Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +20 -18
- a2c-PandaReachDense-v2/policy.optimizer.pth +2 -2
- a2c-PandaReachDense-v2/policy.pth +2 -2
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -0.81 +/- 0.23
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9888b09b8725c39f009a3078cf90fcd9c0008ec9a04325d7895c2a0a0c27eb7b
|
3 |
+
size 109532
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -4,14 +4,16 @@
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
13 |
":type:": "<class 'dict'>",
|
14 |
-
":serialized:": "
|
|
|
|
|
15 |
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
"optimizer_kwargs": {
|
17 |
"alpha": 0.99,
|
@@ -46,19 +48,19 @@
|
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
-
"start_time":
|
50 |
-
"learning_rate": 0.
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
53 |
":type:": "<class 'function'>",
|
54 |
-
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
-
":serialized:": "
|
59 |
-
"achieved_goal": "[[ 0.
|
60 |
-
"desired_goal": "[[-0.
|
61 |
-
"observation": "[[ 0.
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -66,29 +68,29 @@
|
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
70 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
-
"desired_goal": "[[-0.
|
72 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
75 |
-
"use_sde":
|
76 |
"sde_sample_freq": -1,
|
77 |
"_current_progress_remaining": 0.0,
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
84 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
},
|
86 |
-
"_n_updates":
|
87 |
-
"n_steps":
|
88 |
"gamma": 0.99,
|
89 |
-
"gae_lambda":
|
90 |
"ent_coef": 0.0,
|
91 |
-
"vf_coef": 0.
|
92 |
"max_grad_norm": 0.5,
|
93 |
"normalize_advantage": false
|
94 |
}
|
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f6b2ec1a430>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7f6b2ec11d50>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
13 |
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
15 |
+
"log_std_init": -2,
|
16 |
+
"ortho_init": false,
|
17 |
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
18 |
"optimizer_kwargs": {
|
19 |
"alpha": 0.99,
|
|
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
+
"start_time": 1675843039360649592,
|
52 |
+
"learning_rate": 0.00096,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
55 |
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'collections.OrderedDict'>",
|
60 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAhQXqPigIJLw+WxM/hQXqPigIJLw+WxM/hQXqPigIJLw+WxM/hQXqPigIJLw+WxM/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAABGMOv49YOb+OgQU/qrrFv2giE7+FSga/TvEbv9s9l7+EcDO/VnlBPy+Hg79bucS/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACFBeo+KAgkvD5bEz+SeJg9tWY+u+RoiT2FBeo+KAgkvD5bEz+SeJg9tWY+u+RoiT2FBeo+KAgkvD5bEz+SeJg9tWY+u+RoiT2FBeo+KAgkvD5bEz+SeJg9tWY+u+RoiT2UaA5LBEsGhpRoEnSUUpR1Lg==",
|
61 |
+
"achieved_goal": "[[ 0.45707336 -0.01001171 0.575611 ]\n [ 0.45707336 -0.01001171 0.575611 ]\n [ 0.45707336 -0.01001171 0.575611 ]\n [ 0.45707336 -0.01001171 0.575611 ]]",
|
62 |
+
