akkky02 commited on
Commit
7e15240
1 Parent(s): 8f76322

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. Qwen/Qwen1.5_1.8B_amazon/README.md +72 -0
  2. Qwen/Qwen1.5_1.8B_amazon/added_tokens.json +5 -0
  3. Qwen/Qwen1.5_1.8B_amazon/all_results.json +23 -0
  4. Qwen/Qwen1.5_1.8B_amazon/checkpoint-350/added_tokens.json +5 -0
  5. Qwen/Qwen1.5_1.8B_amazon/checkpoint-350/config.json +81 -0
  6. Qwen/Qwen1.5_1.8B_amazon/checkpoint-350/global_step350/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  7. Qwen/Qwen1.5_1.8B_amazon/checkpoint-350/global_step350/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  8. Qwen/Qwen1.5_1.8B_amazon/checkpoint-350/global_step350/mp_rank_00_model_states.pt +3 -0
  9. Qwen/Qwen1.5_1.8B_amazon/checkpoint-350/latest +1 -0
  10. Qwen/Qwen1.5_1.8B_amazon/checkpoint-350/merges.txt +0 -0
  11. Qwen/Qwen1.5_1.8B_amazon/checkpoint-350/model.safetensors +3 -0
  12. Qwen/Qwen1.5_1.8B_amazon/checkpoint-350/rng_state_0.pth +3 -0
  13. Qwen/Qwen1.5_1.8B_amazon/checkpoint-350/rng_state_1.pth +3 -0
  14. Qwen/Qwen1.5_1.8B_amazon/checkpoint-350/scheduler.pt +3 -0
  15. Qwen/Qwen1.5_1.8B_amazon/checkpoint-350/special_tokens_map.json +14 -0
  16. Qwen/Qwen1.5_1.8B_amazon/checkpoint-350/tokenizer.json +0 -0
  17. Qwen/Qwen1.5_1.8B_amazon/checkpoint-350/tokenizer_config.json +43 -0
  18. Qwen/Qwen1.5_1.8B_amazon/checkpoint-350/trainer_state.json +343 -0
  19. Qwen/Qwen1.5_1.8B_amazon/checkpoint-350/training_args.bin +3 -0
  20. Qwen/Qwen1.5_1.8B_amazon/checkpoint-350/vocab.json +0 -0
  21. Qwen/Qwen1.5_1.8B_amazon/checkpoint-350/zero_to_fp32.py +604 -0
  22. Qwen/Qwen1.5_1.8B_amazon/config.json +81 -0
  23. Qwen/Qwen1.5_1.8B_amazon/eval_results.json +11 -0
  24. Qwen/Qwen1.5_1.8B_amazon/merges.txt +0 -0
  25. Qwen/Qwen1.5_1.8B_amazon/model.safetensors +3 -0
  26. Qwen/Qwen1.5_1.8B_amazon/run.log +4 -0
  27. Qwen/Qwen1.5_1.8B_amazon/special_tokens_map.json +14 -0
  28. Qwen/Qwen1.5_1.8B_amazon/test_results.json +10 -0
  29. Qwen/Qwen1.5_1.8B_amazon/tokenizer.json +0 -0
  30. Qwen/Qwen1.5_1.8B_amazon/tokenizer_config.json +43 -0
  31. Qwen/Qwen1.5_1.8B_amazon/train_results.json +8 -0
  32. Qwen/Qwen1.5_1.8B_amazon/trainer_state.json +373 -0
  33. Qwen/Qwen1.5_1.8B_amazon/training_args.bin +3 -0
  34. Qwen/Qwen1.5_1.8B_amazon/vocab.json +0 -0
  35. Qwen/Qwen1.5_1.8B_patent/README.md +88 -0
  36. Qwen/Qwen1.5_1.8B_patent/added_tokens.json +5 -0
  37. Qwen/Qwen1.5_1.8B_patent/all_results.json +23 -0
  38. Qwen/Qwen1.5_1.8B_patent/checkpoint-750/added_tokens.json +5 -0
  39. Qwen/Qwen1.5_1.8B_patent/checkpoint-750/config.json +53 -0
  40. Qwen/Qwen1.5_1.8B_patent/checkpoint-750/global_step750/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  41. Qwen/Qwen1.5_1.8B_patent/checkpoint-750/global_step750/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  42. Qwen/Qwen1.5_1.8B_patent/checkpoint-750/global_step750/mp_rank_00_model_states.pt +3 -0
  43. Qwen/Qwen1.5_1.8B_patent/checkpoint-750/latest +1 -0
  44. Qwen/Qwen1.5_1.8B_patent/checkpoint-750/merges.txt +0 -0
  45. Qwen/Qwen1.5_1.8B_patent/checkpoint-750/pytorch_model.bin +3 -0
  46. Qwen/Qwen1.5_1.8B_patent/checkpoint-750/rng_state_0.pth +3 -0
  47. Qwen/Qwen1.5_1.8B_patent/checkpoint-750/rng_state_1.pth +3 -0
  48. Qwen/Qwen1.5_1.8B_patent/checkpoint-750/scheduler.pt +3 -0
  49. Qwen/Qwen1.5_1.8B_patent/checkpoint-750/special_tokens_map.json +14 -0
  50. Qwen/Qwen1.5_1.8B_patent/checkpoint-750/tokenizer.json +0 -0
Qwen/Qwen1.5_1.8B_amazon/README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ base_model: Qwen/Qwen1.5-1.8B
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ model-index:
9
+ - name: Qwen1.5_1.8B_amazon
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # Qwen1.5_1.8B_amazon
17
+
18
+ This model is a fine-tuned version of [Qwen/Qwen1.5-1.8B](https://huggingface.co/Qwen/Qwen1.5-1.8B) on an unknown dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.5073
21
+ - Accuracy: 0.8524
22
+ - F1 Macro: 0.8290
23
+ - F1 Micro: 0.8524
24
+
25
+ ## Model description
26
+
27
+ More information needed
28
+
29
+ ## Intended uses & limitations
30
+
31
+ More information needed
32
+
33
+ ## Training and evaluation data
34
+
35
+ More information needed
36
+
37
+ ## Training procedure
38
+
39
+ ### Training hyperparameters
40
+
41
+ The following hyperparameters were used during training:
42
+ - learning_rate: 5e-06
43
+ - train_batch_size: 16
44
+ - eval_batch_size: 16
45
+ - seed: 42
46
+ - distributed_type: multi-GPU
47
+ - num_devices: 2
48
+ - total_train_batch_size: 32
49
+ - total_eval_batch_size: 32
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - num_epochs: 1.0
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | F1 Micro |
57
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:--------:|
58
+ | 1.5641 | 0.13 | 50 | 1.2905 | 0.6476 | 0.5589 | 0.6476 |
59
+ | 0.744 | 0.26 | 100 | 0.7994 | 0.7694 | 0.7166 | 0.7694 |
60
+ | 0.7245 | 0.39 | 150 | 0.6846 | 0.7997 | 0.7450 | 0.7997 |
61
+ | 0.6491 | 0.53 | 200 | 0.6406 | 0.8155 | 0.7679 | 0.8155 |
62
+ | 0.6193 | 0.66 | 250 | 0.5427 | 0.8399 | 0.7970 | 0.8399 |
63
+ | 0.4828 | 0.79 | 300 | 0.5453 | 0.8366 | 0.8114 | 0.8366 |
64
+ | 0.6122 | 0.92 | 350 | 0.5073 | 0.8524 | 0.8290 | 0.8524 |
65
+
66
+
67
+ ### Framework versions
68
+
69
+ - Transformers 4.39.0.dev0
70
+ - Pytorch 2.2.1+cu121
71
+ - Datasets 2.18.0
72
+ - Tokenizers 0.15.2
Qwen/Qwen1.5_1.8B_amazon/added_tokens.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "<|endoftext|>": 151643,
3
+ "<|im_end|>": 151645,
4
+ "<|im_start|>": 151644
5
+ }
Qwen/Qwen1.5_1.8B_amazon/all_results.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 1.0,
3
+ "eval_accuracy": 0.852437417654809,
4
+ "eval_f1_macro": 0.8289709215944268,
5
+ "eval_f1_micro": 0.852437417654809,
6
+ "eval_loss": 0.5073133111000061,
7
+ "eval_runtime": 3.9722,
8
+ "eval_samples": 1518,
9
+ "eval_samples_per_second": 382.155,
10
+ "eval_steps_per_second": 12.084,
11
+ "test_accuracy": 0.8656126482213439,
12
+ "test_f1_macro": 0.8295835523548035,
13
+ "test_f1_micro": 0.8656126482213439,
14
+ "test_loss": 0.4794342815876007,
15
+ "test_runtime": 4.0382,
16
+ "test_samples_per_second": 375.908,
17
+ "test_steps_per_second": 11.886,
18
+ "train_loss": 1.0740083393297697,
19
+ "train_runtime": 415.974,
20
+ "train_samples": 12144,
21
+ "train_samples_per_second": 29.194,
22
+ "train_steps_per_second": 0.914
23
+ }
Qwen/Qwen1.5_1.8B_amazon/checkpoint-350/added_tokens.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "<|endoftext|>": 151643,
3
+ "<|im_end|>": 151645,
4
+ "<|im_start|>": 151644
5
+ }
Qwen/Qwen1.5_1.8B_amazon/checkpoint-350/config.json ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen1.5-1.8B",
3
+ "architectures": [
