|
import torch |
|
from typing import Optional, Tuple, Union, Any |
|
from diffusers import UNet2DConditionModel |
|
from diffusers.models.attention_processor import Attention |
|
from diffusers.models.unets.unet_2d_condition import UNet2DConditionOutput |
|
|
|
|
|
def construct_pix2pix_attention(hidden_states_dim, norm_type="none"): |
|
if norm_type == "layernorm": |
|
norm = torch.nn.LayerNorm(hidden_states_dim) |
|
else: |
|
norm = torch.nn.Identity() |
|
attention = Attention( |
|
query_dim=hidden_states_dim, |
|
heads=8, |
|
dim_head=hidden_states_dim // 8, |
|
bias=True, |
|
) |
|
|
|
attention.xformers_not_supported = True |
|
return norm, attention |
|
|
|
|
|
def switch_extra_processor(model, enable_filter=lambda x:True): |
|
def recursive_add_processors(name: str, module: torch.nn.Module): |
|
for sub_name, child in module.named_children(): |
|
recursive_add_processors(f"{name}.{sub_name}", child) |
|
|
|
if isinstance(module, ExtraAttnProc): |
|
module.enabled = enable_filter(name) |
|
|
|
for name, module in model.named_children(): |
|
recursive_add_processors(name, module) |
|
|
|
|
|
def add_extra_processor(model: torch.nn.Module, enable_filter=lambda x:True, **kwargs): |
|
return_dict = torch.nn.ModuleDict() |
|
proj_in_dim = kwargs.get('proj_in_dim', False) |
|
kwargs.pop('proj_in_dim', None) |
|
|
|
def recursive_add_processors(name: str, module: torch.nn.Module): |
|
for sub_name, child in module.named_children(): |
|
if "ref_unet" not in (sub_name + name): |
|
recursive_add_processors(f"{name}.{sub_name}", child) |
|
|
|
if isinstance(module, Attention): |
|
new_processor = ExtraAttnProc( |
|
chained_proc=module.get_processor(), |
|
enabled=enable_filter(f"{name}.processor"), |
|
name=f"{name}.processor", |
|
proj_in_dim=proj_in_dim if proj_in_dim else module.cross_attention_dim, |
|
target_dim=module.cross_attention_dim, |
|
**kwargs |
|
) |
|
module.set_processor(new_processor) |
|
return_dict[f"{name}.processor".replace(".", "__")] = new_processor |
|
|
|
for name, module in model.named_children(): |
|
recursive_add_processors(name, module) |
|
return return_dict |
|
|
|
|
|
|
|
class ExtraAttnProc(torch.nn.Module): |
|
def __init__( |
|
self, |
|
chained_proc, |
|
enabled=False, |
|
name=None, |
|
mode='extract', |
|
with_proj_in=False, |
|
proj_in_dim=768, |
|
target_dim=None, |
|
pixel_wise_crosspond=False, |
|
norm_type="none", |
|
crosspond_effect_on="all", |
|
crosspond_chain_pos="parralle", |
|
simple_3d=False, |
|
views=4, |
|
) -> None: |
|
super().__init__() |
|
self.enabled = enabled |
|
self.chained_proc = chained_proc |
|
self.name = name |
|
self.mode = mode |
|
self.with_proj_in=with_proj_in |
|
self.proj_in_dim = proj_in_dim |
|
self.target_dim = target_dim or proj_in_dim |
|
self.hidden_states_dim = self.target_dim |
|
self.pixel_wise_crosspond = pixel_wise_crosspond |
|
self.crosspond_effect_on = crosspond_effect_on |
|
self.crosspond_chain_pos = crosspond_chain_pos |
|
self.views = views |
|
self.simple_3d = simple_3d |
|
if self.with_proj_in and self.enabled: |
|
self.in_linear = torch.nn.Linear(self.proj_in_dim, self.target_dim, bias=False) |
|
if self.target_dim == self.proj_in_dim: |
|
self.in_linear.weight.data = torch.eye(proj_in_dim) |
|
else: |
|
self.in_linear = None |
|
if self.pixel_wise_crosspond and self.enabled: |
|
self.crosspond_norm, self.crosspond_attention = construct_pix2pix_attention(self.hidden_states_dim, norm_type=norm_type) |
|
|
|
def do_crosspond_attention(self, hidden_states: torch.FloatTensor, other_states: torch.FloatTensor): |
|
hidden_states = self.crosspond_norm(hidden_states) |
|
|
|
batch, L, D = hidden_states.shape |
|
assert hidden_states.shape == other_states.shape, f"got {hidden_states.shape} and {other_states.shape}" |
|
|
|
hidden_states = hidden_states.reshape(batch * L, 1, D) |
|
other_states = other_states.reshape(batch * L, 1, D) |
|
hidden_states_catted = other_states |
|
hidden_states = self.crosspond_attention( |
|
hidden_states, |
|
encoder_hidden_states=hidden_states_catted, |
|
) |
|
return hidden_states.reshape(batch, L, D) |
|
|
|
def __call__( |
|
self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None, |
|
ref_dict: dict = None, mode=None, **kwargs |
|
) -> Any: |
|
if not self.enabled: |
|
return self.chained_proc(attn, hidden_states, encoder_hidden_states, attention_mask, **kwargs) |
|
if encoder_hidden_states is None: |
|
encoder_hidden_states = hidden_states |
|
assert ref_dict is not None |
|
if (mode or self.mode) == 'extract': |
|
ref_dict[self.name] = hidden_states |
|
hidden_states1 = self.chained_proc(attn, hidden_states, encoder_hidden_states, attention_mask, **kwargs) |
|
if self.pixel_wise_crosspond and self.crosspond_chain_pos == "after": |
|
ref_dict[self.name] = hidden_states1 |
|
return hidden_states1 |
|
elif (mode or self.mode) == 'inject': |
|
ref_state = ref_dict.pop(self.name) |
|
if self.with_proj_in: |
|
ref_state = self.in_linear(ref_state) |
|
|
|
B, L, D = ref_state.shape |
|
if hidden_states.shape[0] == B: |
|
modalities = 1 |
|
views = 1 |
|
else: |
|
modalities = hidden_states.shape[0] // B // self.views |
|
views = self.views |
|
if self.pixel_wise_crosspond: |
|
if self.crosspond_effect_on == "all": |
|
ref_state = ref_state[:, None].expand(-1, modalities * views, -1, -1).reshape(-1, *ref_state.shape[-2:]) |
|
|
|
if self.crosspond_chain_pos == "before": |
|
hidden_states = hidden_states + self.do_crosspond_attention(hidden_states, ref_state) |
|
|
|
hidden_states1 = self.chained_proc(attn, hidden_states, encoder_hidden_states, attention_mask, **kwargs) |
|
|
|
if self.crosspond_chain_pos == "parralle": |
|
hidden_states1 = hidden_states1 + self.do_crosspond_attention(hidden_states, ref_state) |
|
|
|
if self.crosspond_chain_pos == "after": |
|
hidden_states1 = hidden_states1 + self.do_crosspond_attention(hidden_states1, ref_state) |
|
return hidden_states1 |
|
else: |
|
assert self.crosspond_effect_on == "first" |
|
|
|
|
|
ref_state = ref_state[:, None].expand(-1, modalities, -1, -1).reshape(-1, ref_state.shape[-2], ref_state.shape[-1]) |
|
|
|
def do_paritial_crosspond(hidden_states, ref_state): |
|
first_view_hidden_states = hidden_states.view(-1, views, hidden_states.shape[1], hidden_states.shape[2])[:, 0] |
|
hidden_states2 = self.do_crosspond_attention(first_view_hidden_states, ref_state) |
|
hidden_states2_padded = torch.zeros_like(hidden_states).reshape(-1, views, hidden_states.shape[1], hidden_states.shape[2]) |
|
hidden_states2_padded[:, 0] = hidden_states2 |
|
hidden_states2_padded = hidden_states2_padded.reshape(-1, hidden_states.shape[1], hidden_states.shape[2]) |
|
return hidden_states2_padded |
|
|
|
if self.crosspond_chain_pos == "before": |
|
hidden_states = hidden_states + do_paritial_crosspond(hidden_states, ref_state) |
|
|
|
hidden_states1 = self.chained_proc(attn, hidden_states, encoder_hidden_states, attention_mask, **kwargs) |
|
if self.crosspond_chain_pos == "parralle": |
|
hidden_states1 = hidden_states1 + do_paritial_crosspond(hidden_states, ref_state) |
|
if self.crosspond_chain_pos == "after": |
|
hidden_states1 = hidden_states1 + do_paritial_crosspond(hidden_states1, ref_state) |
|
return hidden_states1 |
|
elif self.simple_3d: |
|
B, L, C = encoder_hidden_states.shape |
|
mv = self.views |
|
encoder_hidden_states = encoder_hidden_states.reshape(B // mv, mv, L, C) |
|
ref_state = ref_state[:, None] |
|
encoder_hidden_states = torch.cat([encoder_hidden_states, ref_state], dim=1) |
|
encoder_hidden_states = encoder_hidden_states.reshape(B // mv, 1, (mv+1) * L, C) |
|
encoder_hidden_states = encoder_hidden_states.repeat(1, mv, 1, 1).reshape(-1, (mv+1) * L, C) |
|
return self.chained_proc(attn, hidden_states, encoder_hidden_states, attention_mask, **kwargs) |
|
else: |
|
ref_state = ref_state[:, None].expand(-1, modalities * views, -1, -1).reshape(-1, ref_state.shape[-2], ref_state.shape[-1]) |
|
encoder_hidden_states = torch.cat([encoder_hidden_states, ref_state], dim=1) |
|
return self.chained_proc(attn, hidden_states, encoder_hidden_states, attention_mask, **kwargs) |
|
else: |
|
raise NotImplementedError("mode or self.mode is required to be 'extract' or 'inject'") |
|
|
|
|
|
class UnifieldWrappedUNet(UNet2DConditionModel): |
|
def __init__( |
|
self, |
|
sample_size: Optional[int] = None, |
|
in_channels: int = 4, |
|
out_channels: int = 4, |
|
center_input_sample: bool = False, |
|
flip_sin_to_cos: bool = True, |
|
freq_shift: int = 0, |
|
down_block_types: Tuple[str] = ( |
|
"CrossAttnDownBlock2D", |
|
"CrossAttnDownBlock2D", |
|
"CrossAttnDownBlock2D", |
|
"DownBlock2D", |
|
), |
|
mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn", |
|
up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"), |
|
only_cross_attention: Union[bool, Tuple[bool]] = False, |
|
block_out_channels: Tuple[int] = (320, 640, 1280, 1280), |
|
layers_per_block: Union[int, Tuple[int]] = 2, |
|
downsample_padding: int = 1, |
|
mid_block_scale_factor: float = 1, |
|
dropout: float = 0.0, |
|
act_fn: str = "silu", |
|
norm_num_groups: Optional[int] = 32, |
|
norm_eps: float = 1e-5, |
|
cross_attention_dim: Union[int, Tuple[int]] = 1280, |
|
transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1, |
|
reverse_transformer_layers_per_block: Optional[Tuple[Tuple[int]]] = None, |
|
encoder_hid_dim: Optional[int] = None, |
|
encoder_hid_dim_type: Optional[str] = None, |
|
attention_head_dim: Union[int, Tuple[int]] = 8, |
|
num_attention_heads: Optional[Union[int, Tuple[int]]] = None, |
|
dual_cross_attention: bool = False, |
|
use_linear_projection: bool = False, |
|
class_embed_type: Optional[str] = None, |
|
addition_embed_type: Optional[str] = None, |
|
addition_time_embed_dim: Optional[int] = None, |
|
num_class_embeds: Optional[int] = None, |
|
upcast_attention: bool = False, |
|
resnet_time_scale_shift: str = "default", |
|
resnet_skip_time_act: bool = False, |
|
resnet_out_scale_factor: float = 1.0, |
|
time_embedding_type: str = "positional", |
|
time_embedding_dim: Optional[int] = None, |
|
time_embedding_act_fn: Optional[str] = None, |
|
timestep_post_act: Optional[str] = None, |
|
time_cond_proj_dim: Optional[int] = None, |
|
conv_in_kernel: int = 3, |
|
conv_out_kernel: int = 3, |
|
projection_class_embeddings_input_dim: Optional[int] = None, |
|
attention_type: str = "default", |
|
class_embeddings_concat: bool = False, |
|
mid_block_only_cross_attention: Optional[bool] = None, |
|
cross_attention_norm: Optional[str] = None, |
|
addition_embed_type_num_heads: int = 64, |
|
|
|
init_self_attn_ref: bool = False, |
|
self_attn_ref_other_model_name: str = 'lambdalabs/sd-image-variations-diffusers', |
|
self_attn_ref_position: str = "attn1", |
|
self_attn_ref_pixel_wise_crosspond: bool = False, |
|
self_attn_ref_effect_on: str = "all", |
|
self_attn_ref_chain_pos: str = "parralle", |
|
use_simple3d_attn: bool = False, |
|
**kwargs |
|
): |
|
super().__init__(**{ |
|
k: v for k, v in locals().items() if k not in |
|
["self", "kwargs", "__class__", |
|
"init_self_attn_ref", "self_attn_ref_other_model_name", "self_attn_ref_position", "self_attn_ref_pixel_wise_crosspond", |
|
"self_attn_ref_effect_on", "self_attn_ref_chain_pos", "use_simple3d_attn" |
|
] |
|
}) |
|
|
|
|
|
self.ref_unet: UNet2DConditionModel = UNet2DConditionModel.from_pretrained( |
|
self_attn_ref_other_model_name, subfolder="unet", torch_dtype=self.dtype |
|
) |
|
add_extra_processor( |
|
model=self.ref_unet, |
|
enable_filter=lambda name: name.endswith(f"{self_attn_ref_position}.processor"), |
|
mode='extract', |
|
with_proj_in=False, |
|
pixel_wise_crosspond=False, |
|
) |
|
add_extra_processor( |
|
model=self, |
|
enable_filter=lambda name: name.endswith(f"{self_attn_ref_position}.processor"), |
|
mode='inject', |
|
with_proj_in=False, |
|
pixel_wise_crosspond=self_attn_ref_pixel_wise_crosspond, |
|
crosspond_effect_on=self_attn_ref_effect_on, |
|
crosspond_chain_pos=self_attn_ref_chain_pos, |
|
simple_3d=use_simple3d_attn, |
|
) |
|
switch_extra_processor(self, enable_filter=lambda name: name.endswith(f"{self_attn_ref_position}.processor")) |
|
|
|
def __call__( |
|
self, |
|
sample: torch.Tensor, |
|
timestep: Union[torch.Tensor, float, int], |
|
encoder_hidden_states: torch.Tensor, |
|
condition_latens: torch.Tensor = None, |
|
class_labels: Optional[torch.Tensor] = None, |
|
) -> Union[UNet2DConditionOutput, Tuple]: |
|
|
|
ref_dict = {} |
|
self.ref_unet(condition_latens, timestep, encoder_hidden_states, cross_attention_kwargs=dict(ref_dict=ref_dict)) |
|
return self.forward( |
|
sample, timestep, encoder_hidden_states, |
|
class_labels=class_labels, |
|
cross_attention_kwargs=dict(ref_dict=ref_dict, mode='inject'), |
|
) |
|
|