MAJIARUI commited on
Commit
f55e366
·
verified ·
1 Parent(s): b1781f2

Add SetFit model

Browse files
1_Pooling/config.json CHANGED
@@ -1,10 +1,10 @@
1
- {
2
- "word_embedding_dimension": 768,
3
- "pooling_mode_cls_token": false,
4
- "pooling_mode_mean_tokens": true,
5
- "pooling_mode_max_tokens": false,
6
- "pooling_mode_mean_sqrt_len_tokens": false,
7
- "pooling_mode_weightedmean_tokens": false,
8
- "pooling_mode_lasttoken": false,
9
- "include_prompt": true
10
  }
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
  }
README.md CHANGED
@@ -1,204 +1,224 @@
1
- ---
2
- library_name: setfit
3
- tags:
4
- - setfit
5
- - sentence-transformers
6
- - text-classification
7
- - generated_from_setfit_trainer
8
- metrics:
9
- - accuracy
10
- widget:
11
- - text: 'this is a story of two misfits who do n''t stand a chance alone , but together
12
- they are magnificent . '
13
- - text: 'it does n''t believe in itself , it has no sense of humor ... it ''s just
14
- plain bored . '
15
- - text: 'the band ''s courage in the face of official repression is inspiring , especially
16
- for aging hippies ( this one included ) . '
17
- - text: 'a fast , funny , highly enjoyable movie . '
18
- - text: 'the movie achieves as great an impact by keeping these thoughts hidden as
19
- ... ( quills ) did by showing them . '
20
- pipeline_tag: text-classification
21
- inference: true
22
- base_model: sentence-transformers/paraphrase-mpnet-base-v2
23
- model-index:
24
- - name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
25
- results:
26
- - task:
27
- type: text-classification
28
- name: Text Classification
29
- dataset:
30
- name: Unknown
31
- type: unknown
32
- split: test
33
- metrics:
34
- - type: accuracy
35
- value: 0.8536269430051814
36
- name: Accuracy
37
- ---
38
-
39
- # SetFit with sentence-transformers/paraphrase-mpnet-base-v2
40
-
41
- This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
42
-
43
- The model has been trained using an efficient few-shot learning technique that involves:
44
-
45
- 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
46
- 2. Training a classification head with features from the fine-tuned Sentence Transformer.
47
-
48
- ## Model Details
49
-
50
- ### Model Description
51
- - **Model Type:** SetFit
52
- - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
53
- - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
54
- - **Maximum Sequence Length:** 512 tokens
55
- - **Number of Classes:** 2 classes
56
- <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
57
- <!-- - **Language:** Unknown -->
58
- <!-- - **License:** Unknown -->
59
-
60
- ### Model Sources
61
-
62
- - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
63
- - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
64
- - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
65
-
66
- ### Model Labels
67
- | Label | Examples |
68
- |:---------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
69
- | negative | <ul><li>'stale and uninspired . '</li><li>"the film 's considered approach to its subject matter is too calm and thoughtful for agitprop , and the thinness of its characterizations makes it a failure as straight drama . ' "</li><li>"that their charm does n't do a load of good "</li></ul> |
70
- | positive | <ul><li>"broomfield is energized by volletta wallace 's maternal fury , her fearlessness "</li><li>'flawless '</li><li>'insightfully written , delicately performed '</li></ul> |
71
-
72
- ## Evaluation
73
-
74
- ### Metrics
75
- | Label | Accuracy |
76
- |:--------|:---------|
77
- | **all** | 0.8536 |
78
-
79
- ## Uses
80
-
81
- ### Direct Use for Inference
82
-
83
- First install the SetFit library:
84
-
85
- ```bash
86
- pip install setfit
87
- ```
88
-
89
- Then you can load this model and run inference.
90
-
91
- ```python
92
- from setfit import SetFitModel
93
-
94
- # Download from the 🤗 Hub
95
- model = SetFitModel.from_pretrained("majiarui/setfit-paraphrase-mpnet-base-v2-sst2")
96
- # Run inference
97
- preds = model("a fast , funny , highly enjoyable movie . ")
98
- ```
99
-
100
- <!--
101
- ### Downstream Use
102
-
103
- *List how someone could finetune this model on their own dataset.*
104
- -->
105
-
106
- <!--
107
- ### Out-of-Scope Use
108
-
109
- *List how the model may foreseeably be misused and address what users ought not to do with the model.*
110
- -->
111
-
112
- <!--
113
- ## Bias, Risks and Limitations
114
-
115
- *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
116
- -->
117
-
118
- <!--
119
- ### Recommendations
120
-
121
- *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
122
- -->
123
-
124
- ## Training Details
125
-
126
- ### Training Set Metrics
127
- | Training set | Min | Median | Max |
128
- |:-------------|:----|:--------|:----|
129
- | Word count | 2 | 11.4375 | 33 |
130
-
131
- | Label | Training Sample Count |
132
- |:---------|:----------------------|
133
- | negative | 8 |
134
- | positive | 8 |
135
-
136
- ### Training Hyperparameters
137
- - batch_size: (16, 16)
138
- - num_epochs: (4, 4)
139
- - max_steps: -1
140
- - sampling_strategy: oversampling
141
- - body_learning_rate: (2e-05, 1e-05)
142
- - head_learning_rate: 0.01
143
- - loss: CosineSimilarityLoss
144
- - distance_metric: cosine_distance
145
- - margin: 0.25
146
- - end_to_end: False
147
- - use_amp: False
148
- - warmup_proportion: 0.1
149
- - seed: 42
150
- - eval_max_steps: -1
151
- - load_best_model_at_end: True
152
-
153
- ### Training Results
154
- | Epoch | Step | Training Loss | Validation Loss |
155
- |:-------:|:------:|:-------------:|:---------------:|
156
- | 0.1111 | 1 | 0.2038 | - |
157
- | 1.0 | 9 | - | 0.2198 |
158
- | 2.0 | 18 | - | 0.1803 |
159
- | **3.0** | **27** | **-** | **0.1788** |
160
- | 4.0 | 36 | - | 0.182 |
161
-
162
- * The bold row denotes the saved checkpoint.
163
- ### Framework Versions
164
- - Python: 3.9.18
165
- - SetFit: 1.1.0.dev0
166
- - Sentence Transformers: 3.0.1
167
- - Transformers: 4.37.2
168
- - PyTorch: 2.2.0+cu121
169
- - Datasets: 2.17.0
170
- - Tokenizers: 0.15.2
171
-
172
- ## Citation
173
-
174
- ### BibTeX
175
- ```bibtex
176
- @article{https://doi.org/10.48550/arxiv.2209.11055,
177
- doi = {10.48550/ARXIV.2209.11055},
178
- url = {https://arxiv.org/abs/2209.11055},
179
- author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
180
- keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
181
- title = {Efficient Few-Shot Learning Without Prompts},
182
- publisher = {arXiv},
183
- year = {2022},
184
- copyright = {Creative Commons Attribution 4.0 International}
185
- }
186
- ```
187
-
188
- <!--
189
- ## Glossary
190
-
191
- *Clearly define terms in order to be accessible across audiences.*
192
- -->
193
-
194
- <!--
195
- ## Model Card Authors
196
-
197
- *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
198
- -->
199
-
200
- <!--
201
- ## Model Card Contact
202
-
203
- *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
204
  -->
 
1
+ ---
2
+ base_model: sentence-transformers/paraphrase-mpnet-base-v2
3
+ library_name: setfit
4
+ metrics:
5
+ - accuracy
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget:
13
+ - text: 'this is a story of two misfits who do n''t stand a chance alone , but together
14
+ they are magnificent . '
15
+ - text: 'it does n''t believe in itself , it has no sense of humor ... it ''s just
16
+ plain bored . '
17
+ - text: 'the band ''s courage in the face of official repression is inspiring , especially
18
+ for aging hippies ( this one included ) . '
19
+ - text: 'a fast , funny , highly enjoyable movie . '
20
+ - text: 'the movie achieves as great an impact by keeping these thoughts hidden as
21
+ ... ( quills ) did by showing them . '
22
+ inference: true
23
+ co2_eq_emissions:
24
+ emissions: 12.031223883838447
25
+ source: codecarbon
26
+ training_type: fine-tuning
27
+ on_cloud: false
28
+ cpu_model: Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
29
+ ram_total_size: 125.66707992553711
30
+ hours_used: 0.086
31
+ hardware_used: 4 x NVIDIA GeForce GTX 1080
32
