LoneStriker
commited on
Commit
•
758f278
1
Parent(s):
bf9060e
Upload folder using huggingface_hub
Browse files- .gitattributes +5 -35
- ACCEPTABLE_USE_POLICY.txt +1 -0
- LICENSE.txt +1 -0
- README.md +215 -0
- configuration_falcon.py +192 -0
- falcon-11B-Q3_K_L.gguf +3 -0
- falcon-11B-Q4_K_M.gguf +3 -0
- falcon-11B-Q5_K_M.gguf +3 -0
- falcon-11B-Q6_K.gguf +3 -0
- falcon-11B-Q8_0.gguf +3 -0
- modeling_falcon.py +1670 -0
.gitattributes
CHANGED
@@ -1,35 +1,5 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
1 |
+
falcon-11B-Q3_K_L.gguf filter=lfs diff=lfs merge=lfs -text
|
2 |
+
falcon-11B-Q4_K_M.gguf filter=lfs diff=lfs merge=lfs -text
|
3 |
+
falcon-11B-Q5_K_M.gguf filter=lfs diff=lfs merge=lfs -text
|
4 |
+
falcon-11B-Q6_K.gguf filter=lfs diff=lfs merge=lfs -text
|
5 |
+
falcon-11B-Q8_0.gguf filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ACCEPTABLE_USE_POLