595,
|
207 |
+
"step": 220
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"epoch": 0.61,
|
211 |
+
"grad_norm": 42.45864486694336,
|
212 |
+
"learning_rate": 1.973684210526316e-06,
|
213 |
+
"loss": 0.6386,
|
214 |
+
"step": 230
|
215 |
+
},
|
216 |
+
{
|
217 |
+
"epoch": 0.63,
|
218 |
+
"grad_norm": 48.077884674072266,
|
219 |
+
"learning_rate": 1.8421052631578948e-06,
|
220 |
+
"loss": 0.649,
|
221 |
+
"step": 240
|
222 |
+
},
|
223 |
+
{
|
224 |
+
"epoch": 0.66,
|
225 |
+
"grad_norm": 48.596435546875,
|
226 |
+
"learning_rate": 1.710526315789474e-06,
|
227 |
+
"loss": 0.6193,
|
228 |
+
"step": 250
|
229 |
+
},
|
230 |
+
{
|
231 |
+
"epoch": 0.66,
|
232 |
+
"eval_accuracy": 0.8399209486166008,
|
233 |
+
"eval_f1_macro": 0.7970428846372188,
|
234 |
+
"eval_f1_micro": 0.8399209486166008,
|
235 |
+
"eval_loss": 0.5427243113517761,
|
236 |
+
"eval_runtime": 4.3118,
|
237 |
+
"eval_samples_per_second": 352.055,
|
238 |
+
"eval_steps_per_second": 11.132,
|
239 |
+
"step": 250
|
240 |
+
},
|
241 |
+
{
|
242 |
+
"epoch": 0.68,
|
243 |
+
"grad_norm": 45.50446319580078,
|
244 |
+
"learning_rate": 1.5789473684210526e-06,
|
245 |
+
"loss": 0.6343,
|
246 |
+
"step": 260
|
247 |
+
},
|
248 |
+
{
|
249 |
+
"epoch": 0.71,
|
250 |
+
"grad_norm": 40.66709518432617,
|
251 |
+
"learning_rate": 1.4473684210526317e-06,
|
252 |
+
"loss": 0.5493,
|
253 |
+
"step": 270
|
254 |
+
},
|
255 |
+
{
|
256 |
+
"epoch": 0.74,
|
257 |
+
"grad_norm": 50.266971588134766,
|
258 |
+
"learning_rate": 1.3157894736842106e-06,
|
259 |
+
"loss": 0.5177,
|
260 |
+
"step": 280
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"epoch": 0.76,
|
264 |
+
"grad_norm": 41.21518325805664,
|
265 |
+
"learning_rate": 1.1842105263157894e-06,
|
266 |
+
"loss": 0.4751,
|
267 |
+
"step": 290
|
268 |
+
},
|
269 |
+
{
|
270 |
+
"epoch": 0.79,
|
271 |
+
"grad_norm": 35.079444885253906,
|
272 |
+
"learning_rate": 1.0526315789473685e-06,
|
273 |
+
"loss": 0.4828,
|
274 |
+
"step": 300
|
275 |
+
},
|
276 |
+
{
|
277 |
+
"epoch": 0.79,
|
278 |
+
"eval_accuracy": 0.836627140974967,
|
279 |
+
"eval_f1_macro": 0.8114023231734937,
|
280 |
+
"eval_f1_micro": 0.836627140974967,
|
281 |
+
"eval_loss": 0.5453078746795654,
|
282 |
+
"eval_runtime": 4.0339,
|
283 |
+
"eval_samples_per_second": 376.309,
|
284 |
+
"eval_steps_per_second": 11.899,
|
285 |
+
"step": 300
|
286 |
+
},
|
287 |
+
{
|
288 |
+
"epoch": 0.82,
|
289 |
+
"grad_norm": 51.024139404296875,
|
290 |
+
"learning_rate": 9.210526315789474e-07,
|
291 |
+
"loss": 0.4726,
|
292 |
+
"step": 310
|
293 |
+
},
|
294 |
+
{
|
295 |
+
"epoch": 0.84,
|
296 |
+
"grad_norm": 41.68681335449219,
|
297 |
+
"learning_rate": 7.894736842105263e-07,
|
298 |
+
"loss": 0.5492,
|
299 |
+
"step": 320
|
300 |
+
},
|
301 |
+
{
|
302 |
+
"epoch": 0.87,
|
303 |
+
"grad_norm": 31.459598541259766,
|
304 |
+
"learning_rate": 6.578947368421053e-07,
|
305 |
+
"loss": 0.6464,
|
306 |
+
"step": 330
|
307 |
+
},
|
308 |
+
{
|
309 |
+
"epoch": 0.89,
|
310 |
+
"grad_norm": 37.8900260925293,
|
311 |
+
"learning_rate": 5.263157894736843e-07,
|
312 |
+
"loss": 0.4235,
|
313 |
+
"step": 340
|
314 |
+
},
|
315 |
+
{
|
316 |
+
"epoch": 0.92,
|
317 |
+
"grad_norm": 80.35220336914062,
|
318 |
+
"learning_rate": 3.9473684210526315e-07,
|
319 |
+
"loss": 0.6122,
|
320 |
+
"step": 350
|
321 |
+
},
|
322 |
+
{
|
323 |
+
"epoch": 0.92,
|
324 |
+
"eval_accuracy": 0.852437417654809,
|
325 |
+
"eval_f1_macro": 0.8289709215944268,
|
326 |
+
"eval_f1_micro": 0.852437417654809,
|
327 |
+
"eval_loss": 0.5073133111000061,
|
328 |
+
"eval_runtime": 4.0684,
|
329 |
+
"eval_samples_per_second": 373.116,
|
330 |
+
"eval_steps_per_second": 11.798,
|
331 |
+
"step": 350
|
332 |
+
}
|
333 |
+
],
|
334 |
+
"logging_steps": 10,
|
335 |
+
"max_steps": 380,
|
336 |
+
"num_input_tokens_seen": 0,
|
337 |
+
"num_train_epochs": 1,
|
338 |
+
"save_steps": 50,
|
339 |
+
"total_flos": 1.0447038185472e+16,
|
340 |
+
"train_batch_size": 16,
|
341 |
+
"trial_name": null,
|
342 |
+
"trial_params": null
|
343 |
+
}
|
Qwen/Qwen1.5_1.8B_amazon/checkpoint-350/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9b20cc25ef3f3381a0bb4e70b578853792c4ac9c2ffef36a86d3a450a66fc2aa
|
3 |
+
size 5944
|
Qwen/Qwen1.5_1.8B_amazon/checkpoint-350/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Qwen/Qwen1.5_1.8B_amazon/checkpoint-350/zero_to_fp32.py
ADDED
@@ -0,0 +1,604 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
215 |
+
exclude_frozen_parameters)
|
216 |
+
elif zero_stage == 3:
|
217 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
218 |
+
exclude_frozen_parameters)
|
219 |
+
|
220 |
+
|
221 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
222 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
223 |
+
return
|
224 |
+
|
225 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
226 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
227 |
+
|
228 |
+
if debug:
|
229 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
230 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
231 |
+
|
232 |
+
wanted_params = len(frozen_param_shapes)
|
233 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
235 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
236 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
237 |
+
|
238 |
+
total_params = 0
|
239 |
+
total_numel = 0
|
240 |
+
for name, shape in frozen_param_shapes.items():
|
241 |
+
total_params += 1
|
242 |
+
unpartitioned_numel = shape.numel()
|
243 |
+
total_numel += unpartitioned_numel
|
244 |
+
|
245 |
+
state_dict[name] = frozen_param_fragments[name]
|
246 |
+
|
247 |
+
if debug:
|
248 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
249 |
+
|
250 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
251 |
+
|
252 |
+
|
253 |
+
def _has_callable(obj, fn):
|
254 |
+
attr = getattr(obj, fn, None)
|
255 |
+
return callable(attr)
|
256 |
+
|
257 |
+
|
258 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
259 |
+
param_shapes = zero_model_states[0].param_shapes
|
260 |
+
|
261 |
+
# Reconstruction protocol:
|
262 |
+
#
|
263 |
+
# XXX: document this
|
264 |
+
|
265 |
+
if debug:
|
266 |
+
for i in range(world_size):
|
267 |
+
for j in range(len(fp32_flat_groups[0])):
|
268 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
269 |
+
|
270 |
+
# XXX: memory usage doubles here (zero2)
|
271 |
+
num_param_groups = len(fp32_flat_groups[0])
|
272 |
+
merged_single_partition_of_fp32_groups = []
|
273 |
+
for i in range(num_param_groups):
|
274 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
275 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
276 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
277 |
+
avail_numel = sum(
|
278 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
279 |
+
|
280 |
+
if debug:
|
281 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
282 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
283 |
+
# not asserting if there is a mismatch due to possible padding
|
284 |
+
print(f"Have {avail_numel} numels to process.")
|
285 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
286 |
+
|
287 |
+
# params
|
288 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
289 |
+
# out-of-core computing solution
|
290 |
+
total_numel = 0
|
291 |
+
total_params = 0
|
292 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
293 |
+
offset = 0
|
294 |
+
avail_numel = full_single_fp32_vector.numel()
|
295 |
+
for name, shape in shapes.items():
|
296 |
+
|
297 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
298 |
+
total_numel += unpartitioned_numel
|
299 |
+
total_params += 1
|
300 |
+
|
301 |
+
if debug:
|
302 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
303 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
304 |
+
offset += unpartitioned_numel
|
305 |
+
|
306 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
307 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
308 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
309 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
310 |
+
align_to = 2 * world_size
|
311 |
+
|
312 |
+
def zero2_align(x):
|
313 |
+
return align_to * math.ceil(x / align_to)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
offset = zero2_align(offset)
|
319 |
+
avail_numel = zero2_align(avail_numel)
|
320 |
+
|
321 |
+
if debug:
|
322 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
323 |
+
|
324 |
+
# Sanity check
|
325 |
+
if offset != avail_numel:
|
326 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
327 |
+
|
328 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
329 |
+
|
330 |
+
|
331 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
332 |
+
exclude_frozen_parameters):
|
333 |
+
state_dict = OrderedDict()
|
334 |
+
|
335 |
+
# buffers
|
336 |
+
buffers = zero_model_states[0].buffers
|
337 |
+
state_dict.update(buffers)
|
338 |
+
if debug:
|
339 |
+
print(f"added {len(buffers)} buffers")
|
340 |
+
|
341 |
+
if not exclude_frozen_parameters:
|
342 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
343 |
+
|
344 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
345 |
+
|
346 |
+
# recover shared parameters
|
347 |
+
for pair in zero_model_states[0].shared_params:
|
348 |
+
if pair[1] in state_dict:
|
349 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
350 |
+
|
351 |
+
return state_dict
|
352 |
+
|
353 |
+
|
354 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
355 |
+
remainder = unpartitioned_numel % world_size
|
356 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
357 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
358 |
+
return partitioned_numel, padding_numel
|
359 |
+
|
360 |
+
|
361 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
362 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
363 |
+
return
|
364 |
+
|
365 |
+
if debug:
|
366 |
+
for i in range(world_size):
|
367 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
368 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
369 |
+
|
370 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
371 |
+
wanted_params = len(frozen_param_shapes)
|
372 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
373 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
374 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
375 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
376 |
+
|
377 |
+
total_params = 0
|
378 |
+
total_numel = 0
|
379 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
380 |
+
total_params += 1
|
381 |
+
unpartitioned_numel = shape.numel()
|
382 |
+
total_numel += unpartitioned_numel
|
383 |
+
|
384 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
385 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
386 |
+
|
387 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
388 |
+
|
389 |
+
if debug:
|
390 |
+
print(
|
391 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
392 |
+
)
|
393 |
+
|
394 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
395 |
+
|
396 |
+
|
397 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
398 |
+
param_shapes = zero_model_states[0].param_shapes
|
399 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
400 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
401 |
+
# param, re-consolidating each param, while dealing with padding if any
|
402 |
+
|
403 |
+
# merge list of dicts, preserving order
|
404 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
405 |
+
|
406 |
+
if debug:
|
407 |
+
for i in range(world_size):
|
408 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
409 |
+
|
410 |
+
wanted_params = len(param_shapes)
|
411 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
412 |
+
# not asserting if there is a mismatch due to possible padding
|
413 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
414 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
415 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
416 |
+
|
417 |
+
# params
|
418 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
419 |
+
# out-of-core computing solution
|
420 |
+
offset = 0
|
421 |
+
total_numel = 0
|
422 |
+
total_params = 0
|
423 |
+
for name, shape in param_shapes.items():
|
424 |
+
|
425 |
+
unpartitioned_numel = shape.numel()
|
426 |
+
total_numel += unpartitioned_numel
|
427 |
+
total_params += 1
|
428 |
+
|
429 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
430 |
+
|
431 |
+
if debug:
|
432 |
+
print(
|
433 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
434 |
+
)
|
435 |
+
|
436 |
+
# XXX: memory usage doubles here
|
437 |
+
state_dict[name] = torch.cat(
|
438 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
439 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
440 |
+
offset += partitioned_numel
|
441 |
+
|
442 |
+
offset *= world_size
|
443 |
+
|
444 |
+
# Sanity check
|
445 |
+
if offset != avail_numel:
|
446 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
447 |
+
|
448 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
449 |
+
|
450 |
+
|
451 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
452 |
+
exclude_frozen_parameters):
|
453 |
+
state_dict = OrderedDict()
|
454 |
+
|
455 |
+
# buffers
|
456 |
+
buffers = zero_model_states[0].buffers
|
457 |
+
state_dict.update(buffers)
|
458 |
+
if debug:
|
459 |
+
print(f"added {len(buffers)} buffers")
|
460 |
+
|
461 |
+
if not exclude_frozen_parameters:
|
462 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
463 |
+
|
464 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
465 |
+
|
466 |
+
# recover shared parameters
|
467 |
+
for pair in zero_model_states[0].shared_params:
|
468 |
+
if pair[1] in state_dict:
|
469 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
470 |
+
|
471 |
+
return state_dict
|
472 |
+
|
473 |
+
|
474 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
475 |
+
"""
|
476 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
477 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
478 |
+
via a model hub.
|
479 |
+
|
480 |
+
Args:
|
481 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
482 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
483 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
484 |
+
|
485 |
+
Returns:
|
486 |
+
- pytorch ``state_dict``
|
487 |
+
|
488 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
489 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
490 |
+
the checkpoint.
|
491 |
+
|
492 |
+
A typical usage might be ::
|
493 |
+
|
494 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
495 |
+
# do the training and checkpoint saving
|
496 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
497 |
+
model = model.cpu() # move to cpu
|
498 |
+
model.load_state_dict(state_dict)
|
499 |
+
# submit to model hub or save the model to share with others
|
500 |
+
|
501 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
502 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
503 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
504 |
+
|
505 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
506 |
+
|
507 |
+
"""
|
508 |
+
if tag is None:
|
509 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
510 |
+
if os.path.isfile(latest_path):
|
511 |
+
with open(latest_path, 'r') as fd:
|
512 |
+
tag = fd.read().strip()
|
513 |
+
else:
|
514 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
515 |
+
|
516 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
517 |
+
|
518 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
519 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
520 |
+
|
521 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
522 |
+
|
523 |
+
|
524 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
|
525 |
+
"""
|
526 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
527 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
528 |
+
|
529 |
+
Args:
|
530 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
531 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
532 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
533 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
534 |
+
"""
|
535 |
+
|
536 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
537 |
+
print(f"Saving fp32 state dict to {output_file}")
|
538 |
+
torch.save(state_dict, output_file)
|
539 |
+
|
540 |
+
|
541 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
542 |
+
"""
|
543 |
+
1. Put the provided model to cpu
|
544 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
545 |
+
3. Load it into the provided model
|
546 |
+
|
547 |
+
Args:
|
548 |
+
- ``model``: the model object to update
|
549 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
550 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
551 |
+
|
552 |
+
Returns:
|
553 |
+
- ``model`: modified model
|
554 |
+
|
555 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
556 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
557 |
+
conveniently placed for you in the checkpoint folder.
|
558 |
+
|
559 |
+
A typical usage might be ::
|
560 |
+
|
561 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
562 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
563 |
+
# submit to model hub or save the model to share with others
|
564 |
+
|
565 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
566 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
567 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
568 |
+
|
569 |
+
"""
|
570 |
+
logger.info(f"Extracting fp32 weights")
|
571 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
572 |
+
|
573 |
+
logger.info(f"Overwriting model with fp32 weights")
|
574 |
+
model = model.cpu()
|
575 |
+
model.load_state_dict(state_dict, strict=False)
|
576 |
+
|
577 |
+
return model
|
578 |
+
|
579 |
+
|
580 |
+
if __name__ == "__main__":
|
581 |
+
|
582 |
+
parser = argparse.ArgumentParser()
|
583 |
+
parser.add_argument("checkpoint_dir",
|
584 |
+
type=str,
|
585 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
586 |
+
parser.add_argument(
|
587 |
+
"output_file",
|
588 |
+
type=str,
|
589 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
590 |
+
parser.add_argument("-t",
|
591 |
+
"--tag",
|
592 |
+
type=str,
|
593 |
+
default=None,
|
594 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
595 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
596 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
597 |
+
args = parser.parse_args()
|
598 |
+
|
599 |
+
debug = args.debug
|
600 |
+
|
601 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
602 |
+
args.output_file,
|
603 |
+
tag=args.tag,
|
604 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
Qwen/Qwen1.5_1.8B_amazon/config.json
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "Qwen/Qwen1.5-1.8B",
|
3 |
+
"architectures": [
|
4 |
+
"Qwen2ForSequenceClassification"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 151643,
|
8 |
+
"eos_token_id": 151643,
|
9 |
+
"finetuning_task": "text-classification",
|
10 |
+
"hidden_act": "silu",
|
11 |
+
"hidden_size": 2048,
|
12 |
+
"id2label": {
|
13 |
+
"0": "0",
|
14 |
+
"1": "1",
|
15 |
+
"2": "10",
|
16 |
+
"3": "11",
|
17 |
+
"4": "12",
|
18 |
+
"5": "13",
|
19 |
+
"6": "14",
|
20 |
+
"7": "15",
|
21 |
+
"8": "16",
|
22 |
+
"9": "17",
|
23 |
+
"10": "18",
|
24 |
+
"11": "19",
|
25 |
+
"12": "2",
|
26 |
+
"13": "20",
|
27 |
+
"14": "21",
|
28 |
+
"15": "22",
|
29 |
+
"16": "3",
|
30 |
+
"17": "4",
|
31 |
+
"18": "5",
|
32 |
+
"19": "6",
|
33 |
+
"20": "7",
|
34 |
+
"21": "8",
|
35 |
+
"22": "9"
|
36 |
+
},
|
37 |
+
"initializer_range": 0.02,
|
38 |
+
"intermediate_size": 5504,
|
39 |
+
"label2id": {
|
40 |
+
"0": 0,
|
41 |
+
"1": 1,
|
42 |
+
"10": 2,
|
43 |
+
"11": 3,
|
44 |
+
"12": 4,
|
45 |
+
"13": 5,
|
46 |
+
"14": 6,
|
47 |
+
"15": 7,
|
48 |
+
"16": 8,
|
49 |
+
"17": 9,
|
50 |
+
"18": 10,
|
51 |
+
"19": 11,
|
52 |
+
"2": 12,
|
53 |
+
"20": 13,
|
54 |
+
"21": 14,
|
55 |
+
"22": 15,
|
56 |
+
"3": 16,
|
57 |
+
"4": 17,
|
58 |
+
"5": 18,
|
59 |
+
"6": 19,
|
60 |
+
"7": 20,
|
61 |
+
"8": 21,
|
62 |
+
"9": 22
|
63 |
+
},
|
64 |
+
"max_position_embeddings": 32768,
|
65 |
+
"max_window_layers": 21,
|
66 |
+
"model_type": "qwen2",
|
67 |
+
"num_attention_heads": 16,
|
68 |
+
"num_hidden_layers": 24,
|
69 |
+
"num_key_value_heads": 16,
|
70 |
+
"pad_token_id": 151643,
|
71 |
+
"problem_type": "single_label_classification",
|
72 |
+
"rms_norm_eps": 1e-06,
|
73 |
+
"rope_theta": 1000000.0,
|
74 |
+
"sliding_window": 32768,
|
75 |
+
"tie_word_embeddings": false,
|
76 |
+
"torch_dtype": "bfloat16",
|
77 |
+
"transformers_version": "4.39.0.dev0",
|
78 |
+
"use_cache": true,
|
79 |
+
"use_sliding_window": false,
|
80 |
+
"vocab_size": 151646
|
81 |
+
}
|
Qwen/Qwen1.5_1.8B_amazon/eval_results.json
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 1.0,
|
3 |
+
"eval_accuracy": 0.852437417654809,
|
4 |
+
"eval_f1_macro": 0.8289709215944268,
|
5 |
+
"eval_f1_micro": 0.852437417654809,
|
6 |
+
"eval_loss": 0.5073133111000061,
|
7 |
+
"eval_runtime": 3.9722,
|
8 |
+
"eval_samples": 1518,
|
9 |
+
"eval_samples_per_second": 382.155,
|
10 |
+
"eval_steps_per_second": 12.084
|
11 |
+
}
|
Qwen/Qwen1.5_1.8B_amazon/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Qwen/Qwen1.5_1.8B_amazon/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:808b083c2b74b6e447184a8246a4f99aa1838fe9f48beb716cd8d58963f8bbdd
|
3 |
+
size 3050267112
|
Qwen/Qwen1.5_1.8B_amazon/run.log
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
03/15/2024 11:43:05 - WARNING - __main__ - Process rank: 0, device: cuda:0, n_gpu: 1, distributed training: True, 16-bits training: False
|
2 |
+
03/15/2024 11:43:05 - WARNING - __main__ - Process rank: 1, device: cuda:1, n_gpu: 1, distributed training: True, 16-bits training: False
|
3 |
+
03/15/2024 11:43:15 - WARNING - __main__ - The label2id key in the model config.json is not equal to the label2id key of this run. You can ignore this if you are doing finetuning.
|
4 |
+
03/15/2024 11:43:15 - WARNING - __main__ - The label2id key in the model config.json is not equal to the label2id key of this run. You can ignore this if you are doing finetuning.
|
Qwen/Qwen1.5_1.8B_amazon/special_tokens_map.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>"
|
5 |
+
],
|
6 |
+
"eos_token": {
|
7 |
+
"content": "<|endoftext|>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false
|
12 |
+
},
|
13 |
+
"pad_token": "<|endoftext|>"
|
14 |
+
}
|
Qwen/Qwen1.5_1.8B_amazon/test_results.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 1.0,
|
3 |
+
"test_accuracy": 0.8656126482213439,
|
4 |
+
"test_f1_macro": 0.8295835523548035,
|
5 |
+
"test_f1_micro": 0.8656126482213439,
|
6 |
+
"test_loss": 0.4794342815876007,
|
7 |
+
"test_runtime": 4.0382,
|
8 |
+
"test_samples_per_second": 375.908,
|
9 |
+
"test_steps_per_second": 11.886
|
10 |
+
}
|
Qwen/Qwen1.5_1.8B_amazon/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Qwen/Qwen1.5_1.8B_amazon/tokenizer_config.json
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"151643": {
|
5 |
+
"content": "<|endoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"151644": {
|
13 |
+
"content": "<|im_start|>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"151645": {
|
21 |
+
"content": "<|im_end|>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
}
|
28 |
+
},
|
29 |
+
"additional_special_tokens": [
|
30 |
+
"<|im_start|>",
|
31 |
+
"<|im_end|>"
|
32 |
+
],
|
33 |
+
"bos_token": null,
|
34 |
+
"chat_template": "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
|
35 |
+
"clean_up_tokenization_spaces": false,
|
36 |
+
"eos_token": "<|endoftext|>",
|
37 |
+
"errors": "replace",
|
38 |
+
"model_max_length": 32768,
|
39 |
+
"pad_token": "<|endoftext|>",
|
40 |
+
"split_special_tokens": false,
|
41 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
