Luisdahuis commited on
Commit
9cdb94e
·
verified ·
1 Parent(s): ee89b3c

End of training

Browse files
Files changed (1) hide show
  1. README.md +15 -9
README.md CHANGED
@@ -5,6 +5,9 @@ tags:
5
  - generated_from_trainer
6
  metrics:
7
  - accuracy
 
 
 
8
  model-index:
9
  - name: spam
10
  results: []
@@ -17,8 +20,11 @@ should probably proofread and complete it, then remove this comment. -->
17
 
18
  This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on an unknown dataset.
19
  It achieves the following results on the evaluation set:
20
- - Loss: 0.0087
21
- - Accuracy: 0.9985
 
 
 
22
 
23
  ## Model description
24
 
@@ -37,9 +43,9 @@ More information needed
37
  ### Training hyperparameters
38
 
39
  The following hyperparameters were used during training:
40
- - learning_rate: 2e-05
41
- - train_batch_size: 16
42
- - eval_batch_size: 16
43
  - seed: 42
44
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
  - lr_scheduler_type: linear
@@ -47,10 +53,10 @@ The following hyperparameters were used during training:
47
 
48
  ### Training results
49
 
50
- | Training Loss | Epoch | Step | Validation Loss | Accuracy |
51
- |:-------------:|:-----:|:----:|:---------------:|:--------:|
52
- | 0.0355 | 1.0 | 511 | 0.0124 | 0.9974 |
53
- | 0.0027 | 2.0 | 1022 | 0.0087 | 0.9985 |
54
 
55
 
56
  ### Framework versions
 
5
  - generated_from_trainer
6
  metrics:
7
  - accuracy
8
+ - precision
9
+ - recall
10
+ - f1
11
  model-index:
12
  - name: spam
13
  results: []
 
20
 
21
  This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on an unknown dataset.
22
  It achieves the following results on the evaluation set:
23
+ - Loss: 0.6940
24
+ - Accuracy: 0.4954
25
+ - Precision: 0.2454
26
+ - Recall: 0.4954
27
+ - F1: 0.3282
28
 
29
  ## Model description
30
 
 
43
  ### Training hyperparameters
44
 
45
  The following hyperparameters were used during training:
46
+ - learning_rate: 2
47
+ - train_batch_size: 32
48
+ - eval_batch_size: 32
49
  - seed: 42
50
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
  - lr_scheduler_type: linear
 
53
 
54
  ### Training results
55
 
56
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
57
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
58
+ | No log | 1.0 | 256 | 0.7098 | 0.5046 | 0.2546 | 0.5046 | 0.3384 |
59
+ | 13078.501 | 2.0 | 512 | 0.6940 | 0.4954 | 0.2454 | 0.4954 | 0.3282 |
60
 
61
 
62
  ### Framework versions