Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2-2.zip +3 -0
- ppo-LunarLander-v2-2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2-2/data +99 -0
- ppo-LunarLander-v2-2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2-2/policy.pth +3 -0
- ppo-LunarLander-v2-2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2-2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 249.10 +/- 21.05
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x781f31509630>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x781f315096c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x781f31509750>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x781f315097e0>", "_build": "<function ActorCriticPolicy._build at 0x781f31509870>", "forward": "<function ActorCriticPolicy.forward at 0x781f31509900>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x781f31509990>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x781f31509a20>", "_predict": "<function ActorCriticPolicy._predict at 0x781f31509ab0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x781f31509b40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x781f31509bd0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x781f31509c60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x781f316aa780>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1698854399872103806, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM7igL47llw/x1ScvvBu8L7Li3m+diqwvAAAAAAAAAAA800DPhQWoLpYyVW+gU4xvHKlCz5yh26+AACAPwAAAAC1+uK+8uhxPyKKQr5rAga/NszcvoklHj0AAAAAAAAAAHM3473DGSu6LBWeulWy+bXpeAq5JSG1OQAAgD8AAAAAmvHsvEgHkrpyJI00g3+DMLXpnLnaWWqzAACAPwAAgD8aIji9Rop5P/74Jb1ZGym/j14eviEwQz0AAAAAAAAAAKDDDL5fqhA/CC0FPpR52L53VJ+9x5yMPAAAAAAAAAAA2sTbva7liLq5+pq6ekfAtRXh7rgmLrQ5AACAPwAAAACNnw++j6NcP55/X765BwO/IEZAvltka7sAAAAAAAAAAM0gP73hhIq6BjEktjE0NbHRdVw6t68+NQAAgD8AAIA/Khiyvh+/Vj96KDO+vInmvnElub7NdIs9AAAAAAAAAACQ2Wi+9Pf1vKKiQ7yUo8K6zr9dPr5PkzsAAIA/AACAP7gRkb7n/64+jgmLPgIbqb5B2gG9Kr6PPQAAAAAAAAAAsz27vduGmT8lAjm+kzUVv/y8G75eJv69AAAAAAAAAABNmN+9UtCmuQqDkDkVznM0eEpKO4L0q7gAAIA/AAAAAOZ8o717XKg58BZINzFmUjJfR626wkp5tgAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVAQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHDFgwCbMHOMAWyUTRwBjAF0lEdAkUj02UB4lnV9lChoBkdAchHmq5sj3WgHS9BoCEdAkUkCxiXpn3V9lChoBkdAclI0ALiMpGgHS+xoCEdAkUlKsEJSi3V9lChoBkdAcErhf0Eov2gHS/poCEdAkUl7NW2gF3V9lChoBkdAcSwiUgSvkmgHS/FoCEdAkUl486mwaHV9lChoBkdATEKxcE/0NGgHS7poCEdAkUrBhttQ9HV9lChoBkdAbjcrK/20zGgHS+RoCEdAkUsf9tMwlHV9lChoBkdAcQTzt1IRRWgHS+NoCEdAkUwTYNAkcHV9lChoBkdAcU1LlFMIvGgHS+JoCEdAkUxFrM1TBXV9lChoBkdAcUPnmq5sj2gHS9BoCEdAkU29b9qDb3V9lChoBkdAcJ5D0Dlo12gHS/RoCEdAkU3yW/rSmnV9lChoBkdAcbo4pMHryGgHS/VoCEdAkU50auOjqXV9lChoBkdAcmM3Qla8pWgHS/xoCEdAkU5+b3Gn43V9lChoBkdAcTU0ulGgBmgHS91oCEdAkU86FZgXuXV9lChoBkdAcbb55qubJGgHTUsBaAhHQJFPObYsd1d1fZQoaAZHQG4sFBY3eepoB0vaaAhHQJFP9d+ocaR1fZQoaAZHQG9HZxJd0JZoB0vfaAhHQJFQHxkNF0B1fZQoaAZHQHD3PNu+AVhoB0voaAhHQJFQMfGMn7Z1fZQoaAZHQHCfB3NcGC9oB0v0aAhHQJFQSyC4Bmx1fZQoaAZHQHJxDSG8EmpoB00nAWgIR0CRUcj3mFJydX2UKGgGR0BxLx2hZha1aAdL7GgIR0CRUgxz7uUmdX2UKGgGR0BxTtWMju8caAdL4GgIR0CRUheaKDTSdX2UKGgGR0BxgyEvkBCEaAdL5GgIR0CRU1icG1QZdX2UKGgGR0BvTNRLsa86aAdL42gIR0CRVSDB/I8ydX2UKGgGR0BxtmHKwIMSaAdL+mgIR0CRVrAskIHDdX2UKGgGR0Bxg4iosI3SaAdL9WgIR0CRV3+49X9zdX2UKGgGR0BwvZ/BnBciaAdL2WgIR0CRV8f51vETdX2UKGgGR0BxJVw84gieaAdL/GgIR0CRV8gHeJpGdX2UKGgGR0BvRmYWtU4raAdL8WgIR0CRWIU47zTXdX2UKGgGR0ByufGtITXbaAdNLQFoCEdAkVi4sNDtxHV9lChoBkdAcmUoMKCxvGgHTXwBaAhHQJFY2Vlf7aZ1fZQoaAZHQHCDPcBU70ZoB00DAWgIR0CRWOSde6ZqdX2UKGgGR0BQS54W1twaaAdLymgIR0CRWPzPrv9cdX2UKGgGR0Bx/6gSOBDpaAdNDgFoCEdAkVlh8pkPMHV9lChoBkdAcQhWWyC4BmgHS9poCEdAkVnKPOpsGnV9lChoBkdAbppT4L1EmmgHS9RoCEdAkVraMvRJE3V9lChoBkfAJE4R28qWkmgHS7toCEdAkV/6m8/Uv3V9lChoBkdAb9FyfcvdumgHTaYDaAhHQJFgQyXUpd91fZQoaAZHQHBVOstCiRJoB0v2aAhHQJFgn/0dzXB1fZQoaAZHQHDWczqKP4poB0vqaAhHQJFg/undfsx1fZQoaAZHQHNZ1rhzeXRoB0v1aAhHQJFh5agVXV91fZQoaAZHQHEobux8lX1oB0vJaAhHQJFiBtFa0Qd1fZQoaAZHQHJvDfixVyZoB0vZaAhHQJFiKoegctJ1fZQoaAZHQG17NVaOgg5oB00BAWgIR0CRYm3hn8KpdX2UKGgGR0ByPaakRBeHaAdNBAFoCEdAkXlyQ5myxHV9lChoBkdAcoAeXiR4hWgHTRABaAhHQJF5rms/6ft1fZQoaAZHQG/G4l6Z6UtoB0vuaAhHQJF5rB68g6l1fZQoaAZHQHIk5gPVd5ZoB00VAWgIR0CRefGHHmzTdX2UKGgGR0ByWGGtZFG5aAdNfAFoCEdAkXozziCJ43V9lChoBkdAcmnlYU34sWgHS+JoCEdAkXpfYJ3PiXV9lChoBkdAcw6eZG8VYmgHTecBaAhHQJF6gLH+6y11fZQoaAZHQHN7JFkQPI5oB0v3aAhHQJF+Q9A5aNd1fZQoaAZHQHHONPLxI8RoB0vraAhHQJF/NdIGyHF1fZQoaAZHQHIa3Fkxyn1oB00UAWgIR0CRf4lQMx46dX2UKGgGR