+ model-index:
33
+ - name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
34
+ results:
35
+ - task:
36
+ type: text-classification
37
+ name: Text Classification
38
+ dataset:
39
+ name: Unknown
40
+ type: unknown
41
+ split: test
42
+ metrics:
43
+ - type: accuracy
44
+ value: 0.8588082901554405
45
+ name: Accuracy
46
+ ---
47
+
48
+ # SetFit with sentence-transformers/paraphrase-mpnet-base-v2
49
+
50
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
51
+
52
+ The model has been trained using an efficient few-shot learning technique that involves:
53
+
54
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
55
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
56
+
57
+ ## Model Details
58
+
59
+ ### Model Description
60
+ - **Model Type:** SetFit
61
+ - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
62
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
63
+ - **Maximum Sequence Length:** 512 tokens
64
+ - **Number of Classes:** 2 classes
65
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
66
+ <!-- - **Language:** Unknown -->
67
+ <!-- - **License:** Unknown -->
68
+
69
+ ### Model Sources
70
+
71
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
72
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
73
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
74
+
75
+ ### Model Labels
76
+ | Label | Examples |
77
+ |:---------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
78
+ | negative | <ul><li>'stale and uninspired . '</li><li>"the film 's considered approach to its subject matter is too calm and thoughtful for agitprop , and the thinness of its characterizations makes it a failure as straight drama . ' "</li><li>"that their charm does n't do a load of good "</li></ul> |
79
+ | positive | <ul><li>"broomfield is energized by volletta wallace 's maternal fury , her fearlessness "</li><li>'flawless '</li><li>'insightfully written , delicately performed '</li></ul> |
80
+
81
+ ## Evaluation
82
+
83
+ ### Metrics
84
+ | Label | Accuracy |
85
+ |:--------|:---------|
86
+ | **all** | 0.8588 |
87
+
88
+ ## Uses
89
+
90
+ ### Direct Use for Inference
91
+
92
+ First install the SetFit library:
93
+
94
+ ```bash
95
+ pip install setfit
96
+ ```
97
+
98
+ Then you can load this model and run inference.
99
+
100
+ ```python
101
+ from setfit import SetFitModel
102
+
103
+ # Download from the 🤗 Hub
104
+ model = SetFitModel.from_pretrained("majiarui/setfit-paraphrase-mpnet-base-v2-sst2")
105
+ # Run inference
106
+ preds = model("a fast , funny , highly enjoyable movie . ")
107
+ ```
108
+
109
+ <!--
110
+ ### Downstream Use
111
+
112
+ *List how someone could finetune this model on their own dataset.*
113
+ -->
114
+
115
+ <!--
116
+ ### Out-of-Scope Use
117
+
118
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
119
+ -->
120
+
121
+ <!--
122
+ ## Bias, Risks and Limitations
123
+
124
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
125
+ -->
126
+
127
+ <!--
128
+ ### Recommendations
129
+
130
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
131
+ -->
132
+
133
+ ## Training Details
134
+
135
+ ### Training Set Metrics
136
+ | Training set | Min | Median | Max |
137
+ |:-------------|:----|:--------|:----|
138
+ | Word count | 2 | 11.4375 | 33 |
139
+
140
+ | Label | Training Sample Count |
141
+ |:---------|:----------------------|
142
+ | negative | 8 |
143
+ | positive | 8 |
144
+
145
+ ### Training Hyperparameters
146
+ - batch_size: (16, 16)
147
+ - num_epochs: (4, 4)
148
+ - max_steps: -1
149
+ - sampling_strategy: oversampling
150
+ - body_learning_rate: (2e-05, 1e-05)
151
+ - head_learning_rate: 0.01
152
+ - loss: CosineSimilarityLoss
153
+ - distance_metric: cosine_distance
154
+ - margin: 0.25
155
+ - end_to_end: False
156
+ - use_amp: False
157
+ - warmup_proportion: 0.1
158
+ - seed: 42
159
+ - eval_max_steps: -1
160
+ - load_best_model_at_end: True
161
+
162
+ ### Training Results
163
+ | Epoch | Step | Training Loss | Validation Loss |
164
+ |:-------:|:------:|:-------------:|:---------------:|
165
+ | 0.1111 | 1 | 0.2116 | - |
166
+ | 1.0 | 9 | - | 0.2229 |
167
+ | 2.0 | 18 | - | 0.1815 |
168
+ | **3.0** | **27** | **-** | **0.1729** |
169
+ | 4.0 | 36 | - | 0.1752 |
170
+
171
+ * The bold row denotes the saved checkpoint.