4
+ "Qwen2ForSequenceClassification"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151643,
9
+ "finetuning_task": "text-classification",
10
+ "hidden_act": "silu",
11
+ "hidden_size": 2048,
12
+ "id2label": {
13
+ "0": "0",
14
+ "1": "1",
15
+ "2": "10",
16
+ "3": "11",
17
+ "4": "12",
18
+ "5": "13",
19
+ "6": "14",
20
+ "7": "15",
21
+ "8": "16",
22
+ "9": "17",
23
+ "10": "18",
24
+ "11": "19",
25
+ "12": "2",
26
+ "13": "20",
27
+ "14": "21",
28
+ "15": "22",
29
+ "16": "3",
30
+ "17": "4",
31
+ "18": "5",
32
+ "19": "6",
33
+ "20": "7",
34
+ "21": "8",
35
+ "22": "9"
36
+ },
37
+ "initializer_range": 0.02,
38
+ "intermediate_size": 5504,
39
+ "label2id": {
40
+ "0": 0,
41
+ "1": 1,
42
+ "10": 2,
43
+ "11": 3,
44
+ "12": 4,
45
+ "13": 5,
46
+ "14": 6,
47
+ "15": 7,
48
+ "16": 8,
49
+ "17": 9,
50
+ "18": 10,
51
+ "19": 11,
52
+ "2": 12,
53
+ "20": 13,
54
+ "21": 14,
55
+ "22": 15,
56
+ "3": 16,
57
+ "4": 17,
58
+ "5": 18,
59
+ "6": 19,
60
+ "7": 20,
61
+ "8": 21,
62
+ "9": 22
63
+ },
64
+ "max_position_embeddings": 32768,
65
+ "max_window_layers": 21,
66
+ "model_type": "qwen2",
67
+ "num_attention_heads": 16,
68
+ "num_hidden_layers": 24,
69
+ "num_key_value_heads": 16,
70
+ "pad_token_id": 151643,
71
+ "problem_type": "single_label_classification",
72
+ "rms_norm_eps": 1e-06,
73
+ "rope_theta": 1000000.0,
74
+ "sliding_window": 32768,
75
+ "tie_word_embeddings": false,
76
+ "torch_dtype": "bfloat16",
77
+ "transformers_version": "4.39.0.dev0",
78
+ "use_cache": true,
79
+ "use_sliding_window": false,
80
+ "vocab_size": 151646
81
+ }
Qwen/Qwen1.5_1.8B_amazon/checkpoint-350/global_step350/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e08f9ddeb9dca9bf94cdc457dd21a296528f54c1a28b8af27f936599ebc5e46d
3
+ size 9150715276
Qwen/Qwen1.5_1.8B_amazon/checkpoint-350/global_step350/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0e7e454f14efa9979ff8e981a3dac6698bd7f776065bdc719c7e7d2ff8fd9a1e
3
+ size 9150720140
Qwen/Qwen1.5_1.8B_amazon/checkpoint-350/global_step350/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d8f80552d860681d5289ac4fcfaa66284b26fcd501aea94b38410446e3284d61
3
+ size 3050314104
Qwen/Qwen1.5_1.8B_amazon/checkpoint-350/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step350
Qwen/Qwen1.5_1.8B_amazon/checkpoint-350/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
Qwen/Qwen1.5_1.8B_amazon/checkpoint-350/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:808b083c2b74b6e447184a8246a4f99aa1838fe9f48beb716cd8d58963f8bbdd
3
+ size 3050267112
Qwen/Qwen1.5_1.8B_amazon/checkpoint-350/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef1d637e319354543bdf6602f8671d0efc3f4c6a598f00c1d5dcff1b2ab0526b
3
+ size 14512
Qwen/Qwen1.5_1.8B_amazon/checkpoint-350/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a10e91fc2fde9de5ea613418b9d98240dbbdab43b35a47dfeeda62762dc069e
3
+ size 14512
Qwen/Qwen1.5_1.8B_amazon/checkpoint-350/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:93c1c646c9b712a4834345fe22046fc71096a5565a8a35ccaa0f8943b016cf5a
3
+ size 1064
Qwen/Qwen1.5_1.8B_amazon/checkpoint-350/special_tokens_map.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>"
5
+ ],
6
+ "eos_token": {
7
+ "content": "<|endoftext|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false
12
+ },
13
+ "pad_token": "<|endoftext|>"
14
+ }
Qwen/Qwen1.5_1.8B_amazon/checkpoint-350/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
Qwen/Qwen1.5_1.8B_amazon/checkpoint-350/tokenizer_config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "151643": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "151644": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "151645": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ }
28
+ },
29
+ "additional_special_tokens": [
30
+ "<|im_start|>",
31
+ "<|im_end|>"
32
+ ],
33
+ "bos_token": null,
34
+ "chat_template": "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
35
+ "clean_up_tokenization_spaces": false,
36
+ "eos_token": "<|endoftext|>",
37
+ "errors": "replace",
38
+ "model_max_length": 32768,
39
+ "pad_token": "<|endoftext|>",
40
+ "split_special_tokens": false,
41
+ "tokenizer_class": "Qwen2Tokenizer",
42
+ "unk_token": null
43
+ }
Qwen/Qwen1.5_1.8B_amazon/checkpoint-350/trainer_state.json ADDED
@@ -0,0 +1,343 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.5073133111000061,
3
+ "best_model_checkpoint": "../../experiments_checkpoints/MAdAiLab/Qwen/Qwen1.5_1.8B_amazon/checkpoint-350",
4
+ "epoch": 0.9210526315789473,
5
+ "eval_steps": 50,
6
+ "global_step": 350,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.03,
13
+ "grad_norm": 129.14089965820312,
14
+ "learning_rate": 4.8684210526315795e-06,
15
+ "loss": 7.3844,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.05,
20
+ "grad_norm": 123.16605377197266,
21
+ "learning_rate": 4.736842105263158e-06,
22
+ "loss": 4.8281,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.08,
27
+ "grad_norm": 73.3310546875,
28
+ "learning_rate": 4.605263157894737e-06,
29
+ "loss": 3.2703,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.11,
34
+ "grad_norm": 79.52980041503906,
35
+ "learning_rate": 4.473684210526316e-06,
36
+ "loss": 2.0736,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.13,
41
+ "grad_norm": 65.27238464355469,
42
+ "learning_rate": 4.342105263157895e-06,
43
+ "loss": 1.5641,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.13,
48
+ "eval_accuracy": 0.647562582345191,
49
+ "eval_f1_macro": 0.5588571972473421,
50
+ "eval_f1_micro": 0.647562582345191,
51
+ "eval_loss": 1.2904983758926392,
52
+ "eval_runtime": 4.0513,
53
+ "eval_samples_per_second": 374.697,
54
+ "eval_steps_per_second": 11.848,
55
+ "step": 50
56
+ },
57
+ {
58
+ "epoch": 0.16,
59
+ "grad_norm": 50.00752258300781,
60
+ "learning_rate": 4.210526315789474e-06,
61
+ "loss": 1.1144,
62
+ "step": 60
63
+ },
64
+ {
65
+ "epoch": 0.18,
66
+ "grad_norm": 39.85783386230469,
67
+ "learning_rate": 4.078947368421053e-06,
68
+ "loss": 1.1287,
69
+ "step": 70
70
+ },
71
+ {
72
+ "epoch": 0.21,
73
+ "grad_norm": 62.46803665161133,
74
+ "learning_rate": 3.947368421052632e-06,
75
+ "loss": 0.8914,
76
+ "step": 80
77
+ },
78
+ {
79
+ "epoch": 0.24,
80
+ "grad_norm": 42.484432220458984,
81
+ "learning_rate": 3.815789473684211e-06,
82
+ "loss": 0.8281,
83
+ "step": 90
84
+ },
85
+ {
86
+ "epoch": 0.26,
87
+ "grad_norm": 48.54948043823242,
88
+ "learning_rate": 3.6842105263157896e-06,
89
+ "loss": 0.744,
90
+ "step": 100
91
+ },
92
+ {
93
+ "epoch": 0.26,
94
+ "eval_accuracy": 0.769433465085639,
95
+ "eval_f1_macro": 0.716629286760697,
96
+ "eval_f1_micro": 0.769433465085639,
97
+ "eval_loss": 0.7993608117103577,
98
+ "eval_runtime": 4.0452,
99
+ "eval_samples_per_second": 375.256,
100
