update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: bert-base-uncased
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
- f1
|
10 |
+
- accuracy
|
11 |
+
model-index:
|
12 |
+
- name: BERT_with_preprocessing_grid_search
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# BERT_with_preprocessing_grid_search
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.9805
|
24 |
+
- Precision: 0.8330
|
25 |
+
- Recall: 0.8192
|
26 |
+
- F1: 0.8255
|
27 |
+
- Accuracy: 0.8630
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 5e-05
|
47 |
+
- train_batch_size: 16
|
48 |
+
- eval_batch_size: 16
|
49 |
+
- seed: 42
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- num_epochs: 10
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
57 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
58 |
+
| 0.9875 | 1.0 | 510 | 0.5592 | 0.7906 | 0.8234 | 0.8042 | 0.8463 |
|
59 |
+
| 0.4428 | 2.0 | 1020 | 0.6291 | 0.8177 | 0.8243 | 0.8198 | 0.8606 |
|
60 |
+
| 0.2998 | 3.0 | 1530 | 0.6034 | 0.8133 | 0.8342 | 0.8209 | 0.8586 |
|
61 |
+
| 0.2088 | 4.0 | 2040 | 0.7925 | 0.8365 | 0.8152 | 0.8231 | 0.8562 |
|
62 |
+
| 0.1563 | 5.0 | 2550 | 0.7368 | 0.8096 | 0.8301 | 0.8190 | 0.8571 |
|
63 |
+
| 0.1302 | 6.0 | 3060 | 0.9748 | 0.8449 | 0.8036 | 0.8208 | 0.8591 |
|
64 |
+
| 0.1024 | 7.0 | 3570 | 0.9088 | 0.8364 | 0.8264 | 0.8300 | 0.8645 |
|
65 |
+
| 0.0897 | 8.0 | 4080 | 0.9440 | 0.8340 | 0.8254 | 0.8283 | 0.8635 |
|
66 |
+
| 0.067 | 9.0 | 4590 | 0.9582 | 0.8370 | 0.8169 | 0.8260 | 0.8635 |
|
67 |
+
| 0.0526 | 10.0 | 5100 | 0.9805 | 0.8330 | 0.8192 | 0.8255 | 0.8630 |
|
68 |
+
|
69 |
+
|
70 |
+
### Framework versions
|
71 |
+
|
72 |
+
- Transformers 4.31.0
|
73 |
+
- Pytorch 2.0.1+cu118
|
74 |
+
- Datasets 2.14.4
|
75 |
+
- Tokenizers 0.13.3
|