172
+ ### Environmental Impact
173
+ Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
174
+ - **Carbon Emitted**: 0.012 kg of CO2
175
+ - **Hours Used**: 0.086 hours
176
+
177
+ ### Training Hardware
178
+ - **On Cloud**: No
179
+ - **GPU Model**: 4 x NVIDIA GeForce GTX 1080
180
+ - **CPU Model**: Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
181
+ - **RAM Size**: 125.67 GB
182
+
183
+ ### Framework Versions
184
+ - Python: 3.8.19
185
+ - SetFit: 1.1.0.dev0
186
+ - Sentence Transformers: 3.0.1
187
+ - Transformers: 4.42.4
188
+ - PyTorch: 2.3.1+cu121
189
+ - Datasets: 2.20.0
190
+ - Tokenizers: 0.19.1
191
+
192
+ ## Citation
193
+
194
+ ### BibTeX
195
+ ```bibtex
196
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
197
+ doi = {10.48550/ARXIV.2209.11055},
198
+ url = {https://arxiv.org/abs/2209.11055},
199
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
200
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
201
+ title = {Efficient Few-Shot Learning Without Prompts},
202
+ publisher = {arXiv},
203
+ year = {2022},
204
+ copyright = {Creative Commons Attribution 4.0 International}
205
+ }
206
+ ```
207
+
208
+ <!--
209
+ ## Glossary
210
+
211
+ *Clearly define terms in order to be accessible across audiences.*
212
+ -->
213
+
214
+ <!--
215
+ ## Model Card Authors
216
+
217
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
218
+ -->
219
+
220
+ <!--
221
+ ## Model Card Contact
222
+
223
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
224
  -->
config.json CHANGED
@@ -1,24 +1,24 @@
1
- {
2
- "_name_or_path": "checkpoints\\step_27",
3
- "architectures": [
4
- "MPNetModel"
5
- ],
6
- "attention_probs_dropout_prob": 0.1,
7
- "bos_token_id": 0,
8
- "eos_token_id": 2,
9
- "hidden_act": "gelu",
10
- "hidden_dropout_prob": 0.1,
11
- "hidden_size": 768,
12
- "initializer_range": 0.02,
13
- "intermediate_size": 3072,
14
- "layer_norm_eps": 1e-05,
15
- "max_position_embeddings": 514,
16
- "model_type": "mpnet",
17
- "num_attention_heads": 12,
18
- "num_hidden_layers": 12,
19
- "pad_token_id": 1,
20
- "relative_attention_num_buckets": 32,
21
- "torch_dtype": "float32",
22
- "transformers_version": "4.37.2",
23
- "vocab_size": 30527
24
- }
 
1
+ {
2
+ "_name_or_path": "checkpoints/step_27",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.42.4",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json CHANGED
@@ -1,10 +1,10 @@
1
- {
2
- "__version__": {
3
- "sentence_transformers": "3.0.1",
4
- "transformers": "4.37.2",
5
- "pytorch": "2.2.0+cu121"
6
- },
7
- "prompts": {},
8
- "default_prompt_name": null,
9
- "similarity_fn_name": null
10
  }
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.42.4",
5
+ "pytorch": "2.3.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
  }
config_setfit.json CHANGED
@@ -1,7 +1,7 @@
1
- {
2
- "labels": [
3
- "negative",
4
- "positive"
5
- ],
6
- "normalize_embeddings": false
7
  }
 
1
+ {
2
+ "labels": [
3
+ "negative",
4
+ "positive"
5
+ ],
6
+ "normalize_embeddings": false
7
  }
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:737429c4e0ee96ff4e47f62eb0072590607ebbd6a52269cf2fd481c051ae30bd
3
  size 437967672
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:18e14061d4c4e16f3d717689ebf24a1607bfd11d4c42b401840f522174e65e77
3
  size 437967672
model_head.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:3fc9318885e167df17ea9bb021419cbebb13ddbc86560638b51875c08f657b7f
3
- size 6949
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4b7128c3058c815c2fcc68a2da0ad44d1f7f2836a1e5e9950ff7a1fd7587cbb8
3
+ size 6991
modules.json CHANGED
@@ -1,14 +1,14 @@
1
- [
2
- {
3
- "idx": 0,
4
- "name": "0",