"desired_goal": "[[-0.55619836 -0.72400755 0.5215081 ]\n [-1.544759 -0.57474375 -0.5245746 ]\n [-0.60915077 -1.1815752 -0.7009356 ]\n [ 0.7557577 -1.027563 -1.5369066 ]]",
|
63 |
+
"observation": "[[ 0.45707336 -0.01001171 0.575611 0.07444872 -0.00290529 0.06709459]\n [ 0.45707336 -0.01001171 0.575611 0.07444872 -0.00290529 0.06709459]\n [ 0.45707336 -0.01001171 0.575611 0.07444872 -0.00290529 0.06709459]\n [ 0.45707336 -0.01001171 0.575611 0.07444872 -0.00290529 0.06709459]]"
|
64 |
},
|
65 |
"_last_episode_starts": {
|
66 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
68 |
},
|
69 |
"_last_original_obs": {
|
70 |
":type:": "<class 'collections.OrderedDict'>",
|
71 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA7kjwveqxAL7opFI+pQAlveWccz0yhFI+fj+avPBXmrzsiTc8DXDivJ7YRrwtSiM+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
72 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
73 |
+
"desired_goal": "[[-0.1173266 -0.12567869 0.20570719]\n [-0.04028382 0.0594758 0.20558241]\n [-0.0188291 -0.01884076 0.01120232]\n [-0.02764132 -0.01213661 0.15946265]]",
|
74 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
75 |
},
|
76 |
"_episode_num": 0,
|
77 |
+
"use_sde": true,
|
78 |
"sde_sample_freq": -1,
|
79 |
"_current_progress_remaining": 0.0,
|
80 |
"ep_info_buffer": {
|
81 |
":type:": "<class 'collections.deque'>",
|
82 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMICfzh57+H5r+UhpRSlIwBbJRLMowBdJRHQLgeDQjUuth1fZQoaAZoCWgPQwjQCaGDLuHYv5SGlFKUaBVLMmgWR0C4Hexe1KGtdX2UKGgGaAloD0MICwithy8T7r+UhpRSlGgVSzJoFkdAuB3NHuqm0nV9lChoBmgJaA9DCNiACHHl7Oa/lIaUUpRoFUsyaBZHQLgdru01IiF1fZQoaAZoCWgPQwgNGCR9WkXJv5SGlFKUaBVLMmgWR0C4HulOO802dX2UKGgGaAloD0MIotKImX2e7r+UhpRSlGgVSzJoFkdAuB7I4PwuunV9lChoBmgJaA9DCBoWo66199e/lIaUUpRoFUsyaBZHQLgeqZAY51h1fZQoaAZoCWgPQwhblq/L8F/wv5SGlFKUaBVLMmgWR0C4HotlmOENdX2UKGgGaAloD0MIEHaKVYOw67+UhpRSlGgVSzJoFkdAuB/OS3b213V9lChoBmgJaA9DCD+qYb8nVua/lIaUUpRoFUsyaBZHQLgfreNDMNd1fZQoaAZoCWgPQwgIyQImcGvxv5SGlFKUaBVLMmgWR0C4H46n3ta7dX2UKGgGaAloD0MIFyzVBbxM7L+UhpRSlGgVSzJoFkdAuB9wojOcD3V9lChoBmgJaA9DCLmI78SsF+q/lIaUUpRoFUsyaBZHQLggxjcmBvt1fZQoaAZoCWgPQwi4Agr19JHpv5SGlFKUaBVLMmgWR0C4IKXWOIZZdX2UKGgGaAloD0MI/tR46Sax57+UhpRSlGgVSzJoFkdAuCCHWattAXV9lChoBmgJaA9DCGe5bHTOz+y/lIaUUpRoFUsyaBZHQLggaVPN3W51fZQoaAZoCWgPQwipF3yakxfev5SGlFKUaBVLMmgWR0C4IasJ2MbWdX2UKGgGaAloD0MIEmxc/66P8L+UhpRSlGgVSzJoFkdAuCGKd9Ujs3V9lChoBmgJaA9DCHSbcK/MW+W/lIaUUpRoFUsyaBZHQLghawlByCF1fZQoaAZoCWgPQwhEMuTYesbwv5SGlFKUaBVLMmgWR0C4IUy6xxDLdX2UKGgGaAloD0MI3NYWnpcK5L+UhpRSlGgVSzJoFkdAuCJug3974XV9lChoBmgJaA9DCDT1ukVgLPq/lIaUUpRoFUsyaBZHQLgiTZWaMJh1fZQoaAZoCWgPQwhkdha9U4Hrv5SGlFKUaBVLMmgWR0C4Ii35WRzSdX2UKGgGaAloD0MIG5sdqb5z67+UhpRSlGgVSzJoFkdAuCIPeVLSNXV9lChoBmgJaA9DCAHBHD1+b+S/lIaUUpRoFUsyaBZHQLgi9I+GGmF1fZQoaAZoCWgPQwhUi4hi8gbvv5SGlFKUaBVLMmgWR0C4ItOyzHCGdX2UKGgGaAloD0MI2nHD76ab8L+UhpRSlGgVSzJoFkdAuCKz7iyY5XV9lChoBmgJaA9DCA6jIHh8O/S/lIaUUpRoFUsyaBZHQLgilVDa4+d1fZQoaAZoCWgPQwhXmL7XEJzov5SGlFKUaBVLMmgWR0C4I3P9cbBHdX2UKGgGaAloD0MIVix+U1ip27+UhpRSlGgVSzJoFkdAuCNTHq/ucHV9lChoBmgJaA9DCBmMEYlCS+y/lIaUUpRoFUsyaBZHQLgjM33Hq/x1fZQoaAZoCWgPQwhdbjDUYYXUv5SGlFKUaBVLMmgWR0C4IxTWwu/UdX2UKGgGaAloD0MI8u1dg7504r+UhpRSlGgVSzJoFkdAuCP5LpRoAXV9lChoBmgJaA9DCJWZ0vpbwvG/lIaUUpRoFUsyaBZHQLgj2GKAJ9l1fZQoaAZoCWgPQwiCxeHMr+bnv5SGlFKUaBVLMmgWR0C4I7ixFAmidX2UKGgGaAloD0MIfxXgu82b8r+UhpRSlGgVSzJoFkdAuCOaETQE6nV9lChoBmgJaA9DCEZe1sQC3/C/lIaUUpRoFUsyaBZHQLgkidoWYWt1fZQoaAZoCWgPQwj19ueiIaPwv5SGlFKUaBVLMmgWR0C4JGj59E1EdX2UKGgGaAloD0MIx9eeWRKg5r+UhpRSlGgVSzJoFkdAuCRJU6xPf3V9lChoBmgJaA9DCBL5LqUume6/lIaUUpRoFUsyaBZHQLgkKr5qM3t1fZQoaAZoCWgPQwgv4GWGjbL4v5SGlFKUaBVLMmgWR0C4JQ1lTWGzdX2UKGgGaAloD0MIqWxYU1mU6L+UhpRSlGgVSzJoFkdAuCTsgzP8h3V9lChoBmgJaA9DCC+/02TGW/C/lIaUUpRoFUsyaBZHQLgkzNmUW2x1fZQoaAZoCWgPQwixNsZOeInuv5SGlFKUaBVLMmgWR0C4JK5FspG4dX2UKGgGaAloD0MIwf7r3LQZ8r+UhpRSlGgVSzJoFkdAuCWbCcf/3nV9lChoBmgJaA9DCJIHIos08em/lIaUUpRoFUsyaBZHQLgleiiqQzV1fZQoaAZoCWgPQwir61BNSdblv5SGlFKUaBVLMmgWR0C4JVpy6tkndX2UKGgGaAloD0MIQWfSpuoe5r+UhpRSlGgVSzJoFkdAuCU7zqbBoHV9lChoBmgJaA9DCEcdHVcju+W/lIaUUpRoFUsyaBZHQLgmHZv1lGx1fZQoaAZoCWgPQwgLl1XYDHDiv5SGlFKUaBVLMmgWR0C4JfysS00FdX2UKGgGaAloD0MIoYLDCyKS8r+UhpRSlGgVSzJoFkdAuCXdAIIF/3V9lChoBmgJaA9DCAD9vn/z4um/lIaUUpRoFUsyaBZHQLglvrSmZVp1fZQoaAZoCWgPQwiTcCGP4Ebtv5SGlFKUaBVLMmgWR0C4JquHnEEUdX2UKGgGaAloD0MI+igjLgAN77+UhpRSlGgVSzJoFkdAuCaKqR2bG3V9lChoBmgJaA9DCBBZpIl3QPG/lIaUUpRoFUsyaBZHQLgmaw+dK/V1fZQoaAZoCWgPQwgMzApFup/tv5SGlFKUaBVLMmgWR0C4JkyEQGwBdX2UKGgGaAloD0MIdF5jl6he7L+UhpRSlGgVSzJoFkdAuCcyK1og3nV9lChoBmgJaA9DCDMWTWcng+q/lIaUUpRoFUsyaBZHQLgnEUxVQyh1fZQoaAZoCWgPQwhJnuv7cBDmv5SGlFKUaBVLMmgWR0C4JvGeQMhHdX2UKGgGaAloD0MIqvBneLMG7b+UhpRSlGgVSzJoFkdAuCbTFbVz63V9lChoBmgJaA9DCD//PXjt0uW/lIaUUpRoFUsyaBZHQLgnubVBlc11fZQoaAZoCWgPQwhG0m70MR/av5SGlFKUaBVLMmgWR0C4J5i39aUzdX2UKGgGaAloD0MI3UWYolya67+UhpRSlGgVSzJoFkdAuCd4+KTB7HV9lChoBmgJaA9DCMtMaf0tAfS/lIaUUpRoFUsyaBZHQLgnWlabF0h1fZQoaAZoCWgPQwicNuM0RJXyv5SGlFKUaBVLMmgWR0C4KD/8/D+BdX2UKGgGaAloD0MIsMvwn24g7L+UhpRSlGgVSzJoFkdAuCgfFjurqHV9lChoBmgJaA9DCHWsUnqml+2/lIaUUpRoFUsyaBZHQLgn/2dd3St1fZQoaAZoCWgPQwjuk6MAUbDqv5SGlFKUaBVLMmgWR0C4J+DBZZB+dX2UKGgGaAloD0MI2GFM+nup6r+UhpRSlGgVSzJoFkdAuCjGymhufnV9lChoBmgJaA9DCP30nzU/PvG/lIaUUpRoFUsyaBZHQLgopfm9xqB1fZQoaAZoCWgPQwiTG0XWGkr1v5SGlFKUaBVLMmgWR0C4KIZiVjZtdX2UKGgGaAloD0MIpS+EnPf/1b+UhpRSlGgVSzJoFkdAuChn3xnWa3V9lChoBmgJaA9DCK4tPC8VG+m/lIaUUpRoFUsyaBZHQLgpRmEGqxV1fZQoaAZoCWgPQwj922W/7nTsv5SGlFKUaBVLMmgWR0C4KSWACnxbdX2UKGgGaAloD0MIq1s9J71v8L+UhpRSlGgVSzJoFkdAuCkF1X/5tXV9lChoBmgJaA9DCALWql0TUu6/lIaUUpRoFUsyaBZHQLgo50k4WDZ1fZQoaAZoCWgPQwh3TUhrDDruv5SGlFKUaBVLMmgWR0C4KcXbypaSdX2UKGgGaAloD0MImkLnNXYJ67+UhpRSlGgVSzJoFkdAuCmlDiOvMnV9lChoBmgJaA9DCNBf6BGj59a/lIaUUpRoFUsyaBZHQLgphakRBeJ1fZQoaAZoCWgPQwi2niEcs+zZv5SGlFKUaBVLMmgWR0C4KWcasIVudX2UKGgGaAloD0MILJ/leXD34L+UhpRSlGgVSzJoFkdAuCpNmK64D3V9lChoBmgJaA9DCHx716AvveW/lIaUUpRoFUsyaBZHQLgqLMpPRAt1fZQoaAZoCWgPQwhx5eyd0dbqv5SGlFKUaBVLMmgWR0C4Kg0gfU4JdX2UKGgGaAloD0MIQrRWtDmO8b+UhpRSlGgVSzJoFkdAuCnumXPZ7HV9lChoBmgJaA9DCARauoJtROO/lIaUUpRoFUsyaBZHQLgq0xfOUt91fZQoaAZoCWgPQwhe86rOagHuv5SGlFKUaBVLMmgWR0C4KrI0/GEPdX2UKGgGaAloD0MIgc05eCb08r+UhpRSlGgVSzJoFkdAuCqSgoPTX3V9lChoBmgJaA9DCLQAbatZZ+q/lIaUUpRoFUsyaBZHQLgqc/A0sOJ1fZQoaAZoCWgPQwiJ0Ag2rn/uv5SGlFKUaBVLMmgWR0C4K1hRuTA4dX2UKGgGaAloD0MIs7RTc7nB7L+UhpRSlGgVSzJoFkdAuCs3fO2RaHV9lChoBmgJaA9DCIup9BPObsm/lIaUUpRoFUsyaBZHQLgrF+s5n151fZQoaAZoCWgPQwhXXByVm6jgv5SGlFKUaBVLMmgWR0C4KvlXvH94dX2UKGgGaAloD0MIaTUk7rG09b+UhpRSlGgVSzJoFkdAuCvqrq+rVHV9lChoBmgJaA9DCPH1tS41Quu/lIaUUpRoFUsyaBZHQLgrycp9ZzR1fZQoaAZoCWgPQwjmzkwwnOvkv5SGlFKUaBVLMmgWR0C4K6ofW+XadX2UKGgGaAloD0MIqByTxf0H87+UhpRSlGgVSzJoFkdAuCuLhcZ9/nV9lChoBmgJaA9DCKhy2lNyzuW/lIaUUpRoFUsyaBZHQLgsfvvSc9Z1fZQoaAZoCWgPQwjAIVSp2YPhv5SGlFKUaBVLMmgWR0C4LF53X7LudX2UKGgGaAloD0MId700RYDT4r+UhpRSlGgVSzJoFkdAuCw/AWSEDnV9lChoBmgJaA9DCFh1Vgvssem/lIaUUpRoFUsyaBZHQLgsIMhHLA51ZS4="
|
83 |
},
|
84 |
"ep_success_buffer": {
|
85 |
":type:": "<class 'collections.deque'>",
|
86 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
87 |
},
|
88 |
+
"_n_updates": 62500,
|
89 |
+
"n_steps": 8,
|
90 |
"gamma": 0.99,
|
91 |
+
"gae_lambda": 0.9,
|
92 |
"ent_coef": 0.0,
|
93 |
+
"vf_coef": 0.4,
|
94 |
"max_grad_norm": 0.5,
|
95 |
"normalize_advantage": false
|
96 |
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a540f42445615f8686bc430b4fb254fbddcdb28a8e90234e7cd50cbfd7c55429
|
3 |
+
size 45438
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:476c9ae248c6d02d1fca3d116cedc4faf03e8412ef85ad5d04b0426d55ffa0a9
|
3 |
+
size 46718
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f8d005de040>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f8d005d5b70>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675793481886772515, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAZRvbPscEvrsflQc/ZRvbPscEvrsflQc/ZRvbPscEvrsflQc/ZRvbPscEvrsflQc/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAVAlev90Toz6BfMI/B2WHvhbkHD9lB7W/mavYv2vMob+8GZ8+zU4wP62/hz4OiY0/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABlG9s+xwS+ux+VBz8I2A87z27RupyoDDxlG9s+xwS+ux+VBz8I2A87z27RupyoDDxlG9s+xwS+ux+VBz8I2A87z27RupyoDDxlG9s+xwS+ux+VBz8I2A87z27RupyoDDyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.42794338 -0.00579891 0.52961916]\n [ 0.42794338 -0.00579891 0.52961916]\n [ 0.42794338 -0.00579891 0.52961916]\n [ 0.42794338 -0.00579891 0.52961916]]", "desired_goal": "[[-0.86732984 0.31851092 1.5194246 ]\n [-0.26444265 0.6128553 -1.4142882 ]\n [-1.6927367 -1.2640508 0.3107432 ]\n [ 0.6887024 0.26513425 1.1057451 ]]", "observation": "[[ 0.42794338 -0.00579891 0.52961916 0.00219488 -0.00159785 0.00858512]\n [ 0.42794338 -0.00579891 0.52961916 0.00219488 -0.00159785 0.00858512]\n [ 0.42794338 -0.00579891 0.52961916 0.00219488 -0.00159785 0.00858512]\n [ 0.42794338 -0.00579891 0.52961916 0.00219488 -0.00159785 0.00858512]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAtFK0vHUI17yiEZM+R8wIPko1SLz+cj09IdhzPTKvCr5Ao5M9BG28PehmqjwWmA4+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.02201209 -0.02624915 0.2872439 ]\n [ 0.13359176 -0.01221974 0.04625224]\n [ 0.05953229 -0.13543394 0.07208872]\n [ 0.09200481 0.02080102 