black formatting
Browse files- nfqa_model.py +19 -27
nfqa_model.py
CHANGED
@@ -1,11 +1,11 @@
|
|
1 |
-
from typing import Sequence,
|
2 |
|
3 |
import torch
|
4 |
from torch import nn
|
5 |
-
from torch.nn import
|
6 |
from transformers import RobertaConfig
|
7 |
from transformers.modeling_outputs import SequenceClassifierOutput
|
8 |
-
from transformers.models.roberta.modeling_roberta import RobertaModel,
|
9 |
|
10 |
|
11 |
class MishActivation(nn.Module):
|
@@ -15,28 +15,24 @@ class MishActivation(nn.Module):
|
|
15 |
|
16 |
class NFQAClassificationHead(nn.Module):
|
17 |
def __init__(
|
18 |
-
|
19 |
) -> None:
|
20 |
super().__init__()
|
21 |
|
22 |
-
self.linear_layers = nn.Sequential(
|
23 |
-
*(nn.Linear(input_dim, dim) for dim in hidden_dims)
|
24 |
-
)
|
25 |
self.classification_layer = torch.nn.Linear(hidden_dims[-1], num_labels)
|
26 |
self.activations = [MishActivation()] * len(hidden_dims)
|
27 |
self.dropouts = [torch.nn.Dropout(p=dropout)] * len(hidden_dims)
|
28 |
|
29 |
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
|
30 |
output = inputs
|
31 |
-
for layer, activation, dropout in zip(
|
32 |
-
self.linear_layers, self.activations, self.dropouts
|
33 |
-
):
|
34 |
output = dropout(activation(layer(output)))
|
35 |
return self.classification_layer(output)
|
36 |
|
37 |
|
38 |
class RobertaNFQAClassification(RobertaPreTrainedModel):
|
39 |
-
_keys_to_ignore_on_load_missing = [r
|
40 |
_DROPOUT = 0.0
|
41 |
|
42 |
def __init__(self, config: RobertaConfig):
|
@@ -51,19 +47,18 @@ class RobertaNFQAClassification(RobertaPreTrainedModel):
|
|
51 |
|
52 |
self.init_weights()
|
53 |
|
54 |
-
|
55 |
def forward(
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
) -> Union[Tuple[torch.Tensor, ...], SequenceClassifierOutput]:
|
68 |
r"""
|
69 |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
@@ -98,8 +93,5 @@ class RobertaNFQAClassification(RobertaPreTrainedModel):
|
|
98 |
return ((loss,) + output) if loss is not None else output
|
99 |
|
100 |
return SequenceClassifierOutput(
|
101 |
-
loss=loss,
|
102 |
-
logits=logits,
|
103 |
-
hidden_states=outputs.hidden_states,
|
104 |
-
attentions=outputs.attentions,
|
105 |
)
|
|
|
1 |
+
from typing import Optional, Sequence, Tuple, Union
|
2 |
|
3 |
import torch
|
4 |
from torch import nn
|
5 |
+
from torch.nn import CrossEntropyLoss, functional
|
6 |
from transformers import RobertaConfig
|
7 |
from transformers.modeling_outputs import SequenceClassifierOutput
|
8 |
+
from transformers.models.roberta.modeling_roberta import RobertaModel, RobertaPooler, RobertaPreTrainedModel
|
9 |
|
10 |
|
11 |
class MishActivation(nn.Module):
|
|
|
15 |
|
16 |
class NFQAClassificationHead(nn.Module):
|
17 |
def __init__(
|
18 |
+
self, input_dim: int, num_labels: int, hidden_dims: Sequence[int] = (768, 512), dropout: float = 0.0,
|
19 |
) -> None:
|
20 |
super().__init__()
|
21 |
|
22 |
+
self.linear_layers = nn.Sequential(*(nn.Linear(input_dim, dim) for dim in hidden_dims))
|
|
|
|
|
23 |
self.classification_layer = torch.nn.Linear(hidden_dims[-1], num_labels)
|
24 |
self.activations = [MishActivation()] * len(hidden_dims)
|
25 |
self.dropouts = [torch.nn.Dropout(p=dropout)] * len(hidden_dims)
|
26 |
|
27 |
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
|
28 |
output = inputs
|
29 |
+
for layer, activation, dropout in zip(self.linear_layers, self.activations, self.dropouts):
|
|
|
|
|
30 |
output = dropout(activation(layer(output)))
|
31 |
return self.classification_layer(output)
|
32 |
|
33 |
|
34 |
class RobertaNFQAClassification(RobertaPreTrainedModel):
|
35 |
+
_keys_to_ignore_on_load_missing = [r'position_ids']
|
36 |
_DROPOUT = 0.0
|
37 |
|
38 |
def __init__(self, config: RobertaConfig):
|
|
|
47 |
|
48 |
self.init_weights()
|
49 |
|
|
|
50 |
def forward(
|
51 |
+
self,
|
52 |
+
input_ids: Optional[torch.LongTensor] = None,
|
53 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
54 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
55 |
+
position_ids: Optional[torch.LongTensor] = None,
|
56 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
57 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
58 |
+
labels: Optional[torch.LongTensor] = None,
|
59 |
+
output_attentions: Optional[bool] = None,
|
60 |
+
output_hidden_states: Optional[bool] = None,
|
61 |
+
return_dict: Optional[bool] = None,
|
62 |
) -> Union[Tuple[torch.Tensor, ...], SequenceClassifierOutput]:
|
63 |
r"""
|
64 |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
|
|
93 |
return ((loss,) + output) if loss is not None else output
|
94 |
|
95 |
return SequenceClassifierOutput(
|
96 |
+
loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions,
|
|
|
|
|
|
|
97 |
)
|