5
- "path": "",
6
- "type": "sentence_transformers.models.Transformer"
7
- },
8
- {
9
- "idx": 1,
10
- "name": "1",
11
- "path": "1_Pooling",
12
- "type": "sentence_transformers.models.Pooling"
13
- }
14
  ]
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
  ]
sentence_bert_config.json CHANGED
@@ -1,4 +1,4 @@
1
- {
2
- "max_seq_length": 512,
3
- "do_lower_case": false
4
  }
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
  }
special_tokens_map.json CHANGED
@@ -1,51 +1,51 @@
1
- {
2
- "bos_token": {
3
- "content": "<s>",
4
- "lstrip": false,
5
- "normalized": false,
6
- "rstrip": false,
7
- "single_word": false
8
- },
9
- "cls_token": {
10
- "content": "<s>",
11
- "lstrip": false,
12
- "normalized": false,
13
- "rstrip": false,
14
- "single_word": false
15
- },
16
- "eos_token": {
17
- "content": "</s>",
18
- "lstrip": false,
19
- "normalized": false,
20
- "rstrip": false,
21
- "single_word": false
22
- },
23
- "mask_token": {
24
- "content": "<mask>",
25
- "lstrip": true,
26
- "normalized": false,
27
- "rstrip": false,
28
- "single_word": false
29
- },
30
- "pad_token": {
31
- "content": "<pad>",
32
- "lstrip": false,
33
- "normalized": false,
34
- "rstrip": false,
35
- "single_word": false
36
- },
37
- "sep_token": {
38
- "content": "</s>",
39
- "lstrip": false,
40
- "normalized": false,
41
- "rstrip": false,
42
- "single_word": false
43
- },
44
- "unk_token": {
45
- "content": "[UNK]",
46
- "lstrip": false,
47
- "normalized": false,
48
- "rstrip": false,
49
- "single_word": false
50
- }
51
- }
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer_config.json CHANGED
@@ -1,66 +1,66 @@
1
- {
2
- "added_tokens_decoder": {
3
- "0": {
4
- "content": "<s>",
5
- "lstrip": false,
6
- "normalized": false,
7
- "rstrip": false,
8
- "single_word": false,
9
- "special": true
10
- },
11
- "1": {
12
- "content": "<pad>",
13
- "lstrip": false,
14
- "normalized": false,
15
- "rstrip": false,
16
- "single_word": false,
17
- "special": true
18
- },
19
- "2": {
20
- "content": "</s>",
21
- "lstrip": false,
22
- "normalized": false,
23
- "rstrip": false,
24
- "single_word": false,
25
- "special": true
26
- },
27
- "104": {
28
- "content": "[UNK]",
29
- "lstrip": false,
30
- "normalized": false,
31
- "rstrip": false,
32
- "single_word": false,
33
- "special": true
34
- },
35
- "30526": {
36
- "content": "<mask>",
37
- "lstrip": true,
38
- "normalized": false,
39
- "rstrip": false,
40
- "single_word": false,
41
- "special": true
42
- }
43
- },
44
- "bos_token": "<s>",
45
- "clean_up_tokenization_spaces": true,
46
- "cls_token": "<s>",
47
- "do_basic_tokenize": true,
48
- "do_lower_case": true,
49
- "eos_token": "</s>",
50
- "mask_token": "<mask>",
51
- "max_length": 512,
52
- "model_max_length": 512,
53
- "never_split": null,
54
- "pad_to_multiple_of": null,
55
- "pad_token": "<pad>",
56
- "pad_token_type_id": 0,
57
- "padding_side": "right",
58
- "sep_token": "</s>",
59
- "stride": 0,
60
- "strip_accents": null,
61
- "tokenize_chinese_chars": true,
62
- "tokenizer_class": "MPNetTokenizer",
63
- "truncation_side": "right",
64
- "truncation_strategy": "longest_first",
65
- "unk_token": "[UNK]"
66
- }
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "104": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "30526": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": true,
49
+ "eos_token": "</s>",
50
+ "mask_token": "<mask>",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "<pad>",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "</s>",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "MPNetTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }