LovenOO commited on
Commit
a30edbc
1 Parent(s): 47633fa

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +16 -16
README.md CHANGED
@@ -20,11 +20,11 @@ should probably proofread and complete it, then remove this comment. -->
20
 
21
  This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
22
  It achieves the following results on the evaluation set:
23
- - Loss: 0.8911
24
- - Precision: 0.8371
25
- - Recall: 0.8239
26
- - F1: 0.8296
27
- - Accuracy: 0.8665
28
 
29
  ## Model description
30
 
@@ -43,7 +43,7 @@ More information needed
43
  ### Training hyperparameters
44
 
45
  The following hyperparameters were used during training:
46
- - learning_rate: 5e-05
47
  - train_batch_size: 32
48
  - eval_batch_size: 32
49
  - seed: 42
@@ -55,16 +55,16 @@ The following hyperparameters were used during training:
55
 
56
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
- | No log | 1.0 | 255 | 0.6320 | 0.7746 | 0.8197 | 0.7918 | 0.8360 |
59
- | 0.7073 | 2.0 | 510 | 0.6156 | 0.7967 | 0.8232 | 0.8055 | 0.8473 |
60
- | 0.7073 | 3.0 | 765 | 0.6028 | 0.8104 | 0.8381 | 0.8201 | 0.8552 |
61
- | 0.2389 | 4.0 | 1020 | 0.6896 | 0.8296 | 0.8296 | 0.8290 | 0.8655 |
62
- | 0.2389 | 5.0 | 1275 | 0.7462 | 0.8279 | 0.8353 | 0.8310 | 0.8694 |
63
- | 0.1264 | 6.0 | 1530 | 0.9275 | 0.8488 | 0.8112 | 0.8271 | 0.8684 |
64
- | 0.1264 | 7.0 | 1785 | 0.8244 | 0.8393 | 0.8313 | 0.8347 | 0.8729 |
65
- | 0.0851 | 8.0 | 2040 | 0.8776 | 0.8281 | 0.8226 | 0.8249 | 0.8655 |
66
- | 0.0851 | 9.0 | 2295 | 0.8838 | 0.8440 | 0.8278 | 0.8346 | 0.8675 |
67
- | 0.0546 | 10.0 | 2550 | 0.8911 | 0.8371 | 0.8239 | 0.8296 | 0.8665 |
68
 
69
 
70
  ### Framework versions
 
20
 
21
  This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
22
  It achieves the following results on the evaluation set:
23
+ - Loss: 0.8335
24
+ - Precision: 0.8310
25
+ - Recall: 0.8213
26
+ - F1: 0.8256
27
+ - Accuracy: 0.8640
28
 
29
  ## Model description
30
 
 
43
  ### Training hyperparameters
44
 
45
  The following hyperparameters were used during training:
46
+ - learning_rate: 3e-05
47
  - train_batch_size: 32
48
  - eval_batch_size: 32
49
  - seed: 42
 
55
 
56
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
+ | No log | 1.0 | 255 | 0.6597 | 0.7225 | 0.7990 | 0.7429 | 0.7968 |
59
+ | 0.8033 | 2.0 | 510 | 0.5609 | 0.8155 | 0.8378 | 0.8247 | 0.8596 |
60
+ | 0.8033 | 3.0 | 765 | 0.5589 | 0.8119 | 0.8388 | 0.8231 | 0.8591 |
61
+ | 0.2454 | 4.0 | 1020 | 0.6598 | 0.8314 | 0.8273 | 0.8279 | 0.8625 |
62
+ | 0.2454 | 5.0 | 1275 | 0.6541 | 0.8103 | 0.8393 | 0.8229 | 0.8625 |
63
+ | 0.1332 | 6.0 | 1530 | 0.8259 | 0.8424 | 0.8213 | 0.8304 | 0.8665 |
64
+ | 0.1332 | 7.0 | 1785 | 0.7644 | 0.8298 | 0.8335 | 0.8312 | 0.8650 |
65
+ | 0.0907 | 8.0 | 2040 | 0.7939 | 0.8298 | 0.8255 | 0.8274 | 0.8660 |
66
+ | 0.0907 | 9.0 | 2295 | 0.8244 | 0.8310 | 0.8207 | 0.8255 | 0.8655 |
67
+ | 0.061 | 10.0 | 2550 | 0.8335 | 0.8310 | 0.8213 | 0.8256 | 0.8640 |
68
 
69
 
70
  ### Framework versions