Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1602.47 +/- 419.36
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:19a9d073e73937a63cfc97e8630ec97ac3d37fd9eb06fe72005f53e6446b8d96
|
3 |
+
size 129261
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fd410fba550>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd410fba5e0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd410fba670>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd410fba700>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fd410fba790>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fd410fba820>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd410fba8b0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd410fba940>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fd410fba9d0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd410fbaa60>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd410fbaaf0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd410fbab80>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fd410fbd100>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1679815349615627200,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAABsJ9LzeeV8/FifGvvSVuTwzxM8+mI0evtvIML9YHZU+sWSkv56ntL/TTZ4+0JqmPjaomb9Lv6e/q8XmO188Oz4BCEQ/wmDDv6UZXL/ovKU+wlEUP6l4pj9A77S/C0/qPYdTlj9iZfI+sJjiPlxLvr+DyAU/ayQyP7qBDL5axwc/7zHYPq4Bx75KSoy+EfhXPx4OpL4/WQI/STMmP9qpRD+0h7w+pZaRvw/2Bb8kc62/6sKVP95+fb76ype/cHQLQMHtwL72dcQ/rq23v+hHXcCHU5Y/CC8HwLCY4j5cS76/3HcKO4RsRz9gpX6+9Em4PbXhAD+1+QO+L2kHv/8juT4WAfG+FPclvtSZqj5WDys/USGCPfVTvr/wZ+w9JFyMvFXMkD9okmO/dlFWv63DQj/ATm2+h7yMP6xpkb8vWsW/h1OWP2Jl8j6wmOI+XEu+v7NpgT8pCdE+sAc7PlJVlz/nv7c/GxJ1vz25WL7BYRi/4OQCv3J3vT7Rxy29UuIJP5yrkj8GdNm93SPDPsO0Cj8EZpw/+IsRvrnQh786FHjAmWykv6DEzzuRHL8/TacKv6z6Wb9iZfI+CZwQwEUyLD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADafQs2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAUZkavQAAAABISu2/AAAAAA3Poz0AAAAAbBvkPwAAAAADQYK9AAAAADqr2z8AAAAARX4SvQAAAABq3+S/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAG74DtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgFLbNTsAAAAAHyL+vwAAAAA/N2M9AAAAANCB9T8AAAAAjkdWPAAAAADfywBAAAAAAKkNrD0AAAAA4q/9vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADTqrbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDAoQ0+AAAAANwj8r8AAAAAl28MvgAAAACZIOU/AAAAAKc0Gz0AAAAAIZ/nPwAAAADzyNS6AAAAADGp5r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACwISQ1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAFV+GvQAAAACT7/i/AAAAAFCj5r0AAAAAtw/7PwAAAABgdX69AAAAAM5j6T8AAAAA/awLvgAAAAADLva/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJXJCSFGoaWMAWyUTegDjAF0lEdArFsIuXeFc3V9lChoBkdAlo1ZTZQHiWgHTegDaAhHQKxhODxsl9l1fZQoaAZHQJfvHQokRjBoB03oA2gIR0CsZEuN5t3wdX2UKGgGR0CXZh7LdN34aAdN6ANoCEdArGZvHR1HOXV9lChoBkdAldxOq7yxzWgHTegDaAhHQKxnTMMZxaR1fZQoaAZHQJeCbT7VJ+VoB03oA2gIR0CscEXLvCuVdX2UKGgGR0CYJznCwbEQaAdN6ANoCEdArHPz7di2D3V9lChoBkdAk+/zbnHNo2gHTegDaAhHQKx2Eujh1kl1fZQoaAZHQJXXbvmYBvJoB03oA2gIR0CsduPzvqkedX2UKGgGR0CXhSqubI91aAdN6ANoCEdArH0QM6RyO3V9lChoBkdAluWXJxNqQGgHTegDaAhHQKyAIidrftR1fZQoaAZHQJOAYv0yxiZoB03oA2gIR0Csgj6rmyPddX2UKGgGR0CW5oDKHO8kaAdN6ANoCEdArIMXp4bCJ3V9lChoBkdAllQmTPjXF2gHTegDaAhHQKyK/gn+hoN1fZQoaAZHQJU34upS75FoB03oA2gIR0Csj8H/95yEdX2UKGgGR0CXLMFmFrVOaAdN6ANoCEdArJHWfI0ZWXV9lChoBkdAlnYXZbpu/GgHTegDaAhHQKySsiB5HEx1fZQoaAZHQJU38YFaB7NoB03oA2gIR0CsmNb0OEuhdX2UKGgGR0CZl5fms/6gaAdN6ANoCEdArJwAJw84gnV9lChoBkdAluPEsnRb8mgHTegDaAhHQKyeKzAvcrR1fZQoaAZHQJaTlPJq7AdoB03oA2gIR0CsnxGNzbN9dX2UKGgGR0CZd0i2lVLjaAdN6ANoCEdArKW/6sQumXV9lChoBkdAmYdsdtEXtWgHTegDaAhHQKyqOoqkM1F1fZQoaAZHQJfRvUMG5c1oB03oA2gIR0CsrXwx33YddX2UKGgGR0CXX194eLeiaAdN6ANoCEdArK5gw/PgN3V9lChoBkdAl+o3KnvUjWgHTegDaAhHQKy0fnf2saN1fZQoaAZHQJdi1vJiiItoB03oA2gIR0Cst5IYekpJdX2UKGgGR0CWzAtTUAktaAdN6ANoCEdArLmdtl7MPnV9lChoBkdAlKv7uUliSmgHTegDaAhHQKy6de/Ho5h1fZQoaAZHQJizCWVu76JoB03oA2gIR0CswKZvtMPCdX2UKGgGR0CTuGq+JxecaAdN6ANoCEdArMSxEF4cFXV9lChoBkdAlw3JUtI07GgHTegDaAhHQKzH3t/nW8R1fZQoaAZHQJc42Zof0VdoB03oA2gIR0CsyTq4H5aedX2UKGgGR0CYVz3+uNgjaAdN6ANoCEdArNA7VrhzeXV9lChoBkdAlvlUNz8xbmgHTegDaAhHQKzTSTOgQH11fZQoaAZHQJg4oAS39aVoB03oA2gIR0Cs1We5vtMPdX2UKGgGR0CX7+Whh6SlaAdN6ANoCEdArNZFlNDc/XV9lChoBkdAlW42UW2w3mgHTegDaAhHQKzccIrOJLx1fZQoaAZHQJZUjBLwnYxoB03oA2gIR0Cs34Gwqy4XdX2UKGgGR0CXJM39JjDsaAdN6ANoCEdArOJ8gr6LwXV9lChoBkdAl5n4B/7SA2gHTegDaAhHQKzjyhkAggZ1fZQoaAZHQJQOWE0zj3poB03oA2gIR0Cs7CW56MR6dX2UKGgGR0CU1tJFspG4aAdN6ANoCEdArO9QcT8HfXV9lChoBkdAlWdWlANXo2gHTegDaAhHQKzxf6Q/5cl1fZQoaAZHQJR70upS75FoB03oA2gIR0Cs8mZ1vES/dX2UKGgGR0CTudU2UB4maAdN6ANoCEdArPiMaqCHynV9lChoBkdAlRXbVawD/2gHTegDaAhHQKz7jrD63y91fZQoaAZHQJBVddld1MdoB03oA2gIR0Cs/aPtlZoxdX2UKGgGR0CV4yRE4NqhaAdN6ANoCEdArP7RX6qKg3V9lChoBkdAle/PY4ACGWgHTegDaAhHQK0IIsUZeiV1fZQoaAZHQJWURIRRMvhoB03oA2gIR0CtC18XFcY7dX2UKGgGR0CTCLQyyleoaAdN6ANoCEdArQ1w5cTrV3V9lChoBkdAlzldsWO6umgHTegDaAhHQK0OSaa1Cw91fZQoaAZHQJV8AG5c1O1oB03oA2gIR0CtFIKuSwGGdX2UKGgGR0CWgZnXd0q6aAdN6ANoCEdArReZ13dKunV9lChoBkdAlCh3668QI2gHTegDaAhHQK0ZsqwyIpJ1fZQoaAZHQJfm4m8dxQ1oB03oA2gIR0CtGouN5t3wdX2UKGgGR0CV7+1BMSK4aAdN6ANoCEdArSMSNsFdLXV9lChoBkdAleN6tLcsUmgHTegDaAhHQK0nF2pyZKF1fZQoaAZHQJd5KwY+B6NoB03oA2gIR0CtKSBKL877dX2UKGgGR0CW6McIqsltaAdN6ANoCEdArSn8LYwqRXV9lChoBkdAix7XSjQAuWgHTegDaAhHQK0wHg8bJfZ1fZQoaAZHQJYqu/336ARoB03oA2gIR0CtMxy4e9zwdX2UKGgGR0CUZ9Q8fV7QaAdN6ANoCEdArTUncN6PbXV9lChoBkdAkDX3IU8FIWgHTegDaAhHQK01/LamGdt1fZQoaAZHQI+66LXL/0doB03oA2gIR0CtPP+RYA80dX2UKGgGR0CUC5LE1l5GaAdN6ANoCEdArUHhHd43WHV9lChoBkdAk2hfkili0GgHTegDaAhHQK1EvkS26TZ1fZQoaAZHQIP8LPdEb5xoB03oA2gIR0CtRaPPszEadX2UKGgGR0CLOGujh1klaAdN6ANoCEdArUvpNXYDknV9lChoBkdAhzE7zTWoWGgHTegDaAhHQK1O7LJSzgN1fZQoaAZHQJHJkRe1KGtoB03oA2gIR0CtUPq0+kgwdX2UKGgGR0CYkPIiTt9haAdN6ANoCEdArVHfG2kSEnV9lChoBkdAluZCb2Dg62gHTegDaAhHQK1YTtuUD+11fZQoaAZHQJcizgKnei1oB03oA2gIR0CtXNe36Q/5dX2UKGgGR0CXH0sfaHsUaAdN6ANoCEdArWAmnXNC7nV9lChoBkdAlfG3/HYHxGgHTegDaAhHQK1hfuNPxhF1fZQoaAZHQHA2jtkWhytoB02QAWgIR0CtY7EoOQQudX2UKGgGR0CXMQzIFNcoaAdN6ANoCEdArWfp/oaDPHV9lChoBkdAmfhgJ5VwP2gHTegDaAhHQK1tS+aBqbl1fZQoaAZHQJVUC4+bExZoB03oA2gIR0Ctbj1YQrc1dX2UKGgGR0CXvoJdjXnRaAdN6ANoCEdArXA1NahYeXV9lChoBkdAlqAH9JjDsWgHTegDaAhHQK10u6shgVp1fZQoaAZHQJb50WsRxtJoB03oA2gIR0CtfAfLDAJtdX2UKGgGR0CUV/miQDFIaAdN6ANoCEdArX17t5UtI3V9lChoBkdAlt2/aQFLWmgHTegDaAhHQK2AmKR+z+p1fZQoaAZHQJZlXgsK9f1oB03oA2gIR0CthOhSk0rLdX2UKGgGR0CYUSz+3pfQaAdN6ANoCEdArYoo6GQCCHV9lChoBkdAmgyrJfYzzmgHTegDaAhHQK2LAjBVMmF1fZQoaAZHQET1Aj6eoUBoB0t1aAhHQK2Mblo11nx1fZQoaAZHQJShenpB5X5oB03oA2gIR0CtjO1jiGWVdX2UKGgGR0CWVGHeJpFkaAdN6ANoCEdArZEnkkrwv3V9lChoBkdAmJw2EK3NLWgHTegDaAhHQK2XMSAYpDx1fZQoaAZHQIyfztXxOL1oB03oA2gIR0Ctms0gbIcSdX2UKGgGR0CT2jRzBAObaAdN6ANoCEdArZucqtozvnV9lChoBkdAkr8If0VafWgHTegDaAhHQK2hBKbKA8V1fZQoaAZHQJVb+WPcSGtoB03oA2gIR0Ctpi2Pkq+bdX2UKGgGR0CWMd0Yj0L/aAdN6ANoCEdArah2ax5cDHV9lChoBkdAl+nMvduYQmgHTegDaAhHQK2o/gwXZXd1fZQoaAZHQJZBV5GBnSRoB03oA2gIR0CtrUMz2vjfdWUu"
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d34ea62c08d369b3954159d69c5640190327f57567c443079a43500754c5ef56
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0f7c323563bf090ba7a7f5ba8dfcf71133c028bb75ba40ef7b48aff342490ca4
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd410fba550>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd410fba5e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd410fba670>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd410fba700>", "_build": "<function ActorCriticPolicy._build at 0x7fd410fba790>", "forward": "<function ActorCriticPolicy.forward at 0x7fd410fba820>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd410fba8b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd410fba940>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd410fba9d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd410fbaa60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd410fbaaf0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd410fbab80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fd410fbd100>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679815349615627200, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAABsJ9LzeeV8/FifGvvSVuTwzxM8+mI0evtvIML9YHZU+sWSkv56ntL/TTZ4+0JqmPjaomb9Lv6e/q8XmO188Oz4BCEQ/wmDDv6UZXL/ovKU+wlEUP6l4pj9A77S/C0/qPYdTlj9iZfI+sJjiPlxLvr+DyAU/ayQyP7qBDL5axwc/7zHYPq4Bx75KSoy+EfhXPx4OpL4/WQI/STMmP9qpRD+0h7w+pZaRvw/2Bb8kc62/6sKVP95+fb76ype/cHQLQMHtwL72dcQ/rq23v+hHXcCHU5Y/CC8HwLCY4j5cS76/3HcKO4RsRz9gpX6+9Em4PbXhAD+1+QO+L2kHv/8juT4WAfG+FPclvtSZqj5WDys/USGCPfVTvr/wZ+w9JFyMvFXMkD9okmO/dlFWv63DQj/ATm2+h7yMP6xpkb8vWsW/h1OWP2Jl8j6wmOI+XEu+v7NpgT8pCdE+sAc7PlJVlz/nv7c/GxJ1vz25WL7BYRi/4OQCv3J3vT7Rxy29UuIJP5yrkj8GdNm93SPDPsO0Cj8EZpw/+IsRvrnQh786FHjAmWykv6DEzzuRHL8/TacKv6z6Wb9iZfI+CZwQwEUyLD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADafQs2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAUZkavQAAAABISu2/AAAAAA3Poz0AAAAAbBvkPwAAAAADQYK9AAAAADqr2z8AAAAARX4SvQAAAABq3+S/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAG74DtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgFLbNTsAAAAAHyL+vwAAAAA/N2M9AAAAANCB9T8AAAAAjkdWPAAAAADfywBAAAAAAKkNrD0AAAAA4q/9vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADTqrbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDAoQ0+AAAAANwj8r8AAAAAl28MvgAAAACZIOU/AAAAAKc0Gz0AAAAAIZ/nPwAAAADzyNS6AAAAADGp5r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACwISQ1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAFV+GvQAAAACT7/i/AAAAAFCj5r0AAAAAtw/7PwAAAABgdX69AAAAAM5j6T8AAAAA/awLvgAAAAADLva/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJXJCSFGoaWMAWyUTegDjAF0lEdArFsIuXeFc3V9lChoBkdAlo1ZTZQHiWgHTegDaAhHQKxhODxsl9l1fZQoaAZHQJfvHQokRjBoB03oA2gIR0CsZEuN5t3wdX2UKGgGR0CXZh7LdN34aAdN6ANoCEdArGZvHR1HOXV9lChoBkdAldxOq7yxzWgHTegDaAhHQKxnTMMZxaR1fZQoaAZHQJeCbT7VJ+VoB03oA2gIR0CscEXLvCuVdX2UKGgGR0CYJznCwbEQaAdN6ANoCEdArHPz7di2D3V9lChoBkdAk+/zbnHNo2gHTegDaAhHQKx2Eujh1kl1fZQoaAZHQJXXbvmYBvJoB03oA2gIR0CsduPzvqkedX2UKGgGR0CXhSqubI91aAdN6ANoCEdArH0QM6RyO3V9lChoBkdAluWXJxNqQGgHTegDaAhHQKyAIidrftR1fZQoaAZHQJOAYv0yxiZoB03oA2gIR0Csgj6rmyPddX2UKGgGR0CW5oDKHO8kaAdN6ANoCEdArIMXp4bCJ3V9lChoBkdAllQmTPjXF2gHTegDaAhHQKyK/gn+hoN1fZQoaAZHQJU34upS75FoB03oA2gIR0Csj8H/95yEdX2UKGgGR0CXLMFmFrVOaAdN6ANoCEdArJHWfI0ZWXV9lChoBkdAlnYXZbpu/GgHTegDaAhHQKySsiB5HEx1fZQoaAZHQJU38YFaB7NoB03oA2gIR0CsmNb0OEuhdX2UKGgGR0CZl5fms/6gaAdN6ANoCEdArJwAJw84gnV9lChoBkdAluPEsnRb8mgHTegDaAhHQKyeKzAvcrR1fZQoaAZHQJaTlPJq7AdoB03oA2gIR0CsnxGNzbN9dX2UKGgGR0CZd0i2lVLjaAdN6ANoCEdArKW/6sQumXV9lChoBkdAmYdsdtEXtWgHTegDaAhHQKyqOoqkM1F1fZQoaAZHQJfRvUMG5c1oB03oA2gIR0CsrXwx33YddX2UKGgGR0CXX194eLeiaAdN6ANoCEdArK5gw/PgN3V9lChoBkdAl+o3KnvUjWgHTegDaAhHQKy0fnf2saN1fZQoaAZHQJdi1vJiiItoB03oA2gIR0Cst5IYekpJdX2UKGgGR0CWzAtTUAktaAdN6ANoCEdArLmdtl7MPnV9lChoBkdAlKv7uUliSmgHTegDaAhHQKy6de/Ho5h1fZQoaAZHQJizCWVu76JoB03oA2gIR0CswKZvtMPCdX2UKGgGR0CTuGq+JxecaAdN6ANoCEdArMSxEF4cFXV9lChoBkdAlw3JUtI07GgHTegDaAhHQKzH3t/nW8R1fZQoaAZHQJc42Zof0VdoB03oA2gIR0CsyTq4H5aedX2UKGgGR0CYVz3+uNgjaAdN6ANoCEdArNA7VrhzeXV9lChoBkdAlvlUNz8xbmgHTegDaAhHQKzTSTOgQH11fZQoaAZHQJg4oAS39aVoB03oA2gIR0Cs1We5vtMPdX2UKGgGR0CX7+Whh6SlaAdN6ANoCEdArNZFlNDc/XV9lChoBkdAlW42UW2w3mgHTegDaAhHQKzccIrOJLx1fZQoaAZHQJZUjBLwnYxoB03oA2gIR0Cs34Gwqy4XdX2UKGgGR0CXJM39JjDsaAdN6ANoCEdArOJ8gr6LwXV9lChoBkdAl5n4B/7SA2gHTegDaAhHQKzjyhkAggZ1fZQoaAZHQJQOWE0zj3poB03oA2gIR0Cs7CW56MR6dX2UKGgGR0CU1tJFspG4aAdN6ANoCEdArO9QcT8HfXV9lChoBkdAlWdWlANXo2gHTegDaAhHQKzxf6Q/5cl1fZQoaAZHQJR70upS75FoB03oA2gIR0Cs8mZ1vES/dX2UKGgGR0CTudU2UB4maAdN6ANoCEdArPiMaqCHynV9lChoBkdAlRXbVawD/2gHTegDaAhHQKz7jrD63y91fZQoaAZHQJBVddld1MdoB03oA2gIR0Cs/aPtlZoxdX2UKGgGR0CV4yRE4NqhaAdN6ANoCEdArP7RX6qKg3V9lChoBkdAle/PY4ACGWgHTegDaAhHQK0IIsUZeiV1fZQoaAZHQJWURIRRMvhoB03oA2gIR0CtC18XFcY7dX2UKGgGR0CTCLQyyleoaAdN6ANoCEdArQ1w5cTrV3V9lChoBkdAlzldsWO6umgHTegDaAhHQK0OSaa1Cw91fZQoaAZHQJV8AG5c1O1oB03oA2gIR0CtFIKuSwGGdX2UKGgGR0CWgZnXd0q6aAdN6ANoCEdArReZ13dKunV9lChoBkdAlCh3668QI2gHTegDaAhHQK0ZsqwyIpJ1fZQoaAZHQJfm4m8dxQ1oB03oA2gIR0CtGouN5t3wdX2UKGgGR0CV7+1BMSK4aAdN6ANoCEdArSMSNsFdLXV9lChoBkdAleN6tLcsUmgHTegDaAhHQK0nF2pyZKF1fZQoaAZHQJd5KwY+B6NoB03oA2gIR0CtKSBKL877dX2UKGgGR0CW6McIqsltaAdN6ANoCEdArSn8LYwqRXV9lChoBkdAix7XSjQAuWgHTegDaAhHQK0wHg8bJfZ1fZQoaAZHQJYqu/336ARoB03oA2gIR0CtMxy4e9zwdX2UKGgGR0CUZ9Q8fV7QaAdN6ANoCEdArTUncN6PbXV9lChoBkdAkDX3IU8FIWgHTegDaAhHQK01/LamGdt1fZQoaAZHQI+66LXL/0doB03oA2gIR0CtPP+RYA80dX2UKGgGR0CUC5LE1l5GaAdN6ANoCEdArUHhHd43WHV9lChoBkdAk2hfkili0GgHTegDaAhHQK1EvkS26TZ1fZQoaAZHQIP8LPdEb5xoB03oA2gIR0CtRaPPszEadX2UKGgGR0CLOGujh1klaAdN6ANoCEdArUvpNXYDknV9lChoBkdAhzE7zTWoWGgHTegDaAhHQK1O7LJSzgN1fZQoaAZHQJHJkRe1KGtoB03oA2gIR0CtUPq0+kgwdX2UKGgGR0CYkPIiTt9haAdN6ANoCEdArVHfG2kSEnV9lChoBkdAluZCb2Dg62gHTegDaAhHQK1YTtuUD+11fZQoaAZHQJcizgKnei1oB03oA2gIR0CtXNe36Q/5dX2UKGgGR0CXH0sfaHsUaAdN6ANoCEdArWAmnXNC7nV9lChoBkdAlfG3/HYHxGgHTegDaAhHQK1hfuNPxhF1fZQoaAZHQHA2jtkWhytoB02QAWgIR0CtY7EoOQQudX2UKGgGR0CXMQzIFNcoaAdN6ANoCEdArWfp/oaDPHV9lChoBkdAmfhgJ5VwP2gHTegDaAhHQK1tS+aBqbl1fZQoaAZHQJVUC4+bExZoB03oA2gIR0Ctbj1YQrc1dX2UKGgGR0CXvoJdjXnRaAdN6ANoCEdArXA1NahYeXV9lChoBkdAlqAH9JjDsWgHTegDaAhHQK10u6shgVp1fZQoaAZHQJb50WsRxtJoB03oA2gIR0CtfAfLDAJtdX2UKGgGR0CUV/miQDFIaAdN6ANoCEdArX17t5UtI3V9lChoBkdAlt2/aQFLWmgHTegDaAhHQK2AmKR+z+p1fZQoaAZHQJZlXgsK9f1oB03oA2gIR0CthOhSk0rLdX2UKGgGR0CYUSz+3pfQaAdN6ANoCEdArYoo6GQCCHV9lChoBkdAmgyrJfYzzmgHTegDaAhHQK2LAjBVMmF1fZQoaAZHQET1Aj6eoUBoB0t1aAhHQK2Mblo11nx1fZQoaAZHQJShenpB5X5oB03oA2gIR0CtjO1jiGWVdX2UKGgGR0CWVGHeJpFkaAdN6ANoCEdArZEnkkrwv3V9lChoBkdAmJw2EK3NLWgHTegDaAhHQK2XMSAYpDx1fZQoaAZHQIyfztXxOL1oB03oA2gIR0Ctms0gbIcSdX2UKGgGR0CT2jRzBAObaAdN6ANoCEdArZucqtozvnV9lChoBkdAkr8If0VafWgHTegDaAhHQK2hBKbKA8V1fZQoaAZHQJVb+WPcSGtoB03oA2gIR0Ctpi2Pkq+bdX2UKGgGR0CWMd0Yj0L/aAdN6ANoCEdArah2ax5cDHV9lChoBkdAl+nMvduYQmgHTegDaAhHQK2o/gwXZXd1fZQoaAZHQJZBV5GBnSRoB03oA2gIR0CtrUMz2vjfdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d621d75d3e89cf673e8a28ff521a483262a5c147a09abc87cd99d6d6bd10810f
|
3 |
+
size 1138849
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1602.467173592723, "std_reward": 419.3637133162152, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-26T08:23:18.945614"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d799e76198928d2be1033a109499502c7dc78429c157e79d32cc216e0fcdb6b0
|
3 |
+
size 2136
|