42 |
+
"unk_token": null
|
43 |
+
}
|
Qwen/Qwen1.5_1.8B_amazon/train_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 1.0,
|
3 |
+
"train_loss": 1.0740083393297697,
|
4 |
+
"train_runtime": 415.974,
|
5 |
+
"train_samples": 12144,
|
6 |
+
"train_samples_per_second": 29.194,
|
7 |
+
"train_steps_per_second": 0.914
|
8 |
+
}
|
Qwen/Qwen1.5_1.8B_amazon/trainer_state.json
ADDED
@@ -0,0 +1,373 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 0.5073133111000061,
|
3 |
+
"best_model_checkpoint": "../../experiments_checkpoints/MAdAiLab/Qwen/Qwen1.5_1.8B_amazon/checkpoint-350",
|
4 |
+
"epoch": 1.0,
|
5 |
+
"eval_steps": 50,
|
6 |
+
"global_step": 380,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.03,
|
13 |
+
"grad_norm": 129.14089965820312,
|
14 |
+
"learning_rate": 4.8684210526315795e-06,
|
15 |
+
"loss": 7.3844,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.05,
|
20 |
+
"grad_norm": 123.16605377197266,
|
21 |
+
"learning_rate": 4.736842105263158e-06,
|
22 |
+
"loss": 4.8281,
|
23 |
+
"step": 20
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.08,
|
27 |
+
"grad_norm": 73.3310546875,
|
28 |
+
"learning_rate": 4.605263157894737e-06,
|
29 |
+
"loss": 3.2703,
|
30 |
+
"step": 30
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.11,
|
34 |
+
"grad_norm": 79.52980041503906,
|
35 |
+
"learning_rate": 4.473684210526316e-06,
|
36 |
+
"loss": 2.0736,
|
37 |
+
"step": 40
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.13,
|
41 |
+
"grad_norm": 65.27238464355469,
|
42 |
+
"learning_rate": 4.342105263157895e-06,
|
43 |
+
"loss": 1.5641,
|
44 |
+
"step": 50
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.13,
|
48 |
+
"eval_accuracy": 0.647562582345191,
|
49 |
+
"eval_f1_macro": 0.5588571972473421,
|
50 |
+
"eval_f1_micro": 0.647562582345191,
|
51 |
+
"eval_loss": 1.2904983758926392,
|
52 |
+
"eval_runtime": 4.0513,
|
53 |
+
"eval_samples_per_second": 374.697,
|
54 |
+
"eval_steps_per_second": 11.848,
|
55 |
+
"step": 50
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"epoch": 0.16,
|
59 |
+
"grad_norm": 50.00752258300781,
|
60 |
+
"learning_rate": 4.210526315789474e-06,
|
61 |
+
"loss": 1.1144,
|
62 |
+
"step": 60
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"epoch": 0.18,
|
66 |
+
"grad_norm": 39.85783386230469,
|
67 |
+
"learning_rate": 4.078947368421053e-06,
|
68 |
+
"loss": 1.1287,
|
69 |
+
"step": 70
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.21,
|
73 |
+
"grad_norm": 62.46803665161133,
|
74 |
+
"learning_rate": 3.947368421052632e-06,
|
75 |
+
"loss": 0.8914,
|
76 |
+
"step": 80
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.24,
|
80 |
+
"grad_norm": 42.484432220458984,
|
81 |
+
"learning_rate": 3.815789473684211e-06,
|
82 |
+
"loss": 0.8281,
|
83 |
+
"step": 90
|
84 |
+
},
|
85 |
+
{
|
86 |
+
"epoch": 0.26,
|
87 |
+
"grad_norm": 48.54948043823242,
|
88 |
+
"learning_rate": 3.6842105263157896e-06,
|
89 |
+
"loss": 0.744,
|
90 |
+
"step": 100
|
91 |
+
},
|
92 |
+
{
|
93 |
+
"epoch": 0.26,
|
94 |
+
"eval_accuracy": 0.769433465085639,
|
95 |
+
"eval_f1_macro": 0.716629286760697,
|
96 |
+
"eval_f1_micro": 0.769433465085639,
|
97 |
+
"eval_loss": 0.7993608117103577,
|
98 |
+
"eval_runtime": 4.0452,
|
99 |
+
"eval_samples_per_second": 375.256,
|
100 |
+
"eval_steps_per_second": 11.866,
|
101 |
+
"step": 100
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"epoch": 0.29,
|
105 |
+
"grad_norm": 47.28898239135742,
|
106 |
+
"learning_rate": 3.5526315789473687e-06,
|
107 |
+
"loss": 0.9268,
|
108 |
+
"step": 110
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"epoch": 0.32,
|
112 |
+
"grad_norm": 49.59343338012695,
|
113 |
+
"learning_rate": 3.421052631578948e-06,
|
114 |
+
"loss": 0.7649,
|
115 |
+
"step": 120
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"epoch": 0.34,
|
119 |
+
"grad_norm": 36.2591438293457,
|
120 |
+
"learning_rate": 3.289473684210527e-06,
|
121 |
+
"loss": 0.716,
|
122 |
+
"step": 130
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.37,
|
126 |
+
"grad_norm": 47.06060791015625,
|
127 |
+
"learning_rate": 3.157894736842105e-06,
|
128 |
+
"loss": 0.5508,
|
129 |
+
"step": 140
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.39,
|
133 |
+
"grad_norm": 45.960975646972656,
|
134 |
+
"learning_rate": 3.0263157894736843e-06,
|
135 |
+
"loss": 0.7245,
|
136 |
+
"step": 150
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 0.39,
|
140 |
+
"eval_accuracy": 0.7997364953886693,
|
141 |
+
"eval_f1_macro": 0.744994161609646,
|
142 |
+
"eval_f1_micro": 0.7997364953886693,
|
143 |
+
"eval_loss": 0.6845870614051819,
|
144 |
+
"eval_runtime": 4.0142,
|
145 |
+
"eval_samples_per_second": 378.16,
|
146 |
+
"eval_steps_per_second": 11.958,
|
147 |
+
"step": 150
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"epoch": 0.42,
|
151 |
+
"grad_norm": 49.28917694091797,
|
152 |
+
"learning_rate": 2.8947368421052634e-06,
|
153 |
+
"loss": 0.6837,
|
154 |
+
"step": 160
|
155 |
+
},
|
156 |
+
{
|
157 |
+
"epoch": 0.45,
|
158 |
+
"grad_norm": 34.09211349487305,
|
159 |
+
"learning_rate": 2.7631578947368424e-06,
|
160 |
+
"loss": 0.6589,
|
161 |
+
"step": 170
|
162 |
+
},
|
163 |
+
{
|
164 |
+
"epoch": 0.47,
|
165 |
+
"grad_norm": 38.694705963134766,
|
166 |
+
"learning_rate": 2.631578947368421e-06,
|
167 |
+
"loss": 0.6702,
|
168 |
+
"step": 180
|
169 |
+
},
|
170 |
+
{
|
171 |
+
"epoch": 0.5,
|
172 |
+
"grad_norm": 64.92501068115234,
|
173 |
+
"learning_rate": 2.5e-06,
|
174 |
+
"loss": 0.7353,
|
175 |
+
"step": 190
|
176 |
+
},
|
177 |
+
{
|
178 |
+
"epoch": 0.53,
|
179 |
+
"grad_norm": 39.18191909790039,
|
180 |
+
"learning_rate": 2.368421052631579e-06,
|
181 |
+
"loss": 0.6491,
|
182 |
+
"step": 200
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"epoch": 0.53,
|
186 |
+
"eval_accuracy": 0.8155467720685112,
|
187 |
+
"eval_f1_macro": 0.7679142075529768,
|
188 |
+
"eval_f1_micro": 0.8155467720685112,
|
189 |
+
"eval_loss": 0.640599250793457,
|
190 |
+
"eval_runtime": 4.0408,
|
191 |
+
"eval_samples_per_second": 375.669,
|
192 |
+
"eval_steps_per_second": 11.879,
|
193 |
+
"step": 200
|
194 |
+
},
|
195 |
+
{
|
196 |
+
"epoch": 0.55,
|
197 |
+
"grad_norm": 39.82322311401367,
|
198 |
+
"learning_rate": 2.236842105263158e-06,
|
199 |
+
"loss": 0.545,
|
200 |
+
"step": 210
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"epoch": 0.58,
|
204 |
+
"grad_norm": 60.72475051879883,
|
205 |
+
"learning_rate": 2.105263157894737e-06,
|
206 |
+
"loss": 0.5595,
|
207 |
+
"step": 220
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"epoch": 0.61,
|
211 |
+
"grad_norm": 42.45864486694336,
|
212 |
+
"learning_rate": 1.973684210526316e-06,
|
213 |
+
"loss": 0.6386,
|
214 |
+
"step": 230
|
215 |
+
},
|
216 |
+
{
|
217 |
+
"epoch": 0.63,
|
218 |
+
"grad_norm": 48.077884674072266,
|
219 |
+
"learning_rate": 1.8421052631578948e-06,
|
220 |
+
"loss": 0.649,
|
221 |
+
"step": 240
|
222 |
+
},
|
223 |
+
{
|
224 |
+
"epoch": 0.66,
|
225 |
+
"grad_norm": 48.596435546875,
|
226 |
+
"learning_rate": 1.710526315789474e-06,
|
227 |
+
"loss": 0.6193,
|
228 |
+
"step": 250
|
229 |
+
},
|
230 |
+
{
|
231 |
+
"epoch": 0.66,
|
232 |
+
"eval_accuracy": 0.8399209486166008,
|
233 |
+
"eval_f1_macro": 0.7970428846372188,
|
234 |
+
"eval_f1_micro": 0.8399209486166008,
|
235 |
+
"eval_loss": 0.5427243113517761,
|
236 |
+
"eval_runtime": 4.3118,
|
237 |
+
"eval_samples_per_second": 352.055,
|
238 |
+
"eval_steps_per_second": 11.132,
|
239 |
+
"step": 250
|
240 |
+
},
|
241 |
+
{
|
242 |
+
"epoch": 0.68,
|
243 |
+
"grad_norm": 45.50446319580078,
|
244 |
+
"learning_rate": 1.5789473684210526e-06,
|
245 |
+
"loss": 0.6343,
|
246 |
+
"step": 260
|
247 |
+
},
|
248 |
+
{
|
249 |
+
"epoch": 0.71,
|
250 |
+
"grad_norm": 40.66709518432617,
|
251 |
+
"learning_rate": 1.4473684210526317e-06,
|
252 |
+
"loss": 0.5493,
|
253 |
+
"step": 270
|
254 |
+
},
|
255 |
+
{
|
256 |
+
"epoch": 0.74,
|
257 |
+
"grad_norm": 50.266971588134766,
|
258 |
+
"learning_rate": 1.3157894736842106e-06,
|
259 |
+
"loss": 0.5177,
|
260 |
+
"step": 280
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"epoch": 0.76,
|
264 |
+
"grad_norm": 41.21518325805664,
|
265 |
+
"learning_rate": 1.1842105263157894e-06,
|
266 |
+
"loss": 0.4751,
|
267 |
+
"step": 290
|
268 |
+
},
|
269 |
+
{
|
270 |
+
"epoch": 0.79,
|
271 |
+
"grad_norm": 35.079444885253906,
|
272 |
+
"learning_rate": 1.0526315789473685e-06,
|
273 |
+
"loss": 0.4828,
|
274 |
+
"step": 300
|
275 |
+
},
|
276 |
+
{
|
277 |
+
"epoch": 0.79,
|
278 |
+
"eval_accuracy": 0.836627140974967,
|
279 |
+
"eval_f1_macro": 0.8114023231734937,
|
280 |
+
"eval_f1_micro": 0.836627140974967,
|
281 |
+
"eval_loss": 0.5453078746795654,
|
282 |
+
"eval_runtime": 4.0339,
|
283 |
+
"eval_samples_per_second": 376.309,
|
284 |
+
"eval_steps_per_second": 11.899,
|
285 |
+
"step": 300
|
286 |
+
},
|
287 |
+
{
|
288 |
+
"epoch": 0.82,
|
289 |
+
"grad_norm": 51.024139404296875,
|
290 |
+
"learning_rate": 9.210526315789474e-07,
|
291 |
+
"loss": 0.4726,
|
292 |
+
"step": 310
|
293 |
+
},
|
294 |
+
{
|
295 |
+
"epoch": 0.84,
|
296 |
+
"grad_norm": 41.68681335449219,
|
297 |
+
"learning_rate": 7.894736842105263e-07,
|
298 |
+
"loss": 0.5492,
|
299 |
+
"step": 320
|
300 |
+
},
|
301 |
+
{
|
302 |
+
"epoch": 0.87,
|
303 |
+
"grad_norm": 31.459598541259766,
|
304 |
+
"learning_rate": 6.578947368421053e-07,
|
305 |
+
"loss": 0.6464,
|
306 |
+
"step": 330
|
307 |
+
},
|
308 |
+
{
|
309 |
+
"epoch": 0.89,
|
310 |
+
"grad_norm": 37.8900260925293,
|
311 |
+
"learning_rate": 5.263157894736843e-07,
|
312 |
+
"loss": 0.4235,
|
313 |
+
"step": 340
|
314 |
+
},
|
315 |
+
{
|
316 |
+
"epoch": 0.92,
|
317 |
+
"grad_norm": 80.35220336914062,
|
318 |
+
"learning_rate": 3.9473684210526315e-07,
|
319 |
+
"loss": 0.6122,
|
320 |
+
"step": 350
|
321 |
+
},
|
322 |
+
{
|
323 |
+
"epoch": 0.92,
|
324 |
+
"eval_accuracy": 0.852437417654809,
|
325 |
+
"eval_f1_macro": 0.8289709215944268,
|
326 |
+
"eval_f1_micro": 0.852437417654809,
|
327 |
+
"eval_loss": 0.5073133111000061,
|
328 |
+
"eval_runtime": 4.0684,
|
329 |
+
"eval_samples_per_second": 373.116,
|
330 |
+
"eval_steps_per_second": 11.798,
|
331 |
+
"step": 350
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 0.95,
|
335 |
+
"grad_norm": 35.06690979003906,
|
336 |
+
"learning_rate": 2.6315789473684213e-07,
|
337 |
+
"loss": 0.4292,
|
338 |
+
"step": 360
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.97,
|
342 |
+
"grad_norm": 46.45317077636719,
|
343 |
+
"learning_rate": 1.3157894736842107e-07,
|
344 |
+
"loss": 0.5656,
|
345 |
+
"step": 370
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 1.0,
|
349 |
+
"grad_norm": 42.95165252685547,
|
350 |
+
"learning_rate": 0.0,
|
351 |
+
"loss": 0.5355,
|
352 |
+
"step": 380
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 1.0,
|
356 |
+
"step": 380,
|
357 |
+
"total_flos": 1.13424986013696e+16,
|
358 |
+
"train_loss": 1.0740083393297697,
|
359 |
+
"train_runtime": 415.974,
|
360 |
+
"train_samples_per_second": 29.194,
|
361 |
+
"train_steps_per_second": 0.914
|
362 |
+
}
|
363 |
+
],
|
364 |
+
"logging_steps": 10,
|
365 |
+
"max_steps": 380,
|
366 |
+
"num_input_tokens_seen": 0,
|
367 |
+
"num_train_epochs": 1,
|
368 |
+
"save_steps": 50,
|
369 |
+
"total_flos": 1.13424986013696e+16,
|
370 |
+
"train_batch_size": 16,
|
371 |
+
"trial_name": null,
|
372 |
+
"trial_params": null
|
373 |
+
}
|
Qwen/Qwen1.5_1.8B_amazon/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9b20cc25ef3f3381a0bb4e70b578853792c4ac9c2ffef36a86d3a450a66fc2aa
|
3 |
+
size 5944
|
Qwen/Qwen1.5_1.8B_amazon/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Qwen/Qwen1.5_1.8B_patent/README.md
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
base_model: Qwen/Qwen1.5-1.8B
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
model-index:
|
9 |
+
- name: Qwen1.5_1.8B_patent
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# Qwen1.5_1.8B_patent
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [Qwen/Qwen1.5-1.8B](https://huggingface.co/Qwen/Qwen1.5-1.8B) on an unknown dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.8989
|
21 |
+
- Accuracy: 0.6976
|
22 |
+
- F1 Macro: 0.6507
|
23 |
+
- F1 Micro: 0.6976
|
24 |
+
|
25 |
+
## Model description
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Intended uses & limitations
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training and evaluation data
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training procedure
|
38 |
+
|
39 |
+
### Training hyperparameters
|
40 |
+
|
41 |
+
The following hyperparameters were used during training:
|
42 |
+
- learning_rate: 5e-06
|
43 |
+
- train_batch_size: 32
|
44 |
+
- eval_batch_size: 32
|
45 |
+
- seed: 42
|
46 |
+
- distributed_type: multi-GPU
|
47 |
+
- num_devices: 2
|
48 |
+
- total_train_batch_size: 64
|
49 |
+
- total_eval_batch_size: 64
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- num_epochs: 3.0
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | F1 Micro |
|
57 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:--------:|
|
58 |
+
| 1.4469 | 0.13 | 50 | 1.3521 | 0.528 | 0.3842 | 0.528 |
|
59 |
+
| 1.1465 | 0.26 | 100 | 1.1614 | 0.596 | 0.4991 | 0.596 |
|
60 |
+
| 1.1717 | 0.38 | 150 | 1.0561 | 0.6286 | 0.5523 | 0.6286 |
|
61 |
+
| 0.9861 | 0.51 | 200 | 0.9592 | 0.6682 | 0.5813 | 0.6682 |
|
62 |
+
| 0.9701 | 0.64 | 250 | 0.9579 | 0.6658 | 0.5949 | 0.6658 |
|
63 |
+
| 0.9389 | 0.77 | 300 | 0.9364 | 0.679 | 0.6287 | 0.679 |
|
64 |
+
| 0.9914 | 0.9 | 350 | 0.9246 | 0.6756 | 0.6115 | 0.6756 |
|
65 |
+
| 0.7508 | 1.02 | 400 | 0.9047 | 0.6812 | 0.6406 | 0.6812 |
|
66 |
+
| 0.6312 | 1.15 | 450 | 0.9342 | 0.6844 | 0.6410 | 0.6844 |
|
67 |
+
| 0.6436 | 1.28 | 500 | 0.9464 | 0.6848 | 0.6410 | 0.6848 |
|
68 |
+
| 0.6429 | 1.41 | 550 | 0.9366 | 0.6846 | 0.6299 | 0.6846 |
|
69 |
+
| 0.6471 | 1.53 | 600 | 0.9347 | 0.6812 | 0.6490 | 0.6812 |
|
70 |
+
| 0.7045 | 1.66 | 650 | 0.9457 | 0.6696 | 0.6265 | 0.6696 |
|
71 |
+
| 0.6311 | 1.79 | 700 | 0.9206 | 0.6924 | 0.6303 | 0.6924 |
|
72 |
+
| 0.6659 | 1.92 | 750 | 0.8989 | 0.6976 | 0.6507 | 0.6976 |
|
73 |
+
| 0.2872 | 2.05 | 800 | 1.0101 | 0.6888 | 0.6524 | 0.6888 |
|
74 |
+
| 0.2666 | 2.17 | 850 | 1.1459 | 0.6824 | 0.6384 | 0.6824 |
|
75 |
+
| 0.3211 | 2.3 | 900 | 1.1165 | 0.6704 | 0.6362 | 0.6704 |
|
76 |
+
| 0.2831 | 2.43 | 950 | 1.1722 | 0.6698 | 0.6360 | 0.6698 |
|
77 |
+
| 0.2545 | 2.56 | 1000 | 1.2073 | 0.6714 | 0.6459 | 0.6714 |
|
78 |
+
| 0.2069 | 2.69 | 1050 | 1.1839 | 0.6798 | 0.6438 | 0.6798 |
|
79 |
+
| 0.2109 | 2.81 | 1100 | 1.1677 | 0.6778 | 0.6443 | 0.6778 |
|
80 |
+
| 0.2383 | 2.94 | 1150 | 1.1807 | 0.6776 | 0.6462 | 0.6776 |