0BwCA150KZ2aAdL9GgIR0CRf6VvddmhdX2UKGgGR0BxEjb9If8uaAdNDAFoCEdAkX++DjBEa3V9lChoBkdAc2XuGbkOqmgHS9ZoCEdAkYBSmALApXV9lChoBkdAceOIuoP07WgHS/9oCEdAkYBQ8bJfY3V9lChoBkdAcNxqqOtGNWgHS+hoCEdAkYCtcbBGhHV9lChoBkdAcIbWP91loWgHTRMBaAhHQJGAxpM6BAh1fZQoaAZHQG8c9adMCcRoB0vTaAhHQJGBJtxdY4h1fZQoaAZHQHEqFhG6PKdoB01EAWgIR0CRgVEhq0tzdX2UKGgGR0BytZxIatLdaAdL92gIR0CRgVP69CeFdX2UKGgGR0BzXN6kZaV2aAdNUgNoCEdAkYGJAIIF/3V9lChoBkdAcx5hKUVzqGgHS/hoCEdAkYGUZm7J4nV9lChoBkdAcRRgEU0vXmgHTQ0BaAhHQJGCRNdqtYB1fZQoaAZHQHEVzxwyZa5oB00SAWgIR0CRgoM7EHdHdX2UKGgGR0BxRLAWSEDhaAdLwWgIR0CRg7XCj1wpdX2UKGgGR0Bxf96+nIhhaAdLz2gIR0CRhQI+nqFAdX2UKGgGR0Bw68kSmIj4aAdL02gIR0CRhUucMEzPdX2UKGgGR0BxusJ3PiT/aAdLxmgIR0CRhkA+6iCbdX2UKGgGR0BuI+eg+QlsaAdL22gIR0CRhzGu9vjwdX2UKGgGR0Bxy5eUpuuSaAdL92gIR0CRh5A9FF2FdX2UKGgGR0BxM/pnpSrHaAdNBAFoCEdAkYeK8UVSGnV9lChoBkdAcR6fzBhx52gHTSkBaAhHQJGHr8dgfEJ1fZQoaAZHQHGnBaHKwINoB00cAWgIR0CRiEnqVyFPdX2UKGgGR0BykbkJa7mMaAdNFgFoCEdAkYh0nG828HV9lChoBkdAbrtUx20Re2gHS/loCEdAkYiLhm5DqnV9lChoBkdAcYHGtITXa2gHS9poCEdAkYjYnKGL1nV9lChoBkdAcumY0l7dBWgHTVkBaAhHQJGJgGjbi6x1fZQoaAZHQHAxHKr7wa1oB0vyaAhHQJGOX04BFNN1fZQoaAZHQHBKRfrrxAloB00QAWgIR0CRjl5VfeDWdX2UKGgGR0By5JGc4HX3aAdNJAFoCEdAkY67bDdgv3V9lChoBkdAQrAIQe3hGmgHS75oCEdAkY7cvysjmnV9lChoBkdAcJXh7VrhzmgHTQ4BaAhHQJGQbn4fwJB1fZQoaAZHQHOnkMoc7yRoB00NAWgIR0CRkMDPnjhldX2UKGgGR0BxW6enQ6ZIaAdL+2gIR0CRkPaisXBQdX2UKGgGR0Bv7LLdN34caAdL92gIR0CRkRnNgSezdX2UKGgGR0BxfpDWsijdaAdNGAFoCEdAkZFPkmx+rnV9lChoBkdAb2pftQbdamgHS/doCEdAkZF4G2TgVHV9lChoBkdAcE2By0a6z2gHTSMBaAhHQJGRjtVrAQB1fZQoaAZHQHLmnGff4ypoB00NAWgIR0CRkvtsenyedX2UKGgGR0BybdAB1cMWaAdLz2gIR0CRlb+ocaOxdX2UKGgGR0BwZe/yoXKsaAdL3GgIR0CRlkJhOP/8dX2UKGgGR0BBI7iQ1aW5aAdLnmgIR0CRly6XjU/fdX2UKGgGR0BxLJQj2SMcaAdL72gIR0CRl4s/IKc/dX2UKGgGR0ByswC/47A+aAdL/mgIR0CRl/isGPgfdX2UKGgGR0Bxghsxfv4NaAdL12gIR0CRmDRaHKwIdX2UKGgGR0BNGCgCfYjCaAdLvGgIR0CRmD+MZP2xdX2UKGgGR0BveR6Y3Ns4aAdLz2gIR0CRmGd/rjYJdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2-2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bd5fe56eb4504cef09a6b7a29cb07afe36a36db95a79bfb514a5c88ae07e2452
|
3 |
+
size 147966
|
ppo-LunarLander-v2-2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2-2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x781f31509630>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x781f315096c0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x781f31509750>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x781f315097e0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x781f31509870>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x781f31509900>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x781f31509990>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x781f31509a20>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x781f31509ab0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x781f31509b40>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x781f31509bd0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x781f31509c60>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x781f316aa780>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1698854399872103806,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM7igL47llw/x1ScvvBu8L7Li3m+diqwvAAAAAAAAAAA800DPhQWoLpYyVW+gU4xvHKlCz5yh26+AACAPwAAAAC1+uK+8uhxPyKKQr5rAga/NszcvoklHj0AAAAAAAAAAHM3473DGSu6LBWeulWy+bXpeAq5JSG1OQAAgD8AAAAAmvHsvEgHkrpyJI00g3+DMLXpnLnaWWqzAACAPwAAgD8aIji9Rop5P/74Jb1ZGym/j14eviEwQz0AAAAAAAAAAKDDDL5fqhA/CC0FPpR52L53VJ+9x5yMPAAAAAAAAAAA2sTbva7liLq5+pq6ekfAtRXh7rgmLrQ5AACAPwAAAACNnw++j6NcP55/X765BwO/IEZAvltka7sAAAAAAAAAAM0gP73hhIq6BjEktjE0NbHRdVw6t68+NQAAgD8AAIA/Khiyvh+/Vj96KDO+vInmvnElub7NdIs9AAAAAAAAAACQ2Wi+9Pf1vKKiQ7yUo8K6zr9dPr5PkzsAAIA/AACAP7gRkb7n/64+jgmLPgIbqb5B2gG9Kr6PPQAAAAAAAAAAsz27vduGmT8lAjm+kzUVv/y8G75eJv69AAAAAAAAAABNmN+9UtCmuQqDkDkVznM0eEpKO4L0q7gAAIA/AAAAAOZ8o717XKg58BZINzFmUjJfR626wkp5tgAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVAQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHDFgwCbMHOMAWyUTRwBjAF0lEdAkUj02UB4lnV9lChoBkdAchHmq5sj3WgHS9BoCEdAkUkCxiXpn3V9lChoBkdAclI0ALiMpGgHS+xoCEdAkUlKsEJSi3V9lChoBkdAcErhf0Eov2gHS/poCEdAkUl7NW2gF3V9lChoBkdAcSwiUgSvkmgHS/FoCEdAkUl486mwaHV9lChoBkdATEKxcE/0NGgHS7poCEdAkUrBhttQ9HV9lChoBkdAbjcrK/20zGgHS+RoCEdAkUsf9tMwlHV9lChoBkdAcQTzt1IRRWgHS+NoCEdAkUwTYNAkcHV9lChoBkdAcU1LlFMIvGgHS+JoCEdAkUxFrM1TBXV9lChoBkdAcUPnmq5sj2gHS9BoCEdAkU29b9qDb3V9lChoBkdAcJ5D0Dlo12gHS/RoCEdAkU3yW/rSmnV9lChoBkdAcbo4pMHryGgHS/VoCEdAkU50auOjqXV9lChoBkdAcmM3Qla8pWgHS/xoCEdAkU5+b3Gn43V9lChoBkdAcTU0ulGgBmgHS91oCEdAkU86FZgXuXV9lChoBkdAcbb55qubJGgHTUsBaAhHQJFPObYsd1d1fZQoaAZHQG4sFBY3eepoB0vaaAhHQJFP9d+ocaR1fZQoaAZHQG9HZxJd0JZoB0vfaAhHQJFQHxkNF0B1fZQoaAZHQHD3PNu+AVhoB0voaAhHQJFQMfGMn7Z1fZQoaAZHQHCfB3NcGC9oB0v0aAhHQJFQSyC4Bmx1fZQoaAZHQHJxDSG8EmpoB00nAWgIR0CRUcj3mFJydX2UKGgGR0BxLx2hZha1aAdL7GgIR0CRUgxz7uUmdX2UKGgGR0BxTtWMju8caAdL4GgIR0CRUheaKDTSdX2UKGgGR0BxgyEvkBCEaAdL5GgIR0CRU1icG1QZdX2UKGgGR0BvTNRLsa86aAdL42gIR0CRVSDB/I8ydX2UKGgGR0BxtmHKwIMSaAdL+mgIR0CRVrAskIHDdX2UKGgGR0Bxg4iosI3SaAdL9WgIR0CRV3+49X9zdX2UKGgGR0BwvZ/BnBciaAdL2WgIR0CRV8f51vETdX2UKGgGR0BxJVw84gieaAdL/GgIR0CRV8gHeJpGdX2UKGgGR0BvRmYWtU4raAdL8WgIR0CRWIU47zTXdX2UKGgGR0ByufGtITXbaAdNLQFoCEdAkVi4sNDtxHV9lChoBkdAcmUoMKCxvGgHTXwBaAhHQJFY2Vlf7aZ1fZQoaAZHQHCDPcBU70ZoB00DAWgIR0CRWOSde6ZqdX2UKGgGR0BQS54W1twaaAdLymgIR0CRWPzPrv9cdX2UKGgGR0Bx/6gSOBDpaAdNDgFoCEdAkVlh8pkPMHV9lChoBkdAcQhWWyC4BmgHS9poCEdAkVnKPOpsGnV9lChoBkdAbppT4L1EmmgHS9RoCEdAkVraMvRJE3V9lChoBkfAJE4R28qWkmgHS7toCEdAkV/6m8/Uv3V9lChoBkdAb9FyfcvdumgHTaYDaAhHQJFgQyXUpd91fZQoaAZHQHBVOstCiRJoB0v2aAhHQJFgn/0dzXB1fZQoaAZHQHDWczqKP4poB0vqaAhHQJFg/undfsx1fZQoaAZHQHNZ1rhzeXRoB0v1aAhHQJFh5agVXV91fZQoaAZHQHEobux8lX1oB0vJaAhHQJFiBtFa0Qd1fZQoaAZHQHJvDfixVyZoB0vZaAhHQJFiKoegctJ1fZQoaAZHQG17NVaOgg5oB00BAWgIR0CRYm3hn8KpdX2UKGgGR0ByPaakRBeHaAdNBAFoCEdAkXlyQ5myxHV9lChoBkdAcoAeXiR4hWgHTRABaAhHQJF5rms/6ft1fZQoaAZHQG/G4l6Z6UtoB0vuaAhHQJF5rB68g6l1fZQoaAZHQHIk5gPVd5ZoB00VAWgIR0CRefGHHmzTdX2UKGgGR0ByWGGtZFG5aAdNfAFoCEdAkXozziCJ43V9lChoBkdAcmnlYU34sWgHS+JoCEdAkXpfYJ3PiXV9lChoBkdAcw6eZG8VYmgHTecBaAhHQJF6gLH+6y11fZQoaAZHQHN7JFkQPI5oB0v3aAhHQJF+Q9A5aNd1fZQoaAZHQHHONPLxI8RoB0vraAhHQJF/NdIGyHF1fZQoaAZHQHIa3Fkxyn1oB00UAWgIR0CRf4lQMx46dX2UKGgGR0BwCA150KZ2aAdL9GgIR0CRf6VvddmhdX2UKGgGR0BxEjb9If8uaAdNDAFoCEdAkX++DjBEa3V9lChoBkdAc2XuGbkOqmgHS9ZoCEdAkYBSmALApXV9lChoBkdAceOIuoP07WgHS/9oCEdAkYBQ8bJfY3V9lChoBkdAcNxqqOtGNWgHS+hoCEdAkYCtcbBGhHV9lChoBkdAcIbWP91loWgHTRMBaAhHQJGAxpM6BAh1fZQoaAZHQG8c9adMCcRoB0vTaAhHQJGBJtxdY4h1fZQoaAZHQHEqFhG6PKdoB01EAWgIR0CRgVEhq0tzdX2UKGgGR0BytZxIatLdaAdL92gIR0CRgVP69CeFdX2UKGgGR0BzXN6kZaV2aAdNUgNoCEdAkYGJAIIF/3V9lChoBkdAcx5hKUVzqGgHS/hoCEdAkYGUZm7J4nV9lChoBkdAcRRgEU0vXmgHTQ0BaAhHQJGCRNdqtYB1fZQoaAZHQHEVzxwyZa5oB00SAWgIR0CRgoM7EHdHdX2UKGgGR0BxRLAWSEDhaAdLwWgIR0CRg7XCj1wpdX2UKGgGR0Bxf96+nIhhaAdLz2gIR0CRhQI+nqFAdX2UKGgGR0Bw68kSmIj4aAdL02gIR0CRhUucMEzPdX2UKGgGR0BxusJ3PiT/aAdLxmgIR0CRhkA+6iCbdX2UKGgGR0BuI+eg+QlsaAdL22gIR0CRhzGu9vjwdX2UKGgGR0Bxy5eUpuuSaAdL92gIR0CRh5A9FF2FdX2UKGgGR0BxM/pnpSrHaAdNBAFoCEdAkYeK8UVSGnV9lChoBkdAcR6fzBhx52gHTSkBaAhHQJGHr8dgfEJ1fZQoaAZHQHGnBaHKwINoB00cAWgIR0CRiEnqVyFPdX2UKGgGR0BykbkJa7mMaAdNFgFoCEdAkYh0nG828HV9lChoBkdAbrtUx20Re2gHS/loCEdAkYiLhm5DqnV9lChoBkdAcYHGtITXa2gHS9poCEdAkYjYnKGL1nV9lChoBkdAcumY0l7dBWgHTVkBaAhHQJGJgGjbi6x1fZQoaAZHQHAxHKr7wa1oB0vyaAhHQJGOX04BFNN1fZQoaAZHQHBKRfrrxAloB00QAWgIR0CRjl5VfeDWdX2UKGgGR0By5JGc4HX3aAdNJAFoCEdAkY67bDdgv3V9lChoBkdAQrAIQe3hGmgHS75oCEdAkY7cvysjmnV9lChoBkdAcJXh7VrhzmgHTQ4BaAhHQJGQbn4fwJB1fZQoaAZHQHOnkMoc7yRoB00NAWgIR0CRkMDPnjhldX2UKGgGR0BxW6enQ6ZIaAdL+2gIR0CRkPaisXBQdX2UKGgGR0Bv7LLdN34caAdL92gIR0CRkRnNgSezdX2UKGgGR0BxfpDWsijdaAdNGAFoCEdAkZFPkmx+rnV9lChoBkdAb2pftQbdamgHS/doCEdAkZF4G2TgVHV9lChoBkdAcE2By0a6z2gHTSMBaAhHQJGRjtVrAQB1fZQoaAZHQHLmnGff4ypoB00NAWgIR0CRkvtsenyedX2UKGgGR0BybdAB1cMWaAdLz2gIR0CRlb+ocaOxdX2UKGgGR0BwZe/yoXKsaAdL3GgIR0CRlkJhOP/8dX2UKGgGR0BBI7iQ1aW5aAdLnmgIR0CRly6XjU/fdX2UKGgGR0BxLJQj2SMcaAdL72gIR0CRl4s/IKc/dX2UKGgGR0ByswC/47A+aAdL/mgIR0CRl/isGPgfdX2UKGgGR0Bxghsxfv4NaAdL12gIR0CRmDRaHKwIdX2UKGgGR0BNGCgCfYjCaAdLvGgIR0CRmD+MZP2xdX2UKGgGR0BveR6Y3Ns4aAdLz2gIR0CRmGd/rjYJdWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 248,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2-2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5a549ede0c69074f9990bb75b22ad4f3574b40b3b44af4a10357c8fcce9bee95
|
3 |
+
size 88362
|
ppo-LunarLander-v2-2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b075fd94dded1ca1f93f4ca3b485aea95a3e635d7a28dab47d19b1054f7fd87a
|
3 |
+
size 43762
|
ppo-LunarLander-v2-2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2-2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.1.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (179 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 249.10435809940842, "std_reward": 21.045392199947965, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-11-01T16:19:30.385053"}
|