snakebaseline / script.py
Lonly-geese's picture
Upload 2 files
b342394 verified
raw
history blame
2.52 kB
import pandas as pd
import numpy as np
from PIL import Image
import onnxruntime as ort
import os
from tqdm import tqdm
def is_gpu_available():
"""Check if the python package `onnxruntime-gpu` is installed."""
return ort.get_device() == "GPU"
class ONNXWorker:
"""Run inference using ONNX runtime."""
def __init__(self, onnx_path: str):
print("Setting up ONNX runtime session.")
self.use_gpu = is_gpu_available()
if self.use_gpu:
providers = ["CUDAExecutionProvider", "CPUExecutionProvider"]
else:
providers = ["CPUExecutionProvider"]
print(f"Using {providers}")
self.ort_session = ort.InferenceSession(onnx_path, providers=providers)
def _resize_image(self, image: np.ndarray) -> np.ndarray:
"""
:param image:
:return:
"""
newsize = (300, 300)
im1 = im1.resize(newsize)
def predict_image(self, image: np.ndarray) -> list():
"""Run inference using ONNX runtime.
:param image: Input image as numpy array.
:return: A list with logits and confidences.
"""
logits, _ = self.ort_session.run(None, {"input": image.astype(dtype=np.uint8)})
return logits.tolist()
def make_submission(test_metadata, model_path, output_csv_path="./submission.csv", images_root_path="/tmp/data/private_testset"):
"""Make submission with given """
model = ONNXWorker(model_path)
predictions = []
for _, row in tqdm(test_metadata.iterrows(), total=len(test_metadata)):
image_path = os.path.join(images_root_path, row.filename)
test_image = Image.open(image_path).convert("RGB")
test_image_resized = np.asarray(test_image.resize((256, 256)))
logits = model.predict_image(test_image_resized)
predictions.append(np.argmax(logits))
test_metadata["class_id"] = predictions
user_pred_df = test_metadata.drop_duplicates("observation_id", keep="first")
user_pred_df[["observation_id", "class_id"]].to_csv(output_csv_path, index=None)
if __name__ == "__main__":
import zipfile
with zipfile.ZipFile("/tmp/data/private_testset.zip", 'r') as zip_ref:
zip_ref.extractall("/tmp/data")
ONNX_MODEL_PATH = "./swinv2_tiny_window16_256.onnx"
metadata_file_path = "./SnakeCLEF2024-TestMetadata.csv"
test_metadata = pd.read_csv(metadata_file_path)
make_submission(
test_metadata=test_metadata,
model_path=ONNX_MODEL_PATH,
)