Luciano commited on
Commit
0ba3693
1 Parent(s): 36ce169

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +103 -0
README.md ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - lener_br
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: bertimabau-base-lener-br-finetuned-lener-br
14
+ results:
15
+ - task:
16
+ name: Token Classification
17
+ type: token-classification
18
+ dataset:
19
+ name: lener_br
20
+ type: lener_br
21
+ config: lener_br
22
+ split: train
23
+ args: lener_br
24
+ metrics:
25
+ - name: Precision
26
+ type: precision
27
+ value: 0.8679441782961883
28
+ - name: Recall
29
+ type: recall
30
+ value: 0.8961290322580645
31
+ - name: F1
32
+ type: f1
33
+ value: 0.8818114485239656
34
+ - name: Accuracy
35
+ type: accuracy
36
+ value: 0.9760769195605468
37
+ ---
38
+
39
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
40
+ should probably proofread and complete it, then remove this comment. -->
41
+
42
+ # bertimabau-base-lener-br-finetuned-lener-br
43
+
44
+ This model is a fine-tuned version of [Luciano/bert-base-portuguese-cased-finetuned-lener-br](https://huggingface.co/Luciano/bert-base-portuguese-cased-finetuned-lener-br) on the lener_br dataset.
45
+ It achieves the following results on the evaluation set:
46
+ - Loss: nan
47
+ - Precision: 0.8679
48
+ - Recall: 0.8961
49
+ - F1: 0.8818
50
+ - Accuracy: 0.9761
51
+
52
+ ## Model description
53
+
54
+ More information needed
55
+
56
+ ## Intended uses & limitations
57
+
58
+ More information needed
59
+
60
+ ## Training and evaluation data
61
+
62
+ More information needed
63
+
64
+ ## Training procedure
65
+
66
+ ### Training hyperparameters
67
+
68
+ The following hyperparameters were used during training:
69
+ - learning_rate: 2e-05
70
+ - train_batch_size: 4
71
+ - eval_batch_size: 4
72
+ - seed: 42
73
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
74
+ - lr_scheduler_type: linear
75
+ - num_epochs: 15
76
+
77
+ ### Training results
78
+
79
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
+ |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
+ | 0.0706 | 1.0 | 1957 | nan | 0.8291 | 0.8460 | 0.8375 | 0.9660 |
82
+ | 0.037 | 2.0 | 3914 | nan | 0.8403 | 0.8849 | 0.8621 | 0.9659 |
83
+ | 0.0278 | 3.0 | 5871 | nan | 0.8470 | 0.9118 | 0.8782 | 0.9736 |
84
+ | 0.0218 | 4.0 | 7828 | nan | 0.8429 | 0.8789 | 0.8605 | 0.9706 |
85
+ | 0.0146 | 5.0 | 9785 | nan | 0.8216 | 0.9034 | 0.8606 | 0.9725 |
86
+ | 0.0145 | 6.0 | 11742 | nan | 0.8552 | 0.8940 | 0.8741 | 0.9701 |
87
+ | 0.0098 | 7.0 | 13699 | nan | 0.8697 | 0.9 | 0.8846 | 0.9752 |
88
+ | 0.0074 | 8.0 | 15656 | nan | 0.8310 | 0.8862 | 0.8577 | 0.9655 |
89
+ | 0.0053 | 9.0 | 17613 | nan | 0.8767 | 0.8852 | 0.8809 | 0.9738 |
90
+ | 0.0035 | 10.0 | 19570 | nan | 0.8328 | 0.8796 | 0.8556 | 0.9714 |
91
+ | 0.0029 | 11.0 | 21527 | nan | 0.8679 | 0.8974 | 0.8824 | 0.9746 |
92
+ | 0.0014 | 12.0 | 23484 | nan | 0.8566 | 0.8813 | 0.8688 | 0.9735 |
93
+ | 0.0021 | 13.0 | 25441 | nan | 0.8842 | 0.8880 | 0.8861 | 0.9754 |
94
+ | 0.0031 | 14.0 | 27398 | nan | 0.8677 | 0.8987 | 0.8829 | 0.9762 |
95
+ | 0.0008 | 15.0 | 29355 | nan | 0.8679 | 0.8961 | 0.8818 | 0.9761 |
96
+
97
+
98
+ ### Framework versions
99
+
100
+ - Transformers 4.21.2
101
+ - Pytorch 1.12.1+cu113
102
+ - Datasets 2.4.0
103
+ - Tokenizers 0.12.1