0.13925204]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI5BOy8za2CsCUhpRSlIwBbJRLMowBdJRHQLat0/etSyd1fZQoaAZoCWgPQwizmNh8XHsKwJSGlFKUaBVLMmgWR0C2rbV1KXfJdX2UKGgGaAloD0MIOwDirl6FB8CUhpRSlGgVSzJoFkdAtq2V4hUzbnV9lChoBmgJaA9DCNI1k2+2+QHAlIaUUpRoFUsyaBZHQLatd+CK77N1fZQoaAZoCWgPQwg4ns+AesMQwJSGlFKUaBVLMmgWR0C2rkcyvcJudX2UKGgGaAloD0MI9bhvtU58B8CUhpRSlGgVSzJoFkdAtq4otEofCHV9lChoBmgJaA9DCEsd5PVg4hPAlIaUUpRoFUsyaBZHQLauCQRPGhp1fZQoaAZoCWgPQwgJwhVQqEcJwJSGlFKUaBVLMmgWR0C2reri2lVMdX2UKGgGaAloD0MICty6m6c6B8CUhpRSlGgVSzJoFkdAtq7BlyzXz3V9lChoBmgJaA9DCMwnK4arYw/AlIaUUpRoFUsyaBZHQLauoyTINmV1fZQoaAZoCWgPQwgE/vDz32MMwJSGlFKUaBVLMmgWR0C2roN5le4TdX2UKGgGaAloD0MI4pANpIuND8CUhpRSlGgVSzJoFkdAtq5lSIgvDnV9lChoBmgJaA9DCLN8XYb/9BXAlIaUUpRoFUsyaBZHQLavN/TLGJh1fZQoaAZoCWgPQwjaxwp+G6IYwJSGlFKUaBVLMmgWR0C2rxmGIsRQdX2UKGgGaAloD0MIM+IC0ChdEMCUhpRSlGgVSzJoFkdAtq753kgfVHV9lChoBmgJaA9DCEPJ5NTOcBXAlIaUUpRoFUsyaBZHQLau28b70nR1fZQoaAZoCWgPQwhcHQBxV38SwJSGlFKUaBVLMmgWR0C2r7XvUjLTdX2UKGgGaAloD0MI6PhoccawEcCUhpRSlGgVSzJoFkdAtq+XaTOgQHV9lChoBmgJaA9DCBCTcCGPgBLAlIaUUpRoFUsyaBZHQLavd8hs67x1fZQoaAZoCWgPQwg2OuenOO4IwJSGlFKUaBVLMmgWR0C2r1mOZLIxdX2UKGgGaAloD0MIObaeIRxDEsCUhpRSlGgVSzJoFkdAtrAsu8K5TnV9lChoBmgJaA9DCM9Lxca8jgjAlIaUUpRoFUsyaBZHQLawDjvNNah1fZQoaAZoCWgPQwgMk6mCUakOwJSGlFKUaBVLMmgWR0C2r+6Z+hGpdX2UKGgGaAloD0MITRJLyt0HCcCUhpRSlGgVSzJoFkdAtq/Qenyd4HV9lChoBmgJaA9DCJOq7Sb4RgnAlIaUUpRoFUsyaBZHQLawpC7btZ51fZQoaAZoCWgPQwhdGVQbnOgQwJSGlFKUaBVLMmgWR0C2sIXBP9DQdX2UKGgGaAloD0MIzEV8J2b9EcCUhpRSlGgVSzJoFkdAtrBmHerMknV9lChoBmgJaA9DCBY1mIbhQwvAlIaUUpRoFUsyaBZHQLawR/EwWWR1fZQoaAZoCWgPQwgDX9Gt1/QCwJSGlFKUaBVLMmgWR0C2sRzLOiWWdX2UKGgGaAloD0MIVpqUgm6/FMCUhpRSlGgVSzJoFkdAtrD+Y3Ns33V9lChoBmgJaA9DCEYIjzaOOA3AlIaUUpRoFUsyaBZHQLaw3sO5J9R1fZQoaAZoCWgPQwicjCrDuDsFwJSGlFKUaBVLMmgWR0C2sMCXQdCFdX2UKGgGaAloD0MIQZ/Ik6TrCMCUhpRSlGgVSzJoFkdAtrGS+wkgOnV9lChoBmgJaA9DCHPZ6JyfUhPAlIaUUpRoFUsyaBZHQLaxdI55qud1fZQoaAZoCWgPQwgoKbAApuwKwJSGlFKUaBVLMmgWR0C2sVTg62fDdX2UKGgGaAloD0MIr0FfevvzD8CUhpRSlGgVSzJoFkdAtrE2plz2e3V9lChoBmgJaA9DCMy3Pqw3SgjAlIaUUpRoFUsyaBZHQLayBjpcHGF1fZQoaAZoCWgPQwg3cAfqlGcRwJSGlFKUaBVLMmgWR0C2sefcSGrTdX2UKGgGaAloD0MIpdjRONTPDcCUhpRSlGgVSzJoFkdAtrHIZBLPEHV9lChoBmgJaA9DCM2tEFZjyQ3AlIaUUpRoFUsyaBZHQLaxqkSmIj51fZQoaAZoCWgPQwhnDHOCNrkQwJSGlFKUaBVLMmgWR0C2soZPqLTAdX2UKGgGaAloD0MI8/+qI0dqFcCUhpRSlGgVSzJoFkdAtrJoTVUdaXV9lChoBmgJaA9DCFFrmnecwgjAlIaUUpRoFUsyaBZHQLaySOnl4kh1fZQoaAZoCWgPQwjEB3b8F8gZwJSGlFKUaBVLMmgWR0C2sisfeUILdX2UKGgGaAloD0MIN8e5TbiXC8CUhpRSlGgVSzJoFkdAtrNOnpB5X3V9lChoBmgJaA9DCFCLwcO0DxDAlIaUUpRoFUsyaBZHQLazMHCGetl1fZQoaAZoCWgPQwgAdQMF3gkQwJSGlFKUaBVLMmgWR0C2sxEsvqTsdX2UKGgGaAloD0MIPN7kt+jED8CUhpRSlGgVSzJoFkdAtrLzR6Ww/3V9lChoBmgJaA9DCET9LmzN1g3AlIaUUpRoFUsyaBZHQLa0Df5k9U11fZQoaAZoCWgPQwhzZOWXwRgTwJSGlFKUaBVLMmgWR0C2s+/FirksdX2UKGgGaAloD0MIKh2s/3NoEsCUhpRSlGgVSzJoFkdAtrPQfaHsTnV9lChoBmgJaA9DCFq4rMJmwAzAlIaUUpRoFUsyaBZHQLazsqS5iEx1fZQoaAZoCWgPQwiE1VjC2hgawJSGlFKUaBVLMmgWR0C2tNd47ihndX2UKGgGaAloD0MIVUyln3DWBsCUhpRSlGgVSzJoFkdAtrS5TVDrq3V9lChoBmgJaA9DCGdEaW/wBQjAlIaUUpRoFUsyaBZHQLa0mfgJkXl1fZQoaAZoCWgPQwj8cJAQ5UsKwJSGlFKUaBVLMmgWR0C2tHwfIS13dX2UKGgGaAloD0MIJZLoZRSLC8CUhpRSlGgVSzJoFkdAtrWhd0JWvXV9lChoBmgJaA9DCOdwrfawdwfAlIaUUpRoFUsyaBZHQLa1g2eQMhJ1fZQoaAZoCWgPQwh7LlOT4G0PwJSGlFKUaBVLMmgWR0C2tWQjdHlPdX2UKGgGaAloD0MINrHAV3TrCcCUhpRSlGgVSzJoFkdAtrVGVeKKpHV9lChoBmgJaA9DCAzO4O8XMw/AlIaUUpRoFUsyaBZHQLa2fvJRwZR1fZQoaAZoCWgPQwi0dXCwN/EFwJSGlFKUaBVLMmgWR0C2tmDzRQaadX2UKGgGaAloD0MIzGCMSBSaCMCUhpRSlGgVSzJoFkdAtrZBm6GxlnV9lChoBmgJaA9DCBSxiGGHgRDAlIaUUpRoFUsyaBZHQLa2I9d/rjZ1fZQoaAZoCWgPQwh9W7BUF8ASwJSGlFKUaBVLMmgWR0C2t1xIJ7b+dX2UKGgGaAloD0MIaOkKthHPB8CUhpRSlGgVSzJoFkdAtrc+XKKYRnV9lChoBmgJaA9DCAeaz7nbFQnAlIaUUpRoFUsyaBZHQLa3Hy9mHxl1fZQoaAZoCWgPQwisyOiAJKwGwJSGlFKUaBVLMmgWR0C2twFOoHcDdX2UKGgGaAloD0MIWwpI+x8AE8CUhpRSlGgVSzJoFkdAtrfcNAkcCHV9lChoBmgJaA9DCPZFQlvOBQvAlIaUUpRoFUsyaBZHQLa3vbsF+ux1fZQoaAZoCWgPQwgqcoi4OaUTwJSGlFKUaBVLMmgWR0C2t54N3GGVdX2UKGgGaAloD0MImlshrMZSB8CUhpRSlGgVSzJoFkdAtrd/4vexfXV9lChoBmgJaA9DCKSmXUwzHQfAlIaUUpRoFUsyaBZHQLa4Vku6ErZ1fZQoaAZoCWgPQwh2qKYk68ARwJSGlFKUaBVLMmgWR0C2uDfCZWq+dX2UKGgGaAloD0MIUil2NA51EsCUhpRSlGgVSzJoFkdAtrgYLF4s3HV9lChoBmgJaA9DCG/XS1MEmAjAlIaUUpRoFUsyaBZHQLa3+e+Eh7p1fZQoaAZoCWgPQwiHinH+JlQFwJSGlFKUaBVLMmgWR0C2uMzsD4gzdX2UKGgGaAloD0MIJNHLKJb7CcCUhpRSlGgVSzJoFkdAtriueSSvDHV9lChoBmgJaA9DCHWvk/qy1BTAlIaUUpRoFUsyaBZHQLa4jvicXnB1fZQoaAZoCWgPQwgo8E4+PRYJwJSGlFKUaBVLMmgWR0C2uHDLKV6edX2UKGgGaAloD0MIb0Vighr+C8CUhpRSlGgVSzJoFkdAtrlCq4pc5nV9lChoBmgJaA9DCOXTY1sGnBTAlIaUUpRoFUsyaBZHQLa5JG+bmU51fZQoaAZoCWgPQwhKQbeXNCYQwJSGlFKUaBVLMmgWR0C2uQTt1IRRdX2UKGgGaAloD0MIDHOCNjk8FMCUhpRSlGgVSzJoFkdAtrjm+RHPNXV9lChoBmgJaA9DCDklICbhwgHAlIaUUpRoFUsyaBZHQLa5t64lQdl1fZQoaAZoCWgPQwiyKy0j9T4HwJSGlFKUaBVLMmgWR0C2uZmMXJo1dX2UKGgGaAloD0MIX0VGByShCcCUhpRSlGgVSzJoFkdAtrl6PKdQPHV9lChoBmgJaA9DCJlmutdJnQnAlIaUUpRoFUsyaBZHQLa5XCKJl8R1fZQoaAZoCWgPQwhybagY508CwJSGlFKUaBVLMmgWR0C2uiyr1dxAdX2UKGgGaAloD0MITWn9LQGYBsCUhpRSlGgVSzJoFkdAtroOLQ5WBHV9lChoBmgJaA9DCAt72uGv6QzAlIaUUpRoFUsyaBZHQLa57nWattB1fZQoaAZoCWgPQwgaaam8HeEIwJSGlFKUaBVLMmgWR0C2udBEBsAOdX2UKGgGaAloD0MIrrg4KjexDMCUhpRSlGgVSzJoFkdAtrqgnb7CSHV9lChoBmgJaA9DCHqJsUy/hAzAlIaUUpRoFUsyaBZHQLa6ghS9/SZ1fZQoaAZoCWgPQwjQQgJGl7cFwJSGlFKUaBVLMmgWR0C2umJuhsZYdX2UKGgGaAloD0MIya1JtyVSEMCUhpRSlGgVSzJoFkdAtrpEQGwA2nV9lChoBmgJaA9DCOqu7ILBdQ/AlIaUUpRoFUsyaBZHQLa7F8+A3DN1fZQoaAZoCWgPQwjKMVncf2QKwJSGlFKUaBVLMmgWR0C2uvlXeWOZdX2UKGgGaAloD0MIBMjQsYPqBsCUhpRSlGgVSzJoFkdAtrrZpYcNpnV9lChoBmgJaA9DCEDAWrVr4gjAlIaUUpRoFUsyaBZHQLa6u3EAHVx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 100000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f6b2ec1a430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f6b2ec11d50>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675843039360649592, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAhQXqPigIJLw+WxM/hQXqPigIJLw+WxM/hQXqPigIJLw+WxM/hQXqPigIJLw+WxM/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAABGMOv49YOb+OgQU/qrrFv2giE7+FSga/TvEbv9s9l7+EcDO/VnlBPy+Hg79bucS/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACFBeo+KAgkvD5bEz+SeJg9tWY+u+RoiT2FBeo+KAgkvD5bEz+SeJg9tWY+u+RoiT2FBeo+KAgkvD5bEz+SeJg9tWY+u+RoiT2FBeo+KAgkvD5bEz+SeJg9tWY+u+RoiT2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.45707336 -0.01001171 0.575611 ]\n [ 0.45707336 -0.01001171 0.575611 ]\n [ 0.45707336 -0.01001171 0.575611 ]\n [ 0.45707336 -0.01001171 0.575611 ]]", "desired_goal": "[[-0.55619836 -0.72400755 0.5215081 ]\n [-1.544759 -0.57474375 -0.5245746 ]\n [-0.60915077 -1.1815752 -0.7009356 ]\n [ 0.7557577 -1.027563 -1.5369066 ]]", "observation": "[[ 0.45707336 -0.01001171 0.575611 0.07444872 -0.00290529 0.06709459]\n [ 0.45707336 -0.01001171 0.575611 0.07444872 -0.00290529 