LucianoDeben commited on
Commit
dadfacc
1 Parent(s): dd15694

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -1.85 +/- 0.64
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:43791aee215c5086149d9fdfe001a62464693371386be42499443d9c5b59c488
3
+ size 108023
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f6580d98040>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7f6580d9c480>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1677835274877028018,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAnlXePoOctbxYLhk/nlXePoOctbxYLhk/nlXePoOctbxYLhk/nlXePoOctbxYLhk/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA8+Ldv5TgGj/EcPa+ZRewvh7Qwj7WL74+kTaIP/7Z4D63Egq+nxPRv18ySj+e2uw+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACeVd4+g5y1vFguGT9ekoY8s+JNuxbiTTyeVd4+g5y1vFguGT9ekoY8s+JNuxbiTTyeVd4+g5y1vFguGT9ekoY8s+JNuxbiTTyeVd4+g5y1vFguGT9ekoY8s+JNuxbiTTyUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 0.43424696 -0.02216936 0.5983634 ]\n [ 0.43424696 -0.02216936 0.5983634 ]\n [ 0.43424696 -0.02216936 0.5983634 ]\n [ 0.43424696 -0.02216936 0.5983634 ]]",
60
+ "desired_goal": "[[-1.7334884 0.6049893 -0.48132908]\n [-0.3439285 0.38049406 0.3714587 ]\n [ 1.0641652 0.43916315 -0.13483702]\n [-1.6334113 0.7898311 0.46260542]]",
61
+ "observation": "[[ 0.43424696 -0.02216936 0.5983634 0.01642722 -0.00314156 0.01256611]\n [ 0.43424696 -0.02216936 0.5983634 0.01642722 -0.00314156 0.01256611]\n [ 0.43424696 -0.02216936 0.5983634 0.01642722 -0.00314156 0.01256611]\n [ 0.43424696 -0.02216936 0.5983634 0.01642722 -0.00314156 0.01256611]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAEkigvayd5ruSXho+HKT6vHooB760qhs+uIhoPSTuzr2K4CU+P1TaPdtDnb2fo1I+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[-0.07826246 -0.00703784 0.15075138]\n [-0.03059583 -0.13199034 0.15201837]\n [ 0.05677101 -0.10104015 0.16198936]\n [ 0.106606 -0.07678958 0.20570229]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIpMaEmEsq7b+UhpRSlIwBbJRLMowBdJRHQKoxsQgcLjR1fZQoaAZoCWgPQwj1aKon84/zv5SGlFKUaBVLMmgWR0CqMRfBFd9ldX2UKGgGaAloD0MIIQclzLQ9+L+UhpRSlGgVSzJoFkdAqjCqBd2Pk3V9lChoBmgJaA9DCEesxacAWPa/lIaUUpRoFUsyaBZHQKowIPJ7sv91fZQoaAZoCWgPQwgK9Ik8Sfr9v5SGlFKUaBVLMmgWR0CqMuy9ugpSdX2UKGgGaAloD0MIR4/f2/Rn7b+UhpRSlGgVSzJoFkdAqjJTHdXT3XV9lChoBmgJaA9DCC/ej9sv3/2/lIaUUpRoFUsyaBZHQKox5KuB+Wp1fZQoaAZoCWgPQwj+1HjpJlECwJSGlFKUaBVLMmgWR0CqMVtdiUgTdX2UKGgGaAloD0MI4dBbPLxn/L+UhpRSlGgVSzJoFkdAqjQv9itq6HV9lChoBmgJaA9DCG5uTE9Y4ui/lIaUUpRoFUsyaBZHQKozlnB+F111fZQoaAZoCWgPQwi2oPfGEID+v5SGlFKUaBVLMmgWR0CqMyf8EV32dX2UKGgGaAloD0MISu1FtB3T9b+UhpRSlGgVSzJoFkdAqjKen62v0XV9lChoBmgJaA9DCHkB9tGpq+6/lIaUUpRoFUsyaBZHQKo1qryUcGV1fZQoaAZoCWgPQwhE/S5szZb0v5SGlFKUaBVLMmgWR0CqNRHtfG+9dX2UKGgGaAloD0MIm1d1Vgus87+UhpRSlGgVSzJoFkdAqjSkZvUBn3V9lChoBmgJaA9DCBtoPudu1/e/lIaUUpRoFUsyaBZHQKo0HArxy4p1fZQoaAZoCWgPQwjs+ZrlsnEBwJSGlFKUaBVLMmgWR0CqN5VNxlxwdX2UKGgGaAloD0MI2GX4TzfQ+7+UhpRSlGgVSzJoFkdAqjb81uR9w3V9lChoBmgJaA9DCL8K8N3mjf6/lIaUUpRoFUsyaBZHQKo2j31zySV1fZQoaAZoCWgPQwhuwVJdwIsBwJSGlFKUaBVLMmgWR0CqNgcIzFdcdX2UKGgGaAloD0MI0uRiDKxDAMCUhpRSlGgVSzJoFkdAqjmXX9R77nV9lChoBmgJaA9DCK+ZfLPNzfy/lIaUUpRoFUsyaBZHQKo4/qqOtGN1fZQoaAZoCWgPQwh8KxIT1HD7v5SGlFKUaBVLMmgWR0CqOJDW07bMdX2UKGgGaAloD0MI2safqGxY5b+UhpRSlGgVSzJoFkdAqjgITIvJzXV9lChoBmgJaA9DCCv4bYjxmgLAlIaUUpRoFUsyaBZHQKo7oALApKB1fZQoaAZoCWgPQwhtHRzsTSwAwJSGlFKUaBVLMmgWR0CqOwcohIOIdX2UKGgGaAloD0MI2PFfIAhQ/r+UhpRSlGgVSzJoFkdAqjqZsfq5b3V9lChoBmgJaA9DCFQCYhIuJAHAlIaUUpRoFUsyaBZHQKo6ETh5xBF1fZQoaAZoCWgPQwjij6LO3APzv5SGlFKUaBVLMmgWR0CqPblhXr+pdX2UKGgGaAloD0MIgCiYMQUr+b+UhpRSlGgVSzJoFkdAqj0g/s3Q2XV9lChoBmgJaA9DCEMdVrjlo/K/lIaUUpRoFUsyaBZHQKo8s5NoJzF1fZQoaAZoCWgPQwhDdXPxt33yv5SGlFKUaBVLMmgWR0CqPCxL9MsZdX2UKGgGaAloD0MIIEQy5Nh6/r+UhpRSlGgVSzJoFkdAqj/dqzqrzXV9lChoBmgJaA9DCP+Xa9ECtPe/lIaUUpRoFUsyaBZHQKo/ROs1baB1fZQoaAZoCWgPQwg+y/Pg7izvv5SGlFKUaBVLMmgWR0CqPtczImw8dX2UKGgGaAloD0MIhNbDl4ni97+UhpRSlGgVSzJoFkdAqj5O3c580HV9lChoBmgJaA9DCJupEI/Ey/C/lIaUUpRoFUsyaBZHQKpBMDdP+GZ1fZQoaAZoCWgPQwi+LsN/uoECwJSGlFKUaBVLMmgWR0CqQJaCL/CJdX2UKGgGaAloD0MINxlVhnH38r+UhpRSlGgVSzJoFkdAqkAoCjk+5nV9lChoBmgJaA9DCPkVa7jIvfG/lIaUUpRoFUsyaBZHQKo/nsyBTXJ1fZQoaAZoCWgPQwgj88gfDDz1v5SGlFKUaBVLMmgWR0CqQmjxLCemdX2UKGgGaAloD0MIVrYPecuV+b+UhpRSlGgVSzJoFkdAqkHPWcz68HV9lChoBmgJaA9DCPyLoDGT6PS/lIaUUpRoFUsyaBZHQKpBYOjIq9Z1fZQoaAZoCWgPQwg6eZEJ+DX5v5SGlFKUaBVLMmgWR0CqQNdgnc+JdX2UKGgGaAloD0MIpl8i3jr/9r+UhpRSlGgVSzJoFkdAqkOe/tY0VXV9lChoBmgJaA9DCCiZnNoZpva/lIaUUpRoFUsyaBZHQKpDBWXkYGd1fZQoaAZoCWgPQwiHMlTFVLryv5SGlFKUaBVLMmgWR0CqQpbyQPqcdX2UKGgGaAloD0MItOTxtPzA7r+UhpRSlGgVSzJoFkdAqkINeF+NLnV9lChoBmgJaA9DCO9YbJOKBgDAlIaUUpRoFUsyaBZHQKpE1WattAN1fZQoaAZoCWgPQwjyW3Sy1Dr7v5SGlFKUaBVLMmgWR0CqRDvBacI7dX2UKGgGaAloD0MIHcu76gFz77+UhpRSlGgVSzJoFkdAqkPNVPva13V9lChoBmgJaA9DCH/d6c4Tj/a/lIaUUpRoFUsyaBZHQKpDQ/hVENR1fZQoaAZoCWgPQwjzOXe7Xlrzv5SGlFKUaBVLMmgWR0CqRhPGp++edX2UKGgGaAloD0MIK0t0llmE+r+UhpRSlGgVSzJoFkdAqkV6Fh5PdnV9lChoBmgJaA9DCD3WjAxyl/W/lIaUUpRoFUsyaBZHQKpFC4PPLPl1fZQoaAZoCWgPQwg6BI4EGuz1v5SGlFKUaBVLMmgWR0CqRILy1/lRdX2UKGgGaAloD0MITtAmh0+68b+UhpRSlGgVSzJoFkdAqkc8lolD4XV9lChoBmgJaA9DCI4G8BZIUOe/lIaUUpRoFUsyaBZHQKpGowpON5t1fZQoaAZoCWgPQwgAqrhxizkEwJSGlFKUaBVLMmgWR0CqRjSGi5/cdX2UKGgGaAloD0MId9zwu+nW+L+UhpRSlGgVSzJoFkdAqkWrKoybhHV9lChoBmgJaA9DCN2271F/ve2/lIaUUpRoFUsyaBZHQKpIg5oXbdt1fZQoaAZoCWgPQwj19XzNcln6v5SGlFKUaBVLMmgWR0CqR+no5ggHdX2UKGgGaAloD0MISkONQpKZ/b+UhpRSlGgVSzJoFkdAqkd7htLteHV9lChoBmgJaA9DCFzlCYSd4uW/lIaUUpRoFUsyaBZHQKpG8izsyBV1fZQoaAZoCWgPQwjUghd9BUkDwJSGlFKUaBVLMmgWR0CqSbWalUIcdX2UKGgGaAloD0MIJAnCFVCo9b+UhpRSlGgVSzJoFkdAqkkb72tdRnV9lChoBmgJaA9DCMYy/RLxNgTAlIaUUpRoFUsyaBZHQKpIrV2icoZ1fZQoaAZoCWgPQwjCS3DqAwn0v5SGlFKUaBVLMmgWR0CqSCQF9roGdX2UKGgGaAloD0MIoBUYsrrV97+UhpRSlGgVSzJoFkdAqkrbkCFK03V9lChoBmgJaA9DCOY9zjRhe/S/lIaUUpRoFUsyaBZHQKpKQdJ8OTd1fZQoaAZoCWgPQwgy/+ibNM31v5SGlFKUaBVLMmgWR0CqSdNGd7OWdX2UKGgGaAloD0MIhCnKpfEL+r+UhpRSlGgVSzJoFkdAqklKAWi1zHV9lChoBmgJaA9DCDtSfecXpfm/lIaUUpRoFUsyaBZHQKpMDzjFQ2x1fZQoaAZoCWgPQwhQNXo1QEkDwJSGlFKUaBVLMmgWR0CqS3Y+jdpJdX2UKGgGaAloD0MIeVxUi4ji7r+UhpRSlGgVSzJoFkdAqksIwCbMHXV9lChoBmgJaA9DCOHP8GYNXvu/lIaUUpRoFUsyaBZHQKpKf2HLzPN1fZQoaAZoCWgPQwgl58Qe2of8v5SGlFKUaBVLMmgWR0CqTT/CIk7fdX2UKGgGaAloD0MI+WUwRiRK9L+UhpRSlGgVSzJoFkdAqkymHtWuHXV9lChoBmgJaA9DCPjCZKpg1P+/lIaUUpRoFUsyaBZHQKpMN3+uNgl1fZQoaAZoCWgPQwgt6SgHswn7v5SGlFKUaBVLMmgWR0CqS64zrNW3dX2UKGgGaAloD0MIKnReY5eo9r+UhpRSlGgVSzJoFkdAqk5pnJ1aGHV9lChoBmgJaA9DCIarAyDuave/lIaUUpRoFUsyaBZHQKpNz9v0h/11fZQoaAZoCWgPQwhLHeT1YLIEwJSGlFKUaBVLMmgWR0CqTWFZHNHIdX2UKGgGaAloD0MIrrt5qkPu9b+UhpRSlGgVSzJoFkdAqkzX/FR51XV9lChoBmgJaA9DCGe2K/TBcva/lIaUUpRoFUsyaBZHQKpPl9hJAdJ1fZQoaAZoCWgPQwj+ZffkYSHtv5SGlFKUaBVLMmgWR0CqTv4xDb8FdX2UKGgGaAloD0MIGsOcoE2uA8CUhpRSlGgVSzJoFkdAqk6P4Irvs3V9lChoBmgJaA9DCJVm8zgMpvi/lIaUUpRoFUsyaBZHQKpOBm7J4jd1fZQoaAZoCWgPQwiRZFbvcLv+v5SGlFKUaBVLMmgWR0CqUMmpEQXidX2UKGgGaAloD0MI6rRug9ov9L+UhpRSlGgVSzJoFkdAqlAwGt6ol3V9lChoBmgJaA9DCAjL2NDNfvK/lIaUUpRoFUsyaBZHQKpPwZydWhh1fZQoaAZoCWgPQwgzFeKReHn2v5SGlFKUaBVLMmgWR0CqTzhE0BOpdX2UKGgGaAloD0MIr5RliGNd97+UhpRSlGgVSzJoFkdAqlH/QfIS13V9lChoBmgJaA9DCKcjgJvFCwrAlIaUUpRoFUsyaBZHQKpRZaM72ct1fZQoaAZoCWgPQwgIkncOZUgLwJSGlFKUaBVLMmgWR0CqUPckdFOPdX2UKGgGaAloD0MICoDxDBq69r+UhpRSlGgVSzJoFkdAqlBtvAGjbnV9lChoBmgJaA9DCO4JEtvdAwnAlIaUUpRoFUsyaBZHQKpTRcFhXsB1fZQoaAZoCWgPQwiOB1vs9hn3v5SGlFKUaBVLMmgWR0CqUqw9ic5KdX2UKGgGaAloD0MI4xsKn63D+r+UhpRSlGgVSzJoFkdAqlI98b70nXV9lChoBmgJaA9DCKUuGcdI9gHAlIaUUpRoFUsyaBZHQKpRtIbOu7p1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:93f3c52d803dc2dc5b4deb3493c7cf18047cc39a647cca4c5b78d9dc4c0075c1
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3b401418d33bd70747480b27c20e735875b70ec5e7ecd9ecfbb57b42b899a33d
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f6580d98040>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f6580d9c480>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677835274877028018, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAnlXePoOctbxYLhk/nlXePoOctbxYLhk/nlXePoOctbxYLhk/nlXePoOctbxYLhk/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA8+Ldv5TgGj/EcPa+ZRewvh7Qwj7WL74+kTaIP/7Z4D63Egq+nxPRv18ySj+e2uw+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACeVd4+g5y1vFguGT9ekoY8s+JNuxbiTTyeVd4+g5y1vFguGT9ekoY8s+JNuxbiTTyeVd4+g5y1vFguGT9ekoY8s+JNuxbiTTyeVd4+g5y1vFguGT9ekoY8s+JNuxbiTTyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.43424696 -0.02216936 0.5983634 ]\n [ 0.43424696 -0.02216936 0.5983634 ]\n [ 0.43424696 -0.02216936 0.5983634 ]\n [ 0.43424696 -0.02216936 0.5983634 ]]", "desired_goal": "[[-1.7334884 0.6049893 -0.48132908]\n [-0.3439285 0.38049406 0.3714587 ]\n [ 1.0641652 0.43916315 -0.13483702]\n [-1.6334113 0.7898311 0.46260542]]", "observation": "[[ 0.43424696 -0.02216936 0.5983634 0.01642722 -0.00314156 0.01256611]\n [ 0.43424696 -0.02216936 0.5983634 0.01642722 -0.00314156 0.01256611]\n [ 0.43424696 -0.02216936 0.5983634 0.01642722 -0.00314156 0.01256611]\n [ 0.43424696 -0.02216936 0.5983634 0.01642722 -0.00314156 0.01256611]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAEkigvayd5ruSXho+HKT6vHooB760qhs+uIhoPSTuzr2K4CU+P1TaPdtDnb2fo1I+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.07826246 -0.00703784 0.15075138]\n [-0.03059583 -0.13199034 0.15201837]\n [ 0.05677101 -0.10104015 0.16198936]\n [ 0.106606 -0.07678958 0.20570229]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIpMaEmEsq7b+UhpRSlIwBbJRLMowBdJRHQKoxsQgcLjR1fZQoaAZoCWgPQwj1aKon84/zv5SGlFKUaBVLMmgWR0CqMRfBFd9ldX2UKGgGaAloD0MIIQclzLQ9+L+UhpRSlGgVSzJoFkdAqjCqBd2Pk3V9lChoBmgJaA9DCEesxacAWPa/lIaUUpRoFUsyaBZHQKowIPJ7sv91fZQoaAZoCWgPQwgK9Ik8Sfr9v5SGlFKUaBVLMmgWR0CqMuy9ugpSdX2UKGgGaAloD0MIR4/f2/Rn7b+UhpRSlGgVSzJoFkdAqjJTHdXT3XV9lChoBmgJaA9DCC/ej9sv3/2/lIaUUpRoFUsyaBZHQKox5KuB+Wp1fZQoaAZoCWgPQwj+1HjpJlECwJSGlFKUaBVLMmgWR0CqMVtdiUgTdX2UKGgGaAloD0MI4dBbPLxn/L+UhpRSlGgVSzJoFkdAqjQv9itq6HV9lChoBmgJaA9DCG5uTE9Y4ui/lIaUUpRoFUsyaBZHQKozlnB+F111fZQoaAZoCWgPQwi2oPfGEID+v5SGlFKUaBVLMmgWR0CqMyf8EV32dX2UKGgGaAloD0MISu1FtB3T9b+UhpRSlGgVSzJoFkdAqjKen62v0XV9lChoBmgJaA9DCHkB9tGpq+6/lIaUUpRoFUsyaBZHQKo1qryUcGV1fZQoaAZoCWgPQwhE/S5szZb0v5SGlFKUaBVLMmgWR0CqNRHtfG+9dX2UKGgGaAloD0MIm1d1Vgus87+UhpRSlGgVSzJoFkdAqjSkZvUBn3V9lChoBmgJaA9DCBtoPudu1/e/lIaUUpRoFUsyaBZHQKo0HArxy4p1fZQoaAZoCWgPQwjs+ZrlsnEBwJSGlFKUaBVLMmgWR0CqN5VNxlxwdX2UKGgGaAloD0MI2GX4TzfQ+7+UhpRSlGgVSzJoFkdAqjb81uR9w3V9lChoBmgJaA9DCL8K8N3mjf6/lIaUUpRoFUsyaBZHQKo2j31zySV1fZQoaAZoCWgPQwhuwVJdwIsBwJSGlFKUaBVLMmgWR0CqNgcIzFdcdX2UKGgGaAloD0MI0uRiDKxDAMCUhpRSlGgVSzJoFkdAqjmXX9R77nV9lChoBmgJaA9DCK+ZfLPNzfy/lIaUUpRoFUsyaBZHQKo4/qqOtGN1fZQoaAZoCWgPQwh8KxIT1HD7v5SGlFKUaBVLMmgWR0CqOJDW07bMdX2UKGgGaAloD0MI2safqGxY5b+UhpRSlGgVSzJoFkdAqjgITIvJzXV9lChoBmgJaA9DCCv4bYjxmgLAlIaUUpRoFUsyaBZHQKo7oALApKB1fZQoaAZoCWgPQwhtHRzsTSwAwJSGlFKUaBVLMmgWR0CqOwcohIOIdX2UKGgGaAloD0MI2PFfIAhQ/r+UhpRSlGgVSzJoFkdAqjqZsfq5b3V9lChoBmgJaA9DCFQCYhIuJAHAlIaUUpRoFUsyaBZHQKo6ETh5xBF1fZQoaAZoCWgPQwjij6LO3APzv5SGlFKUaBVLMmgWR0CqPblhXr+pdX2UKGgGaAloD0MIgCiYMQUr+b+UhpRSlGgVSzJoFkdAqj0g/s3Q2XV9lChoBmgJaA9DCEMdVrjlo/K/lIaUUpRoFUsyaBZHQKo8s5NoJzF1fZQoaAZoCWgPQwhDdXPxt33yv5SGlFKUaBVLMmgWR0CqPCxL9MsZdX2UKGgGaAloD0MIIEQy5Nh6/r+UhpRSlGgVSzJoFkdAqj/dqzqrzXV9lChoBmgJaA9DCP+Xa9ECtPe/lIaUUpRoFUsyaBZHQKo/ROs1baB1fZQoaAZoCWgPQwg+y/Pg7izvv5SGlFKUaBVLMmgWR0CqPtczImw8dX2UKGgGaAloD0MIhNbDl4ni97+UhpRSlGgVSzJoFkdAqj5O3c580HV9lChoBmgJaA9DCJupEI/Ey/C/lIaUUpRoFUsyaBZHQKpBMDdP+GZ1fZQoaAZoCWgPQwi+LsN/uoECwJSGlFKUaBVLMmgWR0CqQJaCL/CJdX2UKGgGaAloD0MINxlVhnH38r+UhpRSlGgVSzJoFkdAqkAoCjk+5nV9lChoBmgJaA9DCPkVa7jIvfG/lIaUUpRoFUsyaBZHQKo/nsyBTXJ1fZQoaAZoCWgPQwgj88gfDDz1v5SGlFKUaBVLMmgWR0CqQmjxLCemdX2UKGgGaAloD0MIVrYPecuV+b+UhpRSlGgVSzJoFkdAqkHPWcz68HV9lChoBmgJaA9DCPyLoDGT6PS/lIaUUpRoFUsyaBZHQKpBYOjIq9Z1fZQoaAZoCWgPQwg6eZEJ+DX5v5SGlFKUaBVLMmgWR0CqQNdgnc+JdX2UKGgGaAloD0MIpl8i3jr/9r+UhpRSlGgVSzJoFkdAqkOe/tY0VXV9lChoBmgJaA9DCCiZnNoZpva/lIaUUpRoFUsyaBZHQKpDBWXkYGd1fZQoaAZoCWgPQwiHMlTFVLryv5SGlFKUaBVLMmgWR0CqQpbyQPqcdX2UKGgGaAloD0MItOTxtPzA7r+UhpRSlGgVSzJoFkdAqkINeF+NLnV9lChoBmgJaA9DCO9YbJOKBgDAlIaUUpRoFUsyaBZHQKpE1WattAN1fZQoaAZoCWgPQwjyW3Sy1Dr7v5SGlFKUaBVLMmgWR0CqRDvBacI7dX2UKGgGaAloD0MIHcu76gFz77+UhpRSlGgVSzJoFkdAqkPNVPva13V9lChoBmgJaA9DCH/d6c4Tj/a/lIaUUpRoFUsyaBZHQKpDQ/hVENR1fZQoaAZoCWgPQwjzOXe7Xlrzv5SGlFKUaBVLMmgWR0CqRhPGp++edX2UKGgGaAloD0MIK0t0llmE+r+UhpRSlGgVSzJoFkdAqkV6Fh5PdnV9lChoBmgJaA9DCD3WjAxyl/W/lIaUUpRoFUsyaBZHQKpFC4PPLPl1fZQoaAZoCWgPQwg6BI4EGuz1v5SGlFKUaBVLMmgWR0CqRILy1/lRdX2UKGgGaAloD0MITtAmh0+68b+UhpRSlGgVSzJoFkdAqkc8lolD4XV9lChoBmgJaA9DCI4G8BZIUOe/lIaUUpRoFUsyaBZHQKpGowpON5t1fZQoaAZoCWgPQwgAqrhxizkEwJSGlFKUaBVLMmgWR0CqRjSGi5/cdX2UKGgGaAloD0MId9zwu+nW+L+UhpRSlGgVSzJoFkdAqkWrKoybhHV9lChoBmgJaA9DCN2271F/ve2/lIaUUpRoFUsyaBZHQKpIg5oXbdt1fZQoaAZoCWgPQwj19XzNcln6v5SGlFKUaBVLMmgWR0CqR+no5ggHdX2UKGgGaAloD0MISkONQpKZ/b+UhpRSlGgVSzJoFkdAqkd7htLteHV9lChoBmgJaA9DCFzlCYSd4uW/lIaUUpRoFUsyaBZHQKpG8izsyBV1fZQoaAZoCWgPQwjUghd9BUkDwJSGlFKUaBVLMmgWR0CqSbWalUIcdX2UKGgGaAloD0MIJAnCFVCo9b+UhpRSlGgVSzJoFkdAqkkb72tdRnV9lChoBmgJaA9DCMYy/RLxNgTAlIaUUpRoFUsyaBZHQKpIrV2icoZ1fZQoaAZoCWgPQwjCS3DqAwn0v5SGlFKUaBVLMmgWR0CqSCQF9roGdX2UKGgGaAloD0MIoBUYsrrV97+UhpRSlGgVSzJoFkdAqkrbkCFK03V9lChoBmgJaA9DCOY9zjRhe/S/lIaUUpRoFUsyaBZHQKpKQdJ8OTd1fZQoaAZoCWgPQwgy/+ibNM31v5SGlFKUaBVLMmgWR0CqSdNGd7OWdX2UKGgGaAloD0MIhCnKpfEL+r+UhpRSlGgVSzJoFkdAqklKAWi1zHV9lChoBmgJaA9DCDtSfecXpfm/lIaUUpRoFUsyaBZHQKpMDzjFQ2x1fZQoaAZoCWgPQwhQNXo1QEkDwJSGlFKUaBVLMmgWR0CqS3Y+jdpJdX2UKGgGaAloD0MIeVxUi4ji7r+UhpRSlGgVSzJoFkdAqksIwCbMHXV9lChoBmgJaA9DCOHP8GYNXvu/lIaUUpRoFUsyaBZHQKpKf2HLzPN1fZQoaAZoCWgPQwgl58Qe2of8v5SGlFKUaBVLMmgWR0CqTT/CIk7fdX2UKGgGaAloD0MI+WUwRiRK9L+UhpRSlGgVSzJoFkdAqkymHtWuHXV9lChoBmgJaA9DCPjCZKpg1P+/lIaUUpRoFUsyaBZHQKpMN3+uNgl1fZQoaAZoCWgPQwgt6SgHswn7v5SGlFKUaBVLMmgWR0CqS64zrNW3dX2UKGgGaAloD0MIKnReY5eo9r+UhpRSlGgVSzJoFkdAqk5pnJ1aGHV9lChoBmgJaA9DCIarAyDuave/lIaUUpRoFUsyaBZHQKpNz9v0h/11fZQoaAZoCWgPQwhLHeT1YLIEwJSGlFKUaBVLMmgWR0CqTWFZHNHIdX2UKGgGaAloD0MIrrt5qkPu9b+UhpRSlGgVSzJoFkdAqkzX/FR51XV9lChoBmgJaA9DCGe2K/TBcva/lIaUUpRoFUsyaBZHQKpPl9hJAdJ1fZQoaAZoCWgPQwj+ZffkYSHtv5SGlFKUaBVLMmgWR0CqTv4xDb8FdX2UKGgGaAloD0MIGsOcoE2uA8CUhpRSlGgVSzJoFkdAqk6P4Irvs3V9lChoBmgJaA9DCJVm8zgMpvi/lIaUUpRoFUsyaBZHQKpOBm7J4jd1fZQoaAZoCWgPQwiRZFbvcLv+v5SGlFKUaBVLMmgWR0CqUMmpEQXidX2UKGgGaAloD0MI6rRug9ov9L+UhpRSlGgVSzJoFkdAqlAwGt6ol3V9lChoBmgJaA9DCAjL2NDNfvK/lIaUUpRoFUsyaBZHQKpPwZydWhh1fZQoaAZoCWgPQwgzFeKReHn2v5SGlFKUaBVLMmgWR0CqTzhE0BOpdX2UKGgGaAloD0MIr5RliGNd97+UhpRSlGgVSzJoFkdAqlH/QfIS13V9lChoBmgJaA9DCKcjgJvFCwrAlIaUUpRoFUsyaBZHQKpRZaM72ct1fZQoaAZoCWgPQwgIkncOZUgLwJSGlFKUaBVLMmgWR0CqUPckdFOPdX2UKGgGaAloD0MICoDxDBq69r+UhpRSlGgVSzJoFkdAqlBtvAGjbnV9lChoBmgJaA9DCO4JEtvdAwnAlIaUUpRoFUsyaBZHQKpTRcFhXsB1fZQoaAZoCWgPQwiOB1vs9hn3v5SGlFKUaBVLMmgWR0CqUqw9ic5KdX2UKGgGaAloD0MI4xsKn63D+r+UhpRSlGgVSzJoFkdAqlI98b70nXV9lChoBmgJaA9DCKUuGcdI9gHAlIaUUpRoFUsyaBZHQKpRtIbOu7p1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (376 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -1.8465840981341899, "std_reward": 0.6430773829289397, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-03T10:22:46.892474"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e98f196bb05e0afd638fbd53bc5532ecf0d29afdf79c2e500588137645550339
3
+ size 3056