+ "eval_steps_per_second": 11.866,
101
+ "step": 100
102
+ },
103
+ {
104
+ "epoch": 0.29,
105
+ "grad_norm": 47.28898239135742,
106
+ "learning_rate": 3.5526315789473687e-06,
107
+ "loss": 0.9268,
108
+ "step": 110
109
+ },
110
+ {
111
+ "epoch": 0.32,
112
+ "grad_norm": 49.59343338012695,
113
+ "learning_rate": 3.421052631578948e-06,
114
+ "loss": 0.7649,
115
+ "step": 120
116
+ },
117
+ {
118
+ "epoch": 0.34,
119
+ "grad_norm": 36.2591438293457,
120
+ "learning_rate": 3.289473684210527e-06,
121
+ "loss": 0.716,
122
+ "step": 130
123
+ },
124
+ {
125
+ "epoch": 0.37,
126
+ "grad_norm": 47.06060791015625,
127
+ "learning_rate": 3.157894736842105e-06,
128
+ "loss": 0.5508,
129
+ "step": 140
130
+ },
131
+ {
132
+ "epoch": 0.39,
133
+ "grad_norm": 45.960975646972656,
134
+ "learning_rate": 3.0263157894736843e-06,
135
+ "loss": 0.7245,
136
+ "step": 150
137
+ },
138
+ {
139
+ "epoch": 0.39,
140
+ "eval_accuracy": 0.7997364953886693,
141
+ "eval_f1_macro": 0.744994161609646,
142
+ "eval_f1_micro": 0.7997364953886693,
143
+ "eval_loss": 0.6845870614051819,
144
+ "eval_runtime": 4.0142,
145
+ "eval_samples_per_second": 378.16,
146
+ "eval_steps_per_second": 11.958,
147
+ "step": 150
148
+ },
149
+ {
150
+ "epoch": 0.42,
151
+ "grad_norm": 49.28917694091797,
152
+ "learning_rate": 2.8947368421052634e-06,
153
+ "loss": 0.6837,
154
+ "step": 160
155
+ },
156
+ {
157
+ "epoch": 0.45,
158
+ "grad_norm": 34.09211349487305,
159
+ "learning_rate": 2.7631578947368424e-06,
160
+ "loss": 0.6589,
161
+ "step": 170
162
+ },
163
+ {
164
+ "epoch": 0.47,
165
+ "grad_norm": 38.694705963134766,
166
+ "learning_rate": 2.631578947368421e-06,
167
+ "loss": 0.6702,
168
+ "step": 180
169
+ },
170
+ {
171
+ "epoch": 0.5,
172
+ "grad_norm": 64.92501068115234,
173
+ "learning_rate": 2.5e-06,
174
+ "loss": 0.7353,
175
+ "step": 190
176
+ },
177
+ {
178
+ "epoch": 0.53,
179
+ "grad_norm": 39.18191909790039,
180
+ "learning_rate": 2.368421052631579e-06,
181
+ "loss": 0.6491,
182
+ "step": 200
183
+ },
184
+ {
185
+ "epoch": 0.53,
186
+ "eval_accuracy": 0.8155467720685112,
187
+ "eval_f1_macro": 0.7679142075529768,
188
+ "eval_f1_micro": 0.8155467720685112,
189
+ "eval_loss": 0.640599250793457,
190
+ "eval_runtime": 4.0408,
191
+ "eval_samples_per_second": 375.669,
192
+ "eval_steps_per_second": 11.879,
193
+ "step": 200
194
+ },
195
+ {
196
+ "epoch": 0.55,
197
+ "grad_norm": 39.82322311401367,
198
+ "learning_rate": 2.236842105263158e-06,
199
+ "loss": 0.545,
200
+ "step": 210
201
+ },
202
+ {
203
+ "epoch": 0.58,
204
+ "grad_norm": 60.72475051879883,
205
+ "learning_rate": 2.105263157894737e-06,
206
+ "loss": 0.5595,
207
+ "step": 220
208
+ },
209
+ {
210
+ "epoch": 0.61,
211
+ "grad_norm": 42.45864486694336,
212
+ "learning_rate": 1.973684210526316e-06,
213
+ "loss": 0.6386,
214
+ "step": 230
215
+ },
216
+ {
217
+ "epoch": 0.63,
218
+ "grad_norm": 48.077884674072266,
219
+ "learning_rate": 1.8421052631578948e-06,
220
+ "loss": 0.649,
221
+ "step": 240
222
+ },
223
+ {
224
+ "epoch": 0.66,
225
+ "grad_norm": 48.596435546875,
226
+ "learning_rate": 1.710526315789474e-06,
227
+ "loss": 0.6193,
228
+ "step": 250
229
+ },
230
+ {
231
+ "epoch": 0.66,
232
+ "eval_accuracy": 0.8399209486166008,
233
+ "eval_f1_macro": 0.7970428846372188,
234
+ "eval_f1_micro": 0.8399209486166008,
235
+ "eval_loss": 0.5427243113517761,
236
+ "eval_runtime": 4.3118,
237
+ "eval_samples_per_second": 352.055,
238
+ "eval_steps_per_second": 11.132,
239
+ "step": 250
240
+ },
241
+ {
242
+ "epoch": 0.68,
243
+ "grad_norm": 45.50446319580078,
244
+ "learning_rate": 1.5789473684210526e-06,
245
+ "loss": 0.6343,
246
+ "step": 260
247
+ },
248
+ {
249
+ "epoch": 0.71,
250
+ "grad_norm": 40.66709518432617,
251
+ "learning_rate": 1.4473684210526317e-06,
252
+ "loss": 0.5493,
253
+ "step": 270
254
+ },
255
+ {
256
+ "epoch": 0.74,
257
+ "grad_norm": 50.266971588134766,
258
+ "learning_rate": 1.3157894736842106e-06,
259
+ "loss": 0.5177,
260
+ "step": 280
261
+ },
262
+ {
263
+ "epoch": 0.76,
264
+ "grad_norm": 41.21518325805664,
265
+ "learning_rate": 1.1842105263157894e-06,
266
+ "loss": 0.4751,
267
+ "step": 290
268
+ },
269
+ {
270
+ "epoch": 0.79,
271
+ "grad_norm": 35.079444885253906,
272
+ "learning_rate": 1.0526315789473685e-06,
273
+ "loss": 0.4828,
274
+ "step": 300
275
+ },
276
+ {
277
+ "epoch": 0.79,
278
+ "eval_accuracy": 0.836627140974967,
279
+ "eval_f1_macro": 0.8114023231734937,
280
+ "eval_f1_micro": 0.836627140974967,
281
+ "eval_loss": 0.5453078746795654,
282
+ "eval_runtime": 4.0339,
283
+ "eval_samples_per_second": 376.309,
284
+ "eval_steps_per_second": 11.899,
285
+ "step": 300
286
+ },
287
+ {
288
+ "epoch": 0.82,
289
+ "grad_norm": 51.024139404296875,
290
+ "learning_rate": 9.210526315789474e-07,
291
+ "loss": 0.4726,
292
+ "step": 310
293
+ },
294
+ {
295
+ "epoch": 0.84,
296
+ "grad_norm": 41.68681335449219,
297
+ "learning_rate": 7.894736842105263e-07,
298
+ "loss": 0.5492,
299
+ "step": 320
300
+ },
301
+ {
302
+ "epoch": 0.87,
303
+ "grad_norm": 31.459598541259766,
304
+ "learning_rate": 6.578947368421053e-07,
305
+ "loss": 0.6464,
306
+ "step": 330
307
+ },
308
+ {
309
+ "epoch": 0.89,
310
+ "grad_norm": 37.8900260925293,
311
+ "learning_rate": 5.263157894736843e-07,
312
+ "loss": 0.4235,
313
+ "step": 340
314
+ },
315
+ {
316
+ "epoch": 0.92,
317
+ "grad_norm": 80.35220336914062,
318
+ "learning_rate": 3.9473684210526315e-07,
319
+ "loss": 0.6122,
320
+ "step": 350
321
+ },
322
+ {
323
+ "epoch": 0.92,
324
+ "eval_accuracy": 0.852437417654809,
325
+ "eval_f1_macro": 0.8289709215944268,
326
+ "eval_f1_micro": 0.852437417654809,
327
+ "eval_loss": 0.5073133111000061,
328
+ "eval_runtime": 4.0684,
329
+ "eval_samples_per_second": 373.116,
330
+ "eval_steps_per_second": 11.798,
331
+ "step": 350
332
+ }
333
+ ],
334
+ "logging_steps": 10,
335
+ "max_steps": 380,
336
+ "num_input_tokens_seen": 0,
337
+ "num_train_epochs": 1,
338
+ "save_steps": 50,
339
+ "total_flos": 1.0447038185472e+16,
340
+ "train_batch_size": 16,
341
+ "trial_name": null,
342
+ "trial_params": null
343
+ }
Qwen/Qwen1.5_1.8B_amazon/checkpoint-350/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b20cc25ef3f3381a0bb4e70b578853792c4ac9c2ffef36a86d3a450a66fc2aa
3
+ size 5944
Qwen/Qwen1.5_1.8B_amazon/checkpoint-350/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
Qwen/Qwen1.5_1.8B_amazon/checkpoint-350/zero_to_fp32.py ADDED
@@ -0,0 +1,604 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
215
+ exclude_frozen_parameters)
216
+ elif zero_stage == 3:
217
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
218
+ exclude_frozen_parameters)
219
+
220
+
221
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
222
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
223
+ return
224
+
225
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
226
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
227
+
228
+ if debug:
229
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
230
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
231
+
232
+ wanted_params = len(frozen_param_shapes)
233
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
234
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
235
+ print(f'Frozen params: Have {avail_numel} numels to process.')
236
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
237
+
238
+ total_params = 0
239
+ total_numel = 0
240
+ for name, shape in frozen_param_shapes.items():
241
+ total_params += 1
242
+ unpartitioned_numel = shape.numel()
243
+ total_numel += unpartitioned_numel
244
+
245
+ state_dict[name] = frozen_param_fragments[name]
246
+
247
+ if debug:
248
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
249
+
250
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
251
+
252
+
253
+ def _has_callable(obj, fn):
254
+ attr = getattr(obj, fn, None)
255
+ return callable(attr)
256
+
257
+
258
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
259
+ param_shapes = zero_model_states[0].param_shapes
260
+
261
+ # Reconstruction protocol:
262
+ #
263
+ # XXX: document this
264
+
265
+ if debug:
266
+ for i in range(world_size):
267
+ for j in range(len(fp32_flat_groups[0])):
268
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
269
+
270
+ # XXX: memory usage doubles here (zero2)
271
+ num_param_groups = len(fp32_flat_groups[0])
272
+ merged_single_partition_of_fp32_groups = []
273
+ for i in range(num_param_groups):
274
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
275
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
276
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
277
+ avail_numel = sum(
278
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
279
+
280
+ if debug:
281
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
282
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
283
+ # not asserting if there is a mismatch due to possible padding
284
+ print(f"Have {avail_numel} numels to process.")
285
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
286
+
287
+ # params
288
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
289
+ # out-of-core computing solution
290
+ total_numel = 0
291
+ total_params = 0
292
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
293
+ offset = 0
294
+ avail_numel = full_single_fp32_vector.numel()
295
+ for name, shape in shapes.items():
296
+
297
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
298
+ total_numel += unpartitioned_numel
299
+ total_params += 1
300
+
301
+ if debug:
302
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
303
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
304
+ offset += unpartitioned_numel
305
+
306
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
307
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
308
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
309
+ # live optimizer object, so we are checking that the numbers are within the right range
310
+ align_to = 2 * world_size
311
+
312
+ def zero2_align(x):
313
+ return align_to * math.ceil(x / align_to)
314
+
315
+ if debug:
316
+ print(f"original offset={offset}, avail_numel={avail_numel}")
317
+
318
+ offset = zero2_align(offset)
319
+ avail_numel = zero2_align(avail_numel)
320
+
321
+ if debug:
322
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
323
+
324
+ # Sanity check
325
+ if offset != avail_numel:
326
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
327
+
328
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
329
+
330
+
331
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
332
+ exclude_frozen_parameters):
333
+ state_dict = OrderedDict()
334
+
335
+ # buffers
336
+ buffers = zero_model_states[0].buffers
337
+ state_dict.update(buffers)
338
+ if debug:
339
+ print(f"added {len(buffers)} buffers")
340
+
341
+ if not exclude_frozen_parameters:
342
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
343
+
344
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
345
+
346
+ # recover shared parameters
347
+ for pair in zero_model_states[0].shared_params:
348
+ if pair[1] in state_dict:
349
+ state_dict[pair[0]] = state_dict[pair[1]]
350
+
351
+ return state_dict
352
+
353
+
354
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
355
+ remainder = unpartitioned_numel % world_size
356
+ padding_numel = (world_size - remainder) if remainder else 0
357
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
358
+ return partitioned_numel, padding_numel
359
+
360
+
361
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
362
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
363
+ return
364
+
365
+ if debug:
366
+ for i in range(world_size):
367
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
368
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
369
+
370
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
371
+ wanted_params = len(frozen_param_shapes)
372
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
373
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
374
+ print(f'Frozen params: Have {avail_numel} numels to process.')
375
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
376
+
377
+ total_params = 0
378
+ total_numel = 0
379
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
380
+ total_params += 1
381
+ unpartitioned_numel = shape.numel()
382
+ total_numel += unpartitioned_numel
383
+
384
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
385
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
386
+
387
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
388
+
389
+ if debug:
390
+ print(
391
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
392
+ )
393
+
394
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
395
+
396
+
397
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
398
+ param_shapes = zero_model_states[0].param_shapes
399
+ avail_numel = fp32_flat_groups[0].numel() * world_size
400
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
401
+ # param, re-consolidating each param, while dealing with padding if any
402
+
403
+ # merge list of dicts, preserving order
404
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
405
+
406
+ if debug:
407
+ for i in range(world_size):
408
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
409
+
410
+ wanted_params = len(param_shapes)
411
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
412
+ # not asserting if there is a mismatch due to possible padding
413
+ avail_numel = fp32_flat_groups[0].numel() * world_size
414
+ print(f"Trainable params: Have {avail_numel} numels to process.")
415
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
416
+
417
+ # params
418
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
419
+ # out-of-core computing solution
420
+ offset = 0
421
+ total_numel = 0
422
+ total_params = 0
423
+ for name, shape in param_shapes.items():
424
+
425
+ unpartitioned_numel = shape.numel()
426
+ total_numel += unpartitioned_numel
427
+ total_params += 1
428
+
429
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
430
+
431
+ if debug:
432
+ print(
433
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
434
+ )
435
+
436
+ # XXX: memory usage doubles here
437
+ state_dict[name] = torch.cat(
438
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
439
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
440
+ offset += partitioned_numel
441
+
442
+ offset *= world_size
443
+
444
+ # Sanity check
445
+ if offset != avail_numel:
446
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
447
+
448
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
449
+
450
+
451
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
452
+ exclude_frozen_parameters):
453
+ state_dict = OrderedDict()
454
+
455
+ # buffers
456
+ buffers = zero_model_states[0].buffers
457
+ state_dict.update(buffers)
458
+ if debug:
459
+ print(f"added {len(buffers)} buffers")
460
+
461
+ if not exclude_frozen_parameters:
462
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
463
+
464
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
465
+
466
+ # recover shared parameters
467
+ for pair in zero_model_states[0].shared_params:
468
+ if pair[1] in state_dict:
469
+ state_dict[pair[0]] = state_dict[pair[1]]
470
+
471
+ return state_dict
472
+
473
+
474
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
475
+ """
476
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
477
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
478
+ via a model hub.
479
+
480
+ Args:
481
+ - ``checkpoint_dir``: path to the desired checkpoint folder
482
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
483
+ - ``exclude_frozen_parameters``: exclude frozen parameters
484
+
485
+ Returns:
486
+ - pytorch ``state_dict``
487
+
488
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
489
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
490
+ the checkpoint.
491
+
492
+ A typical usage might be ::
493
+
494
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
495
+ # do the training and checkpoint saving
496
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
497
+ model = model.cpu() # move to cpu
498
+ model.load_state_dict(state_dict)
499
+ # submit to model hub or save the model to share with others
500
+
501
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
502
+ application. i.e. you will need to re-initialize the deepspeed engine, since
503
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
504
+
505
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
506
+
507
+ """
508
+ if tag is None:
509
+ latest_path = os.path.join(checkpoint_dir, 'latest')
510
+ if os.path.isfile(latest_path):
511
+ with open(latest_path, 'r') as fd:
512
+ tag = fd.read().strip()
513
+ else:
514
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
515
+
516
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
517
+
518
+ if not os.path.isdir(ds_checkpoint_dir):
519
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
520
+
521
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
522
+
523
+
524
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
525
+ """
526
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
527
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
528
+
529
+ Args:
530
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
531
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
532
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
533
+ - ``exclude_frozen_parameters``: exclude frozen parameters
534
+ """
535
+
536
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
537
+ print(f"Saving fp32 state dict to {output_file}")
538
+ torch.save(state_dict, output_file)
539
+
540
+
541
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
542
+ """
543
+ 1. Put the provided model to cpu
544
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
545
+ 3. Load it into the provided model
546
+
547
+ Args:
548
+ - ``model``: the model object to update
549
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
550
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
551
+
552
+ Returns:
553
+ - ``model`: modified model
554
+
555
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
556
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
557
+ conveniently placed for you in the checkpoint folder.
558
+
559
+ A typical usage might be ::
560
+
561
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
562
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
563
+ # submit to model hub or save the model to share with others
564
+
565
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
566
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
567
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
568
+
569
+ """
570
+ logger.info(f"Extracting fp32 weights")
571
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
572
+
573
+ logger.info(f"Overwriting model with fp32 weights")
574
+ model = model.cpu()
575
+ model.load_state_dict(state_dict, strict=False)
576
+
577
+ return model
578
+
579
+
580
+ if __name__ == "__main__":
581
+
582
+ parser = argparse.ArgumentParser()
583
+ parser.add_argument("checkpoint_dir",
584
+ type=str,
585
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
586
+ parser.add_argument(
587
+ "output_file",
588
+ type=str,
589
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
590
+ parser.add_argument("-t",
591
+ "--tag",
592
+ type=str,
593
+ default=None,
594
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
595
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
596
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
597
+ args = parser.parse_args()
598
+
599
+ debug = args.debug
600
+
601
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
602
+ args.output_file,
603
+ tag=args.tag,
604
+ exclude_frozen_parameters=args.exclude_frozen_parameters)
Qwen/Qwen1.5_1.8B_amazon/config.json ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen1.5-1.8B",
3
+ "architectures": [
4
+ "Qwen2ForSequenceClassification"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151643,
9
+ "finetuning_task": "text-classification",
10
+ "hidden_act": "silu",
11
+ "hidden_size": 2048,
12
+ "id2label": {
13
+ "0": "0",
14
+ "1": "1",
15
+ "2": "10",
16
+ "3": "11",
17
+ "4": "12",
18
+ "5": "13",
19
+ "6": "14",
20
+ "7": "15",
21
+ "8": "16",
22
+ "9": "17",
23
+ "10": "18",
24
+ "11": "19",
25
+ "12": "2",
26
+ "13": "20",
27
+ "14": "21",
28
+ "15": "22",
29
+ "16": "3",
30
+ "17": "4",
31
+ "18": "5",
32
+ "19": "6",
33
+ "20": "7",
34
+ "21": "8",
35
+ "22": "9"
36
+ },
37
+ "initializer_range": 0.02,
38
+ "intermediate_size": 5504,
39
+ "label2id": {
40
+ "0": 0,
41
+ "1": 1,
42
+ "10": 2,
43
+ "11": 3,
44
+ "12": 4,
45
+ "13": 5,
46
+ "14": 6,
47
+ "15": 7,
48
+ "16": 8,
49
+ "17": 9,
50
+ "18": 10,
51
+ "19": 11,
52
+ "2": 12,
53
+ "20": 13,
54
+ "21": 14,
55
+ "22": 15,
56
+ "3": 16,
57
+ "4": 17,
58
+ "5": 18,
59
+ "6": 19,
60
+ "7": 20,
61
+ "8": 21,
62
+ "9": 22
63
+ },
64
+ "max_position_embeddings": 32768,
65
+ "max_window_layers": 21,
66
+ "model_type": "qwen2",
67
+ "num_attention_heads": 16,
68
+ "num_hidden_layers": 24,
69
+ "num_key_value_heads": 16,
70
+ "pad_token_id": 151643,
71
+ "problem_type": "single_label_classification",
72
+ "rms_norm_eps": 1e-06,
73
+ "rope_theta": 1000000.0,
74
+ "sliding_window": 32768,
75
+ "tie_word_embeddings": false,
76
+ "torch_dtype": "bfloat16",
77
+ "transformers_version": "4.39.0.dev0",
78
+ "use_cache": true,
79
+ "use_sliding_window": false,
80
+ "vocab_size": 151646
81
+ }
Qwen/Qwen1.5_1.8B_amazon/eval_results.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 1.0,
3
+ "eval_accuracy": 0.852437417654809,
4
+ "eval_f1_macro": 0.8289709215944268,
5
+ "eval_f1_micro": 0.852437417654809,
6
+ "eval_loss": 0.5073133111000061,
7
+ "eval_runtime": 3.9722,
8
+ "eval_samples": 1518,
9
+ "eval_samples_per_second": 382.155,
10
+ "eval_steps_per_second": 12.084
11
+ }
Qwen/Qwen1.5_1.8B_amazon/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
Qwen/Qwen1.5_1.8B_amazon/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:808b083c2b74b6e447184a8246a4f99aa1838fe9f48beb716cd8d58963f8bbdd
3
+ size 3050267112
Qwen/Qwen1.5_1.8B_amazon/run.log ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ 03/15/2024 11:43:05 - WARNING - __main__ - Process rank: 0, device: cuda:0, n_gpu: 1, distributed training: True, 16-bits training: False
2
+ 03/15/2024 11:43:05 - WARNING - __main__ - Process rank: 1, device: cuda:1, n_gpu: 1, distributed training: True, 16-bits training: False
3
+ 03/15/2024 11:43:15 - WARNING - __main__ - The label2id key in the model config.json is not equal to the label2id key of this run. You can ignore this if you are doing finetuning.
4
+ 03/15/2024 11:43:15 - WARNING - __main__ - The label2id key in the model config.json is not equal to the label2id key of this run. You can ignore this if you are doing finetuning.
