LovenOO commited on
Commit
a37fcd2
·
1 Parent(s): 9b2ee75

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +16 -16
README.md CHANGED
@@ -20,11 +20,11 @@ should probably proofread and complete it, then remove this comment. -->
20
 
21
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
22
  It achieves the following results on the evaluation set:
23
- - Loss: 0.8590
24
- - Precision: 0.8444
25
- - Recall: 0.8474
26
- - F1: 0.8454
27
- - Accuracy: 0.8709
28
 
29
  ## Model description
30
 
@@ -43,7 +43,7 @@ More information needed
43
  ### Training hyperparameters
44
 
45
  The following hyperparameters were used during training:
46
- - learning_rate: 5e-05
47
  - train_batch_size: 16
48
  - eval_batch_size: 16
49
  - seed: 42
@@ -55,16 +55,16 @@ The following hyperparameters were used during training:
55
 
56
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
- | 0.8901 | 1.0 | 510 | 0.5727 | 0.7730 | 0.8217 | 0.7887 | 0.8439 |
59
- | 0.445 | 2.0 | 1020 | 0.5276 | 0.7930 | 0.8453 | 0.8123 | 0.8444 |
60
- | 0.2825 | 3.0 | 1530 | 0.7059 | 0.8374 | 0.8205 | 0.8256 | 0.8606 |
61
- | 0.2037 | 4.0 | 2040 | 0.7658 | 0.8562 | 0.8265 | 0.8399 | 0.8660 |
62
- | 0.1618 | 5.0 | 2550 | 0.7571 | 0.8332 | 0.8438 | 0.8377 | 0.8640 |
63
- | 0.1141 | 6.0 | 3060 | 0.8227 | 0.8499 | 0.8409 | 0.8444 | 0.8694 |
64
- | 0.0934 | 7.0 | 3570 | 0.7924 | 0.8377 | 0.8415 | 0.8378 | 0.8665 |
65
- | 0.0881 | 8.0 | 4080 | 0.8132 | 0.8365 | 0.8434 | 0.8387 | 0.8699 |
66
- | 0.065 | 9.0 | 4590 | 0.8545 | 0.8402 | 0.8430 | 0.8403 | 0.8670 |
67
- | 0.0562 | 10.0 | 5100 | 0.8590 | 0.8444 | 0.8474 | 0.8454 | 0.8709 |
68
 
69
 
70
  ### Framework versions
 
20
 
21
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
22
  It achieves the following results on the evaluation set:
23
+ - Loss: 0.8637
24
+ - Precision: 0.8392
25
+ - Recall: 0.8339
26
+ - F1: 0.8360
27
+ - Accuracy: 0.8630
28
 
29
  ## Model description
30
 
 
43
  ### Training hyperparameters
44
 
45
  The following hyperparameters were used during training:
46
+ - learning_rate: 3e-05
47
  - train_batch_size: 16
48
  - eval_batch_size: 16
49
  - seed: 42
 
55
 
56
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
+ | 0.9492 | 1.0 | 510 | 0.5973 | 0.7572 | 0.8287 | 0.7836 | 0.8434 |
59
+ | 0.4661 | 2.0 | 1020 | 0.5080 | 0.8146 | 0.8535 | 0.8311 | 0.8567 |
60
+ | 0.2954 | 3.0 | 1530 | 0.6910 | 0.8283 | 0.8231 | 0.8245 | 0.8591 |
61
+ | 0.2263 | 4.0 | 2040 | 0.7367 | 0.8448 | 0.8293 | 0.8363 | 0.8635 |
62
+ | 0.1749 | 5.0 | 2550 | 0.7399 | 0.8402 | 0.8373 | 0.8383 | 0.8650 |
63
+ | 0.1273 | 6.0 | 3060 | 0.7759 | 0.8352 | 0.8414 | 0.8377 | 0.8689 |
64
+ | 0.1051 | 7.0 | 3570 | 0.8864 | 0.8375 | 0.8271 | 0.8308 | 0.8616 |
65
+ | 0.0877 | 8.0 | 4080 | 0.8407 | 0.8327 | 0.8360 | 0.8335 | 0.8625 |
66
+ | 0.0781 | 9.0 | 4590 | 0.8586 | 0.8345 | 0.8362 | 0.8345 | 0.8645 |
67
+ | 0.0627 | 10.0 | 5100 | 0.8637 | 0.8392 | 0.8339 | 0.8360 | 0.8630 |
68
 
69
 
70
  ### Framework versions