|
81 |
+
|
82 |
+
|
83 |
+
### Framework versions
|
84 |
+
|
85 |
+
- Transformers 4.39.0.dev0
|
86 |
+
- Pytorch 2.2.1+cu121
|
87 |
+
- Datasets 2.18.0
|
88 |
+
- Tokenizers 0.15.2
|
Qwen/Qwen1.5_1.8B_patent/added_tokens.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|endoftext|>": 151643,
|
3 |
+
"<|im_end|>": 151645,
|
4 |
+
"<|im_start|>": 151644
|
5 |
+
}
|
Qwen/Qwen1.5_1.8B_patent/all_results.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 3.0,
|
3 |
+
"eval_accuracy": 0.6976,
|
4 |
+
"eval_f1_macro": 0.650699169639119,
|
5 |
+
"eval_f1_micro": 0.6976,
|
6 |
+
"eval_loss": 0.8989499807357788,
|
7 |
+
"eval_runtime": 12.2605,
|
8 |
+
"eval_samples": 5000,
|
9 |
+
"eval_samples_per_second": 407.812,
|
10 |
+
"eval_steps_per_second": 6.443,
|
11 |
+
"test_accuracy": 0.6908,
|
12 |
+
"test_f1_macro": 0.6462079547915075,
|
13 |
+
"test_f1_micro": 0.6908,
|
14 |
+
"test_loss": 0.9244624972343445,
|
15 |
+
"test_runtime": 12.378,
|
16 |
+
"test_samples_per_second": 403.941,
|
17 |
+
"test_steps_per_second": 6.382,
|
18 |
+
"train_loss": 0.7074367981737532,
|
19 |
+
"train_runtime": 1784.4626,
|
20 |
+
"train_samples": 25000,
|
21 |
+
"train_samples_per_second": 42.029,
|
22 |
+
"train_steps_per_second": 0.657
|
23 |
+
}
|
Qwen/Qwen1.5_1.8B_patent/checkpoint-750/added_tokens.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|endoftext|>": 151643,
|
3 |
+
"<|im_end|>": 151645,
|
4 |
+
"<|im_start|>": 151644
|
5 |
+
}
|
Qwen/Qwen1.5_1.8B_patent/checkpoint-750/config.json
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "Qwen/Qwen1.5-1.8B",
|
3 |
+
"architectures": [
|
4 |
+
"Qwen2ForSequenceClassification"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 151643,
|
8 |
+
"eos_token_id": 151643,
|
9 |
+
"finetuning_task": "text-classification",
|
10 |
+
"hidden_act": "silu",
|
11 |
+
"hidden_size": 2048,
|
12 |
+
"id2label": {
|
13 |
+
"0": "0",
|
14 |
+
"1": "1",
|
15 |
+
"2": "2",
|
16 |
+
"3": "3",
|
17 |
+
"4": "4",
|
18 |
+
"5": "5",
|
19 |
+
"6": "6",
|
20 |
+
"7": "7",
|
21 |
+
"8": "8"
|
22 |
+
},
|
23 |
+
"initializer_range": 0.02,
|
24 |
+
"intermediate_size": 5504,
|
25 |
+
"label2id": {
|
26 |
+
"0": 0,
|
27 |
+
"1": 1,
|
28 |
+
"2": 2,
|
29 |
+
"3": 3,
|
30 |
+
"4": 4,
|
31 |
+
"5": 5,
|
32 |
+
"6": 6,
|
33 |
+
"7": 7,
|
34 |
+
"8": 8
|
35 |
+
},
|
36 |
+
"max_position_embeddings": 32768,
|
37 |
+
"max_window_layers": 21,
|
38 |
+
"model_type": "qwen2",
|
39 |
+
"num_attention_heads": 16,
|
40 |
+
"num_hidden_layers": 24,
|
41 |
+
"num_key_value_heads": 16,
|
42 |
+
"pad_token_id": 151643,
|
43 |
+
"problem_type": "single_label_classification",
|
44 |
+
"rms_norm_eps": 1e-06,
|
45 |
+
"rope_theta": 1000000.0,
|
46 |
+
"sliding_window": 32768,
|
47 |
+
"tie_word_embeddings": false,
|
48 |
+
"torch_dtype": "bfloat16",
|
49 |
+
"transformers_version": "4.39.0.dev0",
|
50 |
+
"use_cache": true,
|
51 |
+
"use_sliding_window": false,
|
52 |
+
"vocab_size": 151646
|
53 |
+
}
|
Qwen/Qwen1.5_1.8B_patent/checkpoint-750/global_step750/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4c6c8681261953fd13d2e121bc6e969f092204eb68c4e3a3b67203b6f9c51c2f
|
3 |
+
size 9150543244
|
Qwen/Qwen1.5_1.8B_patent/checkpoint-750/global_step750/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e57843e2145662a8ea34f9ad8de2e88294b32bff31b3b9157bebf972a74d1d73
|
3 |
+
size 9150548108
|
Qwen/Qwen1.5_1.8B_patent/checkpoint-750/global_step750/mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:882c86c8a4f8b9c452381dd6b6167c73898a4966953847228af30e5fe30ddfbf
|
3 |
+
size 3050256760
|
Qwen/Qwen1.5_1.8B_patent/checkpoint-750/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step750
|
Qwen/Qwen1.5_1.8B_patent/checkpoint-750/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Qwen/Qwen1.5_1.8B_patent/checkpoint-750/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e31a9c68e89b60ce7d325470530730b525db9a9b5810cdc0d66c2079e99fbbd3
|
3 |
+
size 3050270294
|
Qwen/Qwen1.5_1.8B_patent/checkpoint-750/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5074c2f514d867cbda77efd9d2604382ce7761bd256224868852ee06af0ae72c
|
3 |
+
size 14512
|
Qwen/Qwen1.5_1.8B_patent/checkpoint-750/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:432b20563ba37d2f1c6b732f2e8893c9aea8ee994f464dc6a81b032c80692e4a
|
3 |
+
size 14512
|
Qwen/Qwen1.5_1.8B_patent/checkpoint-750/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1e08b4ee45e38267a036605946e276f9b0ce759d911b0ea716489ed31202d826
|
3 |
+
size 1064
|
Qwen/Qwen1.5_1.8B_patent/checkpoint-750/special_tokens_map.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>"
|
5 |
+
],
|
6 |
+
"eos_token": {
|
7 |
+
"content": "<|endoftext|>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false
|
12 |
+
},
|
13 |
+
"pad_token": "<|endoftext|>"
|
14 |
+
}
|
Qwen/Qwen1.5_1.8B_patent/checkpoint-750/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|