update model card README.md
Browse files
README.md
CHANGED
@@ -20,11 +20,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
20 |
|
21 |
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
|
22 |
It achieves the following results on the evaluation set:
|
23 |
-
- Loss: 0.
|
24 |
-
- Precision: 0.
|
25 |
-
- Recall: 0.
|
26 |
-
- F1: 0.
|
27 |
-
- Accuracy: 0.
|
28 |
|
29 |
## Model description
|
30 |
|
@@ -43,9 +43,9 @@ More information needed
|
|
43 |
### Training hyperparameters
|
44 |
|
45 |
The following hyperparameters were used during training:
|
46 |
-
- learning_rate:
|
47 |
-
- train_batch_size:
|
48 |
-
- eval_batch_size:
|
49 |
- seed: 42
|
50 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
- lr_scheduler_type: linear
|
@@ -55,16 +55,16 @@ The following hyperparameters were used during training:
|
|
55 |
|
56 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
57 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
58 |
-
|
|
59 |
-
| 0.
|
60 |
-
| 0.
|
61 |
-
| 0.
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
|
69 |
|
70 |
### Framework versions
|
|
|
20 |
|
21 |
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
|
22 |
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.8911
|
24 |
+
- Precision: 0.8371
|
25 |
+
- Recall: 0.8239
|
26 |
+
- F1: 0.8296
|
27 |
+
- Accuracy: 0.8665
|
28 |
|
29 |
## Model description
|
30 |
|
|
|
43 |
### Training hyperparameters
|
44 |
|
45 |
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 5e-05
|
47 |
+
- train_batch_size: 32
|
48 |
+
- eval_batch_size: 32
|
49 |
- seed: 42
|
50 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
- lr_scheduler_type: linear
|
|
|
55 |
|
56 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
57 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
58 |
+
| No log | 1.0 | 255 | 0.6320 | 0.7746 | 0.8197 | 0.7918 | 0.8360 |
|
59 |
+
| 0.7073 | 2.0 | 510 | 0.6156 | 0.7967 | 0.8232 | 0.8055 | 0.8473 |
|
60 |
+
| 0.7073 | 3.0 | 765 | 0.6028 | 0.8104 | 0.8381 | 0.8201 | 0.8552 |
|
61 |
+
| 0.2389 | 4.0 | 1020 | 0.6896 | 0.8296 | 0.8296 | 0.8290 | 0.8655 |
|
62 |
+
| 0.2389 | 5.0 | 1275 | 0.7462 | 0.8279 | 0.8353 | 0.8310 | 0.8694 |
|
63 |
+
| 0.1264 | 6.0 | 1530 | 0.9275 | 0.8488 | 0.8112 | 0.8271 | 0.8684 |
|
64 |
+
| 0.1264 | 7.0 | 1785 | 0.8244 | 0.8393 | 0.8313 | 0.8347 | 0.8729 |
|
65 |
+
| 0.0851 | 8.0 | 2040 | 0.8776 | 0.8281 | 0.8226 | 0.8249 | 0.8655 |
|
66 |
+
| 0.0851 | 9.0 | 2295 | 0.8838 | 0.8440 | 0.8278 | 0.8346 | 0.8675 |
|
67 |
+
| 0.0546 | 10.0 | 2550 | 0.8911 | 0.8371 | 0.8239 | 0.8296 | 0.8665 |
|
68 |
|
69 |
|
70 |
### Framework versions
|