LovenOO commited on
Commit
0f5541b
1 Parent(s): 608457c

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +75 -0
README.md ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: bert-base-uncased
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - precision
8
+ - recall
9
+ - f1
10
+ - accuracy
11
+ model-index:
12
+ - name: BERT_with_preprocessing_grid_search
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # BERT_with_preprocessing_grid_search
20
+
21
+ This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.9805
24
+ - Precision: 0.8330
25
+ - Recall: 0.8192
26
+ - F1: 0.8255
27
+ - Accuracy: 0.8630
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 5e-05
47
+ - train_batch_size: 16
48
+ - eval_batch_size: 16
49
+ - seed: 42
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - num_epochs: 10
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
+ | 0.9875 | 1.0 | 510 | 0.5592 | 0.7906 | 0.8234 | 0.8042 | 0.8463 |
59
+ | 0.4428 | 2.0 | 1020 | 0.6291 | 0.8177 | 0.8243 | 0.8198 | 0.8606 |
60
+ | 0.2998 | 3.0 | 1530 | 0.6034 | 0.8133 | 0.8342 | 0.8209 | 0.8586 |
61
+ | 0.2088 | 4.0 | 2040 | 0.7925 | 0.8365 | 0.8152 | 0.8231 | 0.8562 |
62
+ | 0.1563 | 5.0 | 2550 | 0.7368 | 0.8096 | 0.8301 | 0.8190 | 0.8571 |
63
+ | 0.1302 | 6.0 | 3060 | 0.9748 | 0.8449 | 0.8036 | 0.8208 | 0.8591 |
64
+ | 0.1024 | 7.0 | 3570 | 0.9088 | 0.8364 | 0.8264 | 0.8300 | 0.8645 |
65
+ | 0.0897 | 8.0 | 4080 | 0.9440 | 0.8340 | 0.8254 | 0.8283 | 0.8635 |
66
+ | 0.067 | 9.0 | 4590 | 0.9582 | 0.8370 | 0.8169 | 0.8260 | 0.8635 |
67
+ | 0.0526 | 10.0 | 5100 | 0.9805 | 0.8330 | 0.8192 | 0.8255 | 0.8630 |
68
+
69
+
70
+ ### Framework versions
71
+
72
+ - Transformers 4.31.0
73
+ - Pytorch 2.0.1+cu118
74
+ - Datasets 2.14.4
75
+ - Tokenizers 0.13.3