Qwen/Qwen1.5_1.8B_amazon/special_tokens_map.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>"
5
+ ],
6
+ "eos_token": {
7
+ "content": "<|endoftext|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false
12
+ },
13
+ "pad_token": "<|endoftext|>"
14
+ }
Qwen/Qwen1.5_1.8B_amazon/test_results.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 1.0,
3
+ "test_accuracy": 0.8656126482213439,
4
+ "test_f1_macro": 0.8295835523548035,
5
+ "test_f1_micro": 0.8656126482213439,
6
+ "test_loss": 0.4794342815876007,
7
+ "test_runtime": 4.0382,
8
+ "test_samples_per_second": 375.908,
9
+ "test_steps_per_second": 11.886
10
+ }
Qwen/Qwen1.5_1.8B_amazon/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
Qwen/Qwen1.5_1.8B_amazon/tokenizer_config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "151643": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "151644": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "151645": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ }
28
+ },
29
+ "additional_special_tokens": [
30
+ "<|im_start|>",
31
+ "<|im_end|>"
32
+ ],
33
+ "bos_token": null,
34
+ "chat_template": "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
35
+ "clean_up_tokenization_spaces": false,
36
+ "eos_token": "<|endoftext|>",
37
+ "errors": "replace",
38
+ "model_max_length": 32768,
39
+ "pad_token": "<|endoftext|>",
40
+ "split_special_tokens": false,
41
+ "tokenizer_class": "Qwen2Tokenizer",
42
+ "unk_token": null
43
+ }
Qwen/Qwen1.5_1.8B_amazon/train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 1.0,
3
+ "train_loss": 1.0740083393297697,
4
+ "train_runtime": 415.974,
5
+ "train_samples": 12144,
6
+ "train_samples_per_second": 29.194,
7
+ "train_steps_per_second": 0.914
8
+ }
Qwen/Qwen1.5_1.8B_amazon/trainer_state.json ADDED
@@ -0,0 +1,373 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.5073133111000061,
3
+ "best_model_checkpoint": "../../experiments_checkpoints/MAdAiLab/Qwen/Qwen1.5_1.8B_amazon/checkpoint-350",
4
+ "epoch": 1.0,
5
+ "eval_steps": 50,
6
+ "global_step": 380,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.03,
13
+ "grad_norm": 129.14089965820312,
14
+ "learning_rate": 4.8684210526315795e-06,
15
+ "loss": 7.3844,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.05,
20
+ "grad_norm": 123.16605377197266,
21
+ "learning_rate": 4.736842105263158e-06,
22
+ "loss": 4.8281,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.08,
27
+ "grad_norm": 73.3310546875,
28
+ "learning_rate": 4.605263157894737e-06,
29
+ "loss": 3.2703,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.11,
34
+ "grad_norm": 79.52980041503906,
35
+ "learning_rate": 4.473684210526316e-06,
36
+ "loss": 2.0736,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.13,
41
+ "grad_norm": 65.27238464355469,
42
+ "learning_rate": 4.342105263157895e-06,
43
+ "loss": 1.5641,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.13,
48
+ "eval_accuracy": 0.647562582345191,
49
+ "eval_f1_macro": 0.5588571972473421,
50
+ "eval_f1_micro": 0.647562582345191,
51
+ "eval_loss": 1.2904983758926392,
52
+ "eval_runtime": 4.0513,
53
+ "eval_samples_per_second": 374.697,
54
+ "eval_steps_per_second": 11.848,
55
+ "step": 50
56
+ },
57
+ {
58
+ "epoch": 0.16,
59
+ "grad_norm": 50.00752258300781,
60
+ "learning_rate": 4.210526315789474e-06,
61
+ "loss": 1.1144,
62
+ "step": 60
63
+ },
64
+ {
65
+ "epoch": 0.18,
66
+ "grad_norm": 39.85783386230469,
67
+ "learning_rate": 4.078947368421053e-06,
68
+ "loss": 1.1287,
69
+ "step": 70
70
+ },
71
+ {
72
+ "epoch": 0.21,
73
+ "grad_norm": 62.46803665161133,
74
+ "learning_rate": 3.947368421052632e-06,
75
+ "loss": 0.8914,
76
+ "step": 80
77
+ },
78
+ {
79
+ "epoch": 0.24,
80
+ "grad_norm": 42.484432220458984,
81
+ "learning_rate": 3.815789473684211e-06,
82
+ "loss": 0.8281,
83
+ "step": 90
84
+ },
85
+ {
86
+ "epoch": 0.26,
87
+ "grad_norm": 48.54948043823242,
88
+ "learning_rate": 3.6842105263157896e-06,
89
+ "loss": 0.744,
90
+ "step": 100
91
+ },
92
+ {
93
+ "epoch": 0.26,
94
+ "eval_accuracy": 0.769433465085639,
95
+ "eval_f1_macro": 0.716629286760697,
96
+ "eval_f1_micro": 0.769433465085639,
97
+ "eval_loss": 0.7993608117103577,
98
+ "eval_runtime": 4.0452,
99
+ "eval_samples_per_second": 375.256,
100
+ "eval_steps_per_second": 11.866,
101
+ "step": 100
102
+ },
103
+ {
104
+ "epoch": 0.29,
105
+ "grad_norm": 47.28898239135742,
106
+ "learning_rate": 3.5526315789473687e-06,
107
+ "loss": 0.9268,
108
+ "step": 110
109
+ },
110
+ {
111
+ "epoch": 0.32,
112
+ "grad_norm": 49.59343338012695,
113
+ "learning_rate": 3.421052631578948e-06,
114
+ "loss": 0.7649,
115
+ "step": 120
116
+ },
117
+ {
118
+ "epoch": 0.34,
119
+ "grad_norm": 36.2591438293457,
120
+ "learning_rate": 3.289473684210527e-06,
121
+ "loss": 0.716,
122
+ "step": 130
123
+ },
124
+ {
125
+ "epoch": 0.37,
126
+ "grad_norm": 47.06060791015625,
127
+ "learning_rate": 3.157894736842105e-06,
128
+ "loss": 0.5508,
129
+ "step": 140
130
+ },
131
+ {
132
+ "epoch": 0.39,
133
+ "grad_norm": 45.960975646972656,
134
+ "learning_rate": 3.0263157894736843e-06,
135
+ "loss": 0.7245,
136
+ "step": 150
137
+ },
138
+ {
139
+ "epoch": 0.39,
140
+ "eval_accuracy": 0.7997364953886693,
141
+ "eval_f1_macro": 0.744994161609646,
142
+ "eval_f1_micro": 0.7997364953886693,
143
+ "eval_loss": 0.6845870614051819,
144
+ "eval_runtime": 4.0142,
145
+ "eval_samples_per_second": 378.16,
146
+ "eval_steps_per_second": 11.958,
147
+ "step": 150
148
+ },
149
+ {
150
+ "epoch": 0.42,
151
+ "grad_norm": 49.28917694091797,
152
+ "learning_rate": 2.8947368421052634e-06,
153
+ "loss": 0.6837,
154
+ "step": 160
155
+ },
156
+ {
157
+ "epoch": 0.45,
158
+ "grad_norm": 34.09211349487305,
159
+ "learning_rate": 2.7631578947368424e-06,
160
+ "loss": 0.6589,
161
+ "step": 170
162
+ },
163
+ {
164
+ "epoch": 0.47,
165
+ "grad_norm": 38.694705963134766,
166
+ "learning_rate": 2.631578947368421e-06,
167
+ "loss": 0.6702,
168
+ "step": 180
169
+ },
170
+ {
171
+ "epoch": 0.5,
172
+ "grad_norm": 64.92501068115234,
173
+ "learning_rate": 2.5e-06,
174
+ "loss": 0.7353,
175
+ "step": 190
176
+ },
177
+ {
178
+ "epoch": 0.53,
179
+ "grad_norm": 39.18191909790039,
180
