update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- lener_br
|
7 |
+
metrics:
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
- f1
|
11 |
+
- accuracy
|
12 |
+
model-index:
|
13 |
+
- name: bertimabau-base-lener-br-finetuned-lener-br
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
name: Token Classification
|
17 |
+
type: token-classification
|
18 |
+
dataset:
|
19 |
+
name: lener_br
|
20 |
+
type: lener_br
|
21 |
+
config: lener_br
|
22 |
+
split: train
|
23 |
+
args: lener_br
|
24 |
+
metrics:
|
25 |
+
- name: Precision
|
26 |
+
type: precision
|
27 |
+
value: 0.8679441782961883
|
28 |
+
- name: Recall
|
29 |
+
type: recall
|
30 |
+
value: 0.8961290322580645
|
31 |
+
- name: F1
|
32 |
+
type: f1
|
33 |
+
value: 0.8818114485239656
|
34 |
+
- name: Accuracy
|
35 |
+
type: accuracy
|
36 |
+
value: 0.9760769195605468
|
37 |
+
---
|
38 |
+
|
39 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
40 |
+
should probably proofread and complete it, then remove this comment. -->
|
41 |
+
|
42 |
+
# bertimabau-base-lener-br-finetuned-lener-br
|
43 |
+
|
44 |
+
This model is a fine-tuned version of [Luciano/bert-base-portuguese-cased-finetuned-lener-br](https://huggingface.co/Luciano/bert-base-portuguese-cased-finetuned-lener-br) on the lener_br dataset.
|
45 |
+
It achieves the following results on the evaluation set:
|
46 |
+
- Loss: nan
|
47 |
+
- Precision: 0.8679
|
48 |
+
- Recall: 0.8961
|
49 |
+
- F1: 0.8818
|
50 |
+
- Accuracy: 0.9761
|
51 |
+
|
52 |
+
## Model description
|
53 |
+
|
54 |
+
More information needed
|
55 |
+
|
56 |
+
## Intended uses & limitations
|
57 |
+
|
58 |
+
More information needed
|
59 |
+
|
60 |
+
## Training and evaluation data
|
61 |
+
|
62 |
+
More information needed
|
63 |
+
|
64 |
+
## Training procedure
|
65 |
+
|
66 |
+
### Training hyperparameters
|
67 |
+
|
68 |
+
The following hyperparameters were used during training:
|
69 |
+
- learning_rate: 2e-05
|
70 |
+
- train_batch_size: 4
|
71 |
+
- eval_batch_size: 4
|
72 |
+
- seed: 42
|
73 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
74 |
+
- lr_scheduler_type: linear
|
75 |
+
- num_epochs: 15
|
76 |
+
|
77 |
+
### Training results
|
78 |
+
|
79 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
80 |
+
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
81 |
+
| 0.0706 | 1.0 | 1957 | nan | 0.8291 | 0.8460 | 0.8375 | 0.9660 |
|
82 |
+
| 0.037 | 2.0 | 3914 | nan | 0.8403 | 0.8849 | 0.8621 | 0.9659 |
|
83 |
+
| 0.0278 | 3.0 | 5871 | nan | 0.8470 | 0.9118 | 0.8782 | 0.9736 |
|
84 |
+
| 0.0218 | 4.0 | 7828 | nan | 0.8429 | 0.8789 | 0.8605 | 0.9706 |
|
85 |
+
| 0.0146 | 5.0 | 9785 | nan | 0.8216 | 0.9034 | 0.8606 | 0.9725 |
|
86 |
+
| 0.0145 | 6.0 | 11742 | nan | 0.8552 | 0.8940 | 0.8741 | 0.9701 |
|
87 |
+
| 0.0098 | 7.0 | 13699 | nan | 0.8697 | 0.9 | 0.8846 | 0.9752 |
|
88 |
+
| 0.0074 | 8.0 | 15656 | nan | 0.8310 | 0.8862 | 0.8577 | 0.9655 |
|
89 |
+
| 0.0053 | 9.0 | 17613 | nan | 0.8767 | 0.8852 | 0.8809 | 0.9738 |
|
90 |
+
| 0.0035 | 10.0 | 19570 | nan | 0.8328 | 0.8796 | 0.8556 | 0.9714 |
|
91 |
+
| 0.0029 | 11.0 | 21527 | nan | 0.8679 | 0.8974 | 0.8824 | 0.9746 |
|
92 |
+
| 0.0014 | 12.0 | 23484 | nan | 0.8566 | 0.8813 | 0.8688 | 0.9735 |
|
93 |
+
| 0.0021 | 13.0 | 25441 | nan | 0.8842 | 0.8880 | 0.8861 | 0.9754 |
|
94 |
+
| 0.0031 | 14.0 | 27398 | nan | 0.8677 | 0.8987 | 0.8829 | 0.9762 |
|
95 |
+
| 0.0008 | 15.0 | 29355 | nan | 0.8679 | 0.8961 | 0.8818 | 0.9761 |
|
96 |
+
|
97 |
+
|
98 |
+
### Framework versions
|
99 |
+
|
100 |
+
- Transformers 4.21.2
|
101 |
+
- Pytorch 1.12.1+cu113
|
102 |
+
- Datasets 2.4.0
|
103 |
+
- Tokenizers 0.12.1
|