0.06709459]\n [ 0.45707336 -0.01001171 0.575611 0.07444872 -0.00290529 0.06709459]\n [ 0.45707336 -0.01001171 0.575611 0.07444872 -0.00290529 0.06709459]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA7kjwveqxAL7opFI+pQAlveWccz0yhFI+fj+avPBXmrzsiTc8DXDivJ7YRrwtSiM+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.1173266 -0.12567869 0.20570719]\n [-0.04028382 0.0594758 0.20558241]\n [-0.0188291 -0.01884076 0.01120232]\n [-0.02764132 -0.01213661 0.15946265]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMICfzh57+H5r+UhpRSlIwBbJRLMowBdJRHQLgeDQjUuth1fZQoaAZoCWgPQwjQCaGDLuHYv5SGlFKUaBVLMmgWR0C4Hexe1KGtdX2UKGgGaAloD0MICwithy8T7r+UhpRSlGgVSzJoFkdAuB3NHuqm0nV9lChoBmgJaA9DCNiACHHl7Oa/lIaUUpRoFUsyaBZHQLgdru01IiF1fZQoaAZoCWgPQwgNGCR9WkXJv5SGlFKUaBVLMmgWR0C4HulOO802dX2UKGgGaAloD0MIotKImX2e7r+UhpRSlGgVSzJoFkdAuB7I4PwuunV9lChoBmgJaA9DCBoWo66199e/lIaUUpRoFUsyaBZHQLgeqZAY51h1fZQoaAZoCWgPQwhblq/L8F/wv5SGlFKUaBVLMmgWR0C4HotlmOENdX2UKGgGaAloD0MIEHaKVYOw67+UhpRSlGgVSzJoFkdAuB/OS3b213V9lChoBmgJaA9DCD+qYb8nVua/lIaUUpRoFUsyaBZHQLgfreNDMNd1fZQoaAZoCWgPQwgIyQImcGvxv5SGlFKUaBVLMmgWR0C4H46n3ta7dX2UKGgGaAloD0MIFyzVBbxM7L+UhpRSlGgVSzJoFkdAuB9wojOcD3V9lChoBmgJaA9DCLmI78SsF+q/lIaUUpRoFUsyaBZHQLggxjcmBvt1fZQoaAZoCWgPQwi4Agr19JHpv5SGlFKUaBVLMmgWR0C4IKXWOIZZdX2UKGgGaAloD0MI/tR46Sax57+UhpRSlGgVSzJoFkdAuCCHWattAXV9lChoBmgJaA9DCGe5bHTOz+y/lIaUUpRoFUsyaBZHQLggaVPN3W51fZQoaAZoCWgPQwipF3yakxfev5SGlFKUaBVLMmgWR0C4IasJ2MbWdX2UKGgGaAloD0MIEmxc/66P8L+UhpRSlGgVSzJoFkdAuCGKd9Ujs3V9lChoBmgJaA9DCHSbcK/MW+W/lIaUUpRoFUsyaBZHQLghawlByCF1fZQoaAZoCWgPQwhEMuTYesbwv5SGlFKUaBVLMmgWR0C4IUy6xxDLdX2UKGgGaAloD0MI3NYWnpcK5L+UhpRSlGgVSzJoFkdAuCJug3974XV9lChoBmgJaA9DCDT1ukVgLPq/lIaUUpRoFUsyaBZHQLgiTZWaMJh1fZQoaAZoCWgPQwhkdha9U4Hrv5SGlFKUaBVLMmgWR0C4Ii35WRzSdX2UKGgGaAloD0MIG5sdqb5z67+UhpRSlGgVSzJoFkdAuCIPeVLSNXV9lChoBmgJaA9DCAHBHD1+b+S/lIaUUpRoFUsyaBZHQLgi9I+GGmF1fZQoaAZoCWgPQwhUi4hi8gbvv5SGlFKUaBVLMmgWR0C4ItOyzHCGdX2UKGgGaAloD0MI2nHD76ab8L+UhpRSlGgVSzJoFkdAuCKz7iyY5XV9lChoBmgJaA9DCA6jIHh8O/S/lIaUUpRoFUsyaBZHQLgilVDa4+d1fZQoaAZoCWgPQwhXmL7XEJzov5SGlFKUaBVLMmgWR0C4I3P9cbBHdX2UKGgGaAloD0MIVix+U1ip27+UhpRSlGgVSzJoFkdAuCNTHq/ucHV9lChoBmgJaA9DCBmMEYlCS+y/lIaUUpRoFUsyaBZHQLgjM33Hq/x1fZQoaAZoCWgPQwhdbjDUYYXUv5SGlFKUaBVLMmgWR0C4IxTWwu/UdX2UKGgGaAloD0MI8u1dg7504r+UhpRSlGgVSzJoFkdAuCP5LpRoAXV9lChoBmgJaA9DCJWZ0vpbwvG/lIaUUpRoFUsyaBZHQLgj2GKAJ9l1fZQoaAZoCWgPQwiCxeHMr+bnv5SGlFKUaBVLMmgWR0C4I7ixFAmidX2UKGgGaAloD0MIfxXgu82b8r+UhpRSlGgVSzJoFkdAuCOaETQE6nV9lChoBmgJaA9DCEZe1sQC3/C/lIaUUpRoFUsyaBZHQLgkidoWYWt1fZQoaAZoCWgPQwj19ueiIaPwv5SGlFKUaBVLMmgWR0C4JGj59E1EdX2UKGgGaAloD0MIx9eeWRKg5r+UhpRSlGgVSzJoFkdAuCRJU6xPf3V9lChoBmgJaA9DCBL5LqUume6/lIaUUpRoFUsyaBZHQLgkKr5qM3t1fZQoaAZoCWgPQwgv4GWGjbL4v5SGlFKUaBVLMmgWR0C4JQ1lTWGzdX2UKGgGaAloD0MIqWxYU1mU6L+UhpRSlGgVSzJoFkdAuCTsgzP8h3V9lChoBmgJaA9DCC+/02TGW/C/lIaUUpRoFUsyaBZHQLgkzNmUW2x1fZQoaAZoCWgPQwixNsZOeInuv5SGlFKUaBVLMmgWR0C4JK5FspG4dX2UKGgGaAloD0MIwf7r3LQZ8r+UhpRSlGgVSzJoFkdAuCWbCcf/3nV9lChoBmgJaA9DCJIHIos08em/lIaUUpRoFUsyaBZHQLgleiiqQzV1fZQoaAZoCWgPQwir61BNSdblv5SGlFKUaBVLMmgWR0C4JVpy6tkndX2UKGgGaAloD0MIQWfSpuoe5r+UhpRSlGgVSzJoFkdAuCU7zqbBoHV9lChoBmgJaA9DCEcdHVcju+W/lIaUUpRoFUsyaBZHQLgmHZv1lGx1fZQoaAZoCWgPQwgLl1XYDHDiv5SGlFKUaBVLMmgWR0C4JfysS00FdX2UKGgGaAloD0MIoYLDCyKS8r+UhpRSlGgVSzJoFkdAuCXdAIIF/3V9lChoBmgJaA9DCAD9vn/z4um/lIaUUpRoFUsyaBZHQLglvrSmZVp1fZQoaAZoCWgPQwiTcCGP4Ebtv5SGlFKUaBVLMmgWR0C4JquHnEEUdX2UKGgGaAloD0MI+igjLgAN77+UhpRSlGgVSzJoFkdAuCaKqR2bG3V9lChoBmgJaA9DCBBZpIl3QPG/lIaUUpRoFUsyaBZHQLgmaw+dK/V1fZQoaAZoCWgPQwgMzApFup/tv5SGlFKUaBVLMmgWR0C4JkyEQGwBdX2UKGgGaAloD0MIdF5jl6he7L+UhpRSlGgVSzJoFkdAuCcyK1og3nV9lChoBmgJaA9DCDMWTWcng+q/lIaUUpRoFUsyaBZHQLgnEUxVQyh1fZQoaAZoCWgPQwhJnuv7cBDmv5SGlFKUaBVLMmgWR0C4JvGeQMhHdX2UKGgGaAloD0MIqvBneLMG7b+UhpRSlGgVSzJoFkdAuCbTFbVz63V9lChoBmgJaA9DCD//PXjt0uW/lIaUUpRoFUsyaBZHQLgnubVBlc11fZQoaAZoCWgPQwhG0m70MR/av5SGlFKUaBVLMmgWR0C4J5i39aUzdX2UKGgGaAloD0MI3UWYolya67+UhpRSlGgVSzJoFkdAuCd4+KTB7HV9lChoBmgJaA9DCMtMaf0tAfS/lIaUUpRoFUsyaBZHQLgnWlabF0h1fZQoaAZoCWgPQwicNuM0RJXyv5SGlFKUaBVLMmgWR0C4KD/8/D+BdX2UKGgGaAloD0MIsMvwn24g7L+UhpRSlGgVSzJoFkdAuCgfFjurqHV9lChoBmgJaA9DCHWsUnqml+2/lIaUUpRoFUsyaBZHQLgn/2dd3St1fZQoaAZoCWgPQwjuk6MAUbDqv5SGlFKUaBVLMmgWR0C4J+DBZZB+dX2UKGgGaAloD0MI2GFM+nup6r+UhpRSlGgVSzJoFkdAuCjGymhufnV9lChoBmgJaA9DCP30nzU/PvG/lIaUUpRoFUsyaBZHQLgopfm9xqB1fZQoaAZoCWgPQwiTG0XWGkr1v5SGlFKUaBVLMmgWR0C4KIZiVjZtdX2UKGgGaAloD0MIpS+EnPf/1b+UhpRSlGgVSzJoFkdAuChn3xnWa3V9lChoBmgJaA9DCK4tPC8VG+m/lIaUUpRoFUsyaBZHQLgpRmEGqxV1fZQoaAZoCWgPQwj922W/7nTsv5SGlFKUaBVLMmgWR0C4KSWACnxbdX2UKGgGaAloD0MIq1s9J71v8L+UhpRSlGgVSzJoFkdAuCkF1X/5tXV9lChoBmgJaA9DCALWql0TUu6/lIaUUpRoFUsyaBZHQLgo50k4WDZ1fZQoaAZoCWgPQwh3TUhrDDruv5SGlFKUaBVLMmgWR0C4KcXbypaSdX2UKGgGaAloD0MImkLnNXYJ67+UhpRSlGgVSzJoFkdAuCmlDiOvMnV9lChoBmgJaA9DCNBf6BGj59a/lIaUUpRoFUsyaBZHQLgphakRBeJ1fZQoaAZoCWgPQwi2niEcs+zZv5SGlFKUaBVLMmgWR0C4KWcasIVudX2UKGgGaAloD0MILJ/leXD34L+UhpRSlGgVSzJoFkdAuCpNmK64D3V9lChoBmgJaA9DCHx716AvveW/lIaUUpRoFUsyaBZHQLgqLMpPRAt1fZQoaAZoCWgPQwhx5eyd0dbqv5SGlFKUaBVLMmgWR0C4Kg0gfU4JdX2UKGgGaAloD0MIQrRWtDmO8b+UhpRSlGgVSzJoFkdAuCnumXPZ7HV9lChoBmgJaA9DCARauoJtROO/lIaUUpRoFUsyaBZHQLgq0xfOUt91fZQoaAZoCWgPQwhe86rOagHuv5SGlFKUaBVLMmgWR0C4KrI0/GEPdX2UKGgGaAloD0MIgc05eCb08r+UhpRSlGgVSzJoFkdAuCqSgoPTX3V9lChoBmgJaA9DCLQAbatZZ+q/lIaUUpRoFUsyaBZHQLgqc/A0sOJ1fZQoaAZoCWgPQwiJ0Ag2rn/uv5SGlFKUaBVLMmgWR0C4K1hRuTA4dX2UKGgGaAloD0MIs7RTc7nB7L+UhpRSlGgVSzJoFkdAuCs3fO2RaHV9lChoBmgJaA9DCIup9BPObsm/lIaUUpRoFUsyaBZHQLgrF+s5n151fZQoaAZoCWgPQwhXXByVm6jgv5SGlFKUaBVLMmgWR0C4KvlXvH94dX2UKGgGaAloD0MIaTUk7rG09b+UhpRSlGgVSzJoFkdAuCvqrq+rVHV9lChoBmgJaA9DCPH1tS41Quu/lIaUUpRoFUsyaBZHQLgrycp9ZzR1fZQoaAZoCWgPQwjmzkwwnOvkv5SGlFKUaBVLMmgWR0C4K6ofW+XadX2UKGgGaAloD0MIqByTxf0H87+UhpRSlGgVSzJoFkdAuCuLhcZ9/nV9lChoBmgJaA9DCKhy2lNyzuW/lIaUUpRoFUsyaBZHQLgsfvvSc9Z1fZQoaAZoCWgPQwjAIVSp2YPhv5SGlFKUaBVLMmgWR0C4LF53X7LudX2UKGgGaAloD0MId700RYDT4r+UhpRSlGgVSzJoFkdAuCw/AWSEDnV9lChoBmgJaA9DCFh1Vgvssem/lIaUUpRoFUsyaBZHQLgsIMhHLA51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -0.8056609180057421, "std_reward": 0.228188542481534, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-08T09:40:27.612693"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 3056
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:042e42fc0ac20317f2dec23722d312504df8c211582ad9329d941abb0471bccb
|
3 |
size 3056
|