+ "learning_rate": 2.368421052631579e-06,
181
+ "loss": 0.6491,
182
+ "step": 200
183
+ },
184
+ {
185
+ "epoch": 0.53,
186
+ "eval_accuracy": 0.8155467720685112,
187
+ "eval_f1_macro": 0.7679142075529768,
188
+ "eval_f1_micro": 0.8155467720685112,
189
+ "eval_loss": 0.640599250793457,
190
+ "eval_runtime": 4.0408,
191
+ "eval_samples_per_second": 375.669,
192
+ "eval_steps_per_second": 11.879,
193
+ "step": 200
194
+ },
195
+ {
196
+ "epoch": 0.55,
197
+ "grad_norm": 39.82322311401367,
198
+ "learning_rate": 2.236842105263158e-06,
199
+ "loss": 0.545,
200
+ "step": 210
201
+ },
202
+ {
203
+ "epoch": 0.58,
204
+ "grad_norm": 60.72475051879883,
205
+ "learning_rate": 2.105263157894737e-06,
206
+ "loss": 0.5595,
207
+ "step": 220
208
+ },
209
+ {
210
+ "epoch": 0.61,
211
+ "grad_norm": 42.45864486694336,
212
+ "learning_rate": 1.973684210526316e-06,
213
+ "loss": 0.6386,
214
+ "step": 230
215
+ },
216
+ {
217
+ "epoch": 0.63,
218
+ "grad_norm": 48.077884674072266,
219
+ "learning_rate": 1.8421052631578948e-06,
220
+ "loss": 0.649,
221
+ "step": 240
222
+ },
223
+ {
224
+ "epoch": 0.66,
225
+ "grad_norm": 48.596435546875,
226
+ "learning_rate": 1.710526315789474e-06,
227
+ "loss": 0.6193,
228
+ "step": 250
229
+ },
230
+ {
231
+ "epoch": 0.66,
232
+ "eval_accuracy": 0.8399209486166008,
233
+ "eval_f1_macro": 0.7970428846372188,
234
+ "eval_f1_micro": 0.8399209486166008,
235
+ "eval_loss": 0.5427243113517761,
236
+ "eval_runtime": 4.3118,
237
+ "eval_samples_per_second": 352.055,
238
+ "eval_steps_per_second": 11.132,
239
+ "step": 250
240
+ },
241
+ {
242
+ "epoch": 0.68,
243
+ "grad_norm": 45.50446319580078,
244
+ "learning_rate": 1.5789473684210526e-06,
245
+ "loss": 0.6343,
246
+ "step": 260
247
+ },
248
+ {
249
+ "epoch": 0.71,
250
+ "grad_norm": 40.66709518432617,
251
+ "learning_rate": 1.4473684210526317e-06,
252
+ "loss": 0.5493,
253
+ "step": 270
254
+ },
255
+ {
256
+ "epoch": 0.74,
257
+ "grad_norm": 50.266971588134766,
258
+ "learning_rate": 1.3157894736842106e-06,
259
+ "loss": 0.5177,
260
+ "step": 280
261
+ },
262
+ {
263
+ "epoch": 0.76,
264
+ "grad_norm": 41.21518325805664,
265
+ "learning_rate": 1.1842105263157894e-06,
266
+ "loss": 0.4751,
267
+ "step": 290
268
+ },
269
+ {
270
+ "epoch": 0.79,
271
+ "grad_norm": 35.079444885253906,
272
+ "learning_rate": 1.0526315789473685e-06,
273
+ "loss": 0.4828,
274
+ "step": 300
275
+ },
276
+ {
277
+ "epoch": 0.79,
278
+ "eval_accuracy": 0.836627140974967,
279
+ "eval_f1_macro": 0.8114023231734937,
280
+ "eval_f1_micro": 0.836627140974967,
281
+ "eval_loss": 0.5453078746795654,
282
+ "eval_runtime": 4.0339,
283
+ "eval_samples_per_second": 376.309,
284
+ "eval_steps_per_second": 11.899,
285
+ "step": 300
286
+ },
287
+ {
288
+ "epoch": 0.82,
289
+ "grad_norm": 51.024139404296875,
290
+ "learning_rate": 9.210526315789474e-07,
291
+ "loss": 0.4726,
292
+ "step": 310
293
+ },
294
+ {
295
+ "epoch": 0.84,
296
+ "grad_norm": 41.68681335449219,
297
+ "learning_rate": 7.894736842105263e-07,
298
+ "loss": 0.5492,
299
+ "step": 320
300
+ },
301
+ {
302
+ "epoch": 0.87,
303
+ "grad_norm": 31.459598541259766,
304
+ "learning_rate": 6.578947368421053e-07,
305
+ "loss": 0.6464,
306
+ "step": 330
307
+ },
308
+ {
309
+ "epoch": 0.89,
310
+ "grad_norm": 37.8900260925293,
311
+ "learning_rate": 5.263157894736843e-07,
312
+ "loss": 0.4235,
313
+ "step": 340
314
+ },
315
+ {
316
+ "epoch": 0.92,
317
+ "grad_norm": 80.35220336914062,
318
+ "learning_rate": 3.9473684210526315e-07,
319
+ "loss": 0.6122,
320
+ "step": 350
321
+ },
322
+ {
323
+ "epoch": 0.92,
324
+ "eval_accuracy": 0.852437417654809,
325
+ "eval_f1_macro": 0.8289709215944268,
326
+ "eval_f1_micro": 0.852437417654809,
327
+ "eval_loss": 0.5073133111000061,
328
+ "eval_runtime": 4.0684,
329
+ "eval_samples_per_second": 373.116,
330
+ "eval_steps_per_second": 11.798,
331
+ "step": 350
332
+ },
333
+ {
334
+ "epoch": 0.95,
335
+ "grad_norm": 35.06690979003906,
336
+ "learning_rate": 2.6315789473684213e-07,
337
+ "loss": 0.4292,
338
+ "step": 360
339
+ },
340
+ {
341
+ "epoch": 0.97,
342
+ "grad_norm": 46.45317077636719,
343
+ "learning_rate": 1.3157894736842107e-07,
344
+ "loss": 0.5656,
345
+ "step": 370
346
+ },
347
+ {
348
+ "epoch": 1.0,
349
+ "grad_norm": 42.95165252685547,
350
+ "learning_rate": 0.0,
351
+ "loss": 0.5355,
352
+ "step": 380
353
+ },
354
+ {
355
+ "epoch": 1.0,
356
+ "step": 380,
357
+ "total_flos": 1.13424986013696e+16,
358
+ "train_loss": 1.0740083393297697,
359
+ "train_runtime": 415.974,
360
+ "train_samples_per_second": 29.194,
361
+ "train_steps_per_second": 0.914
362
+ }
363
+ ],
364
+ "logging_steps": 10,
365
+ "max_steps": 380,
366
+ "num_input_tokens_seen": 0,
367
+ "num_train_epochs": 1,
368
+ "save_steps": 50,
369
+ "total_flos": 1.13424986013696e+16,
370
+ "train_batch_size": 16,
371
+ "trial_name": null,
372
+ "trial_params": null
373
+ }
Qwen/Qwen1.5_1.8B_amazon/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b20cc25ef3f3381a0bb4e70b578853792c4ac9c2ffef36a86d3a450a66fc2aa
3
+ size 5944
Qwen/Qwen1.5_1.8B_amazon/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
Qwen/Qwen1.5_1.8B_patent/README.md ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ base_model: Qwen/Qwen1.5-1.8B
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ model-index:
9
+ - name: Qwen1.5_1.8B_patent
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # Qwen1.5_1.8B_patent
17
+
18
+ This model is a fine-tuned version of [Qwen/Qwen1.5-1.8B](https://huggingface.co/Qwen/Qwen1.5-1.8B) on an unknown dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.8989
21
+ - Accuracy: 0.6976
22
+ - F1 Macro: 0.6507
23
+ - F1 Micro: 0.6976
24
+
25
+ ## Model description
26
+
27
+ More information needed
28
+
29
+ ## Intended uses & limitations
30
+
31
+ More information needed
32
+
33
+ ## Training and evaluation data
34
+
35
+ More information needed
36
+
37
+ ## Training procedure
38
+
39
+ ### Training hyperparameters
40
+
41
+ The following hyperparameters were used during training:
42
+ - learning_rate: 5e-06
43
+ - train_batch_size: 32
44
+ - eval_batch_size: 32
45
+ - seed: 42
46
+ - distributed_type: multi-GPU
47
+ - num_devices: 2
48
+ - total_train_batch_size: 64
49
+ - total_eval_batch_size: 64
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - num_epochs: 3.0
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | F1 Micro |
57
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:--------:|
58
+ | 1.4469 | 0.13 | 50 | 1.3521 | 0.528 | 0.3842 | 0.528 |
59
+ | 1.1465 | 0.26 | 100 | 1.1614 | 0.596 | 0.4991 | 0.596 |
60
+ | 1.1717 | 0.38 | 150 | 1.0561 | 0.6286 | 0.5523 | 0.6286 |
61
+ | 0.9861 | 0.51 | 200 | 0.9592 | 0.6682 | 0.5813 | 0.6682 |
62
+ | 0.9701 | 0.64 | 250 | 0.9579 | 0.6658 | 0.5949 | 0.6658 |
63
+ | 0.9389 | 0.77 | 300 | 0.9364 | 0.679 | 0.6287 | 0.679 |
64
+ | 0.9914 | 0.9 | 350 | 0.9246 | 0.6756 | 0.6115 | 0.6756 |
65
+ | 0.7508 | 1.02 | 400 | 0.9047 | 0.6812 | 0.6406 | 0.6812 |
66
+ | 0.6312 | 1.15 | 450 | 0.9342 | 0.6844 | 0.6410 | 0.6844 |
67
+ | 0.6436 | 1.28 | 500 | 0.9464 | 0.6848 | 0.6410 | 0.6848 |
68
+ | 0.6429 | 1.41 | 550 | 0.9366 | 0.6846 | 0.6299 | 0.6846 |
69
+ | 0.6471 | 1.53 | 600 | 0.9347 | 0.6812 | 0.6490 | 0.6812 |
70
+ | 0.7045 | 1.66 | 650 | 0.9457 | 0.6696 | 0.6265 | 0.6696 |
71
+ | 0.6311 | 1.79 | 700 | 0.9206 | 0.6924 | 0.6303 | 0.6924 |
72
+ | 0.6659 | 1.92 | 750 | 0.8989 | 0.6976 | 0.6507 | 0.6976 |
73
+ | 0.2872 | 2.05 | 800 | 1.0101 | 0.6888 | 0.6524 | 0.6888 |
74
+ | 0.2666 | 2.17 | 850 | 1.1459 | 0.6824 | 0.6384 | 0.6824 |
75
+ | 0.3211 | 2.3 | 900 | 1.1165 | 0.6704 | 0.6362 | 0.6704 |
76
+ | 0.2831 | 2.43 | 950 | 1.1722 | 0.6698 | 0.6360 | 0.6698 |
77
+ | 0.2545 | 2.56 | 1000 | 1.2073 | 0.6714 | 0.6459 | 0.6714 |
78
+ | 0.2069 | 2.69 | 1050 | 1.1839 | 0.6798 | 0.6438 | 0.6798 |
79
+ | 0.2109 | 2.81 | 1100 | 1.1677 | 0.6778 | 0.6443 | 0.6778 |
80
+ | 0.2383 | 2.94 | 1150 | 1.1807 | 0.6776 | 0.6462 | 0.6776 |
81
+
82
+
83
+ ### Framework versions
84
+
85
+ - Transformers 4.39.0.dev0
86
+ - Pytorch 2.2.1+cu121
87
+ - Datasets 2.18.0
88
+ - Tokenizers 0.15.2
Qwen/Qwen1.5_1.8B_patent/added_tokens.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "<|endoftext|>": 151643,
3
+ "<|im_end|>": 151645,
4
+ "<|im_start|>": 151644
5
+ }
Qwen/Qwen1.5_1.8B_patent/all_results.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 3.0,
3
+ "eval_accuracy": 0.6976,
4
+ "eval_f1_macro": 0.650699169639119,
5
+ "eval_f1_micro": 0.6976,
6
+ "eval_loss": 0.8989499807357788,
7
+ "eval_runtime": 12.2605,
8
+ "eval_samples": 5000,
9
+ "eval_samples_per_second": 407.812,
10
+ "eval_steps_per_second": 6.443,
11
+ "test_accuracy": 0.6908,
12
+ "test_f1_macro": 0.6462079547915075,
13
+ "test_f1_micro": 0.6908,
14
+ "test_loss": 0.9244624972343445,
15
+ "test_runtime": 12.378,
16
+ "test_samples_per_second": 403.941,
17
+ "test_steps_per_second": 6.382,
18
+ "train_loss": 0.7074367981737532,
19
+ "train_runtime": 1784.4626,
20
+ "train_samples": 25000,
21
+ "train_samples_per_second": 42.029,
22
+ "train_steps_per_second": 0.657
23
+ }
Qwen/Qwen1.5_1.8B_patent/checkpoint-750/added_tokens.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "<|endoftext|>": 151643,
3
+ "<|im_end|>": 151645,
4
+ "<|im_start|>": 151644
5
+ }
Qwen/Qwen1.5_1.8B_patent/checkpoint-750/config.json ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen1.5-1.8B",
3
+ "architectures": [
4
+ "Qwen2ForSequenceClassification"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151643,
9
+ "finetuning_task": "text-classification",
10
+ "hidden_act": "silu",
11
+ "hidden_size": 2048,
12
+ "id2label": {
13
+ "0": "0",
14
+ "1": "1",
15
+ "2": "2",
16
+ "3": "3",
17
+ "4": "4",
18
+ "5": "5",
19
+ "6": "6",
20
+ "7": "7",
21
+ "8": "8"
22
+ },
23
+ "initializer_range": 0.02,
24
+ "intermediate_size": 5504,
25
+ "label2id": {
26
+ "0": 0,
27
+ "1": 1,
28
+ "2": 2,
29
+ "3": 3,
30
+ "4": 4,
31
+ "5": 5,
32
+ "6": 6,
33
+ "7": 7,
34
+ "8": 8
35
+ },
36
+ "max_position_embeddings": 32768,
37
+ "max_window_layers": 21,
38
+ "model_type": "qwen2",
39
+ "num_attention_heads": 16,
40
+ "num_hidden_layers": 24,
41
+ "num_key_value_heads": 16,
42
+ "pad_token_id": 151643,
43
+ "problem_type": "single_label_classification",
44
+ "rms_norm_eps": 1e-06,
45
+ "rope_theta": 1000000.0,
46
+ "sliding_window": 32768,
47
+ "tie_word_embeddings": false,
48
+ "torch_dtype": "bfloat16",
49
+ "transformers_version": "4.39.0.dev0",
50
+ "use_cache": true,
51
+ "use_sliding_window": false,
52
+ "vocab_size": 151646
53
+ }
Qwen/Qwen1.5_1.8B_patent/checkpoint-750/global_step750/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4c6c8681261953fd13d2e121bc6e969f092204eb68c4e3a3b67203b6f9c51c2f
3
+ size 9150543244
Qwen/Qwen1.5_1.8B_patent/checkpoint-750/global_step750/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e57843e2145662a8ea34f9ad8de2e88294b32bff31b3b9157bebf972a74d1d73
3
+ size 9150548108
Qwen/Qwen1.5_1.8B_patent/checkpoint-750/global_step750/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:882c86c8a4f8b9c452381dd6b6167c73898a4966953847228af30e5fe30ddfbf
3
+ size 3050256760
Qwen/Qwen1.5_1.8B_patent/checkpoint-750/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step750
Qwen/Qwen1.5_1.8B_patent/checkpoint-750/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
Qwen/Qwen1.5_1.8B_patent/checkpoint-750/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e31a9c68e89b60ce7d325470530730b525db9a9b5810cdc0d66c2079e99fbbd3
3
+ size 3050270294
Qwen/Qwen1.5_1.8B_patent/checkpoint-750/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5074c2f514d867cbda77efd9d2604382ce7761bd256224868852ee06af0ae72c
3
+ size 14512
Qwen/Qwen1.5_1.8B_patent/checkpoint-750/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:432b20563ba37d2f1c6b732f2e8893c9aea8ee994f464dc6a81b032c80692e4a
3
+ size 14512
Qwen/Qwen1.5_1.8B_patent/checkpoint-750/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1e08b4ee45e38267a036605946e276f9b0ce759d911b0ea716489ed31202d826
3
+ size 1064
Qwen/Qwen1.5_1.8B_patent/checkpoint-750/special_tokens_map.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>"
5
+ ],
6
+ "eos_token": {
7
+ "content": "<|endoftext|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false
12
+ },
13
+ "pad_token": "<|endoftext|>"
14
+ }
Qwen/Qwen1.5_1.8B_patent/checkpoint-750/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff