LovenOO commited on
Commit
e76d4d7
1 Parent(s): 35c08a1

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +16 -16
README.md CHANGED
@@ -20,11 +20,11 @@ should probably proofread and complete it, then remove this comment. -->
20
 
21
  This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
22
  It achieves the following results on the evaluation set:
23
- - Loss: 0.9426
24
- - Precision: 0.8396
25
- - Recall: 0.8182
26
- - F1: 0.8282
27
- - Accuracy: 0.8655
28
 
29
  ## Model description
30
 
@@ -43,7 +43,7 @@ More information needed
43
  ### Training hyperparameters
44
 
45
  The following hyperparameters were used during training:
46
- - learning_rate: 3e-05
47
  - train_batch_size: 16
48
  - eval_batch_size: 16
49
  - seed: 42
@@ -55,16 +55,16 @@ The following hyperparameters were used during training:
55
 
56
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
- | 0.9585 | 1.0 | 510 | 0.5849 | 0.7825 | 0.8293 | 0.8002 | 0.8473 |
59
- | 0.4334 | 2.0 | 1020 | 0.6323 | 0.8394 | 0.8127 | 0.8226 | 0.8625 |
60
- | 0.281 | 3.0 | 1530 | 0.5389 | 0.8259 | 0.8476 | 0.8348 | 0.8704 |
61
- | 0.2117 | 4.0 | 2040 | 0.7155 | 0.8381 | 0.8243 | 0.8297 | 0.8675 |
62
- | 0.1556 | 5.0 | 2550 | 0.6981 | 0.8420 | 0.8411 | 0.8414 | 0.8729 |
63
- | 0.1216 | 6.0 | 3060 | 0.9238 | 0.8441 | 0.8089 | 0.8237 | 0.8606 |
64
- | 0.108 | 7.0 | 3570 | 0.8514 | 0.8334 | 0.8215 | 0.8270 | 0.8645 |
65
- | 0.0817 | 8.0 | 4080 | 0.8539 | 0.8341 | 0.8245 | 0.8288 | 0.8660 |
66
- | 0.0659 | 9.0 | 4590 | 0.9233 | 0.8441 | 0.8202 | 0.8313 | 0.8655 |
67
- | 0.0588 | 10.0 | 5100 | 0.9426 | 0.8396 | 0.8182 | 0.8282 | 0.8655 |
68
 
69
 
70
  ### Framework versions
 
20
 
21
  This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
22
  It achieves the following results on the evaluation set:
23
+ - Loss: 0.9072
24
+ - Precision: 0.8332
25
+ - Recall: 0.8192
26
+ - F1: 0.8259
27
+ - Accuracy: 0.8660
28
 
29
  ## Model description
30
 
 
43
  ### Training hyperparameters
44
 
45
  The following hyperparameters were used during training:
46
+ - learning_rate: 2e-05
47
  - train_batch_size: 16
48
  - eval_batch_size: 16
49
  - seed: 42
 
55
 
56
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
+ | 1.0741 | 1.0 | 510 | 0.6328 | 0.7761 | 0.8093 | 0.7820 | 0.8292 |
59
+ | 0.465 | 2.0 | 1020 | 0.5751 | 0.8326 | 0.8237 | 0.8265 | 0.8625 |
60
+ | 0.2979 | 3.0 | 1530 | 0.5442 | 0.8285 | 0.8482 | 0.8370 | 0.8719 |
61
+ | 0.2312 | 4.0 | 2040 | 0.6811 | 0.8434 | 0.8298 | 0.8350 | 0.8665 |
62
+ | 0.1609 | 5.0 | 2550 | 0.6873 | 0.8216 | 0.8338 | 0.8271 | 0.8635 |
63
+ | 0.14 | 6.0 | 3060 | 0.8476 | 0.8386 | 0.8175 | 0.8265 | 0.8640 |
64
+ | 0.1135 | 7.0 | 3570 | 0.8456 | 0.8302 | 0.8202 | 0.8249 | 0.8630 |
65
+ | 0.0973 | 8.0 | 4080 | 0.8595 | 0.8307 | 0.8186 | 0.8243 | 0.8625 |
66
+ | 0.0758 | 9.0 | 4590 | 0.8828 | 0.8306 | 0.8201 | 0.8251 | 0.8655 |
67
+ | 0.0669 | 10.0 | 5100 | 0.9072 | 0.8332 | 0.8192 | 0.8259 | 0.8660 |
68
 
69
 
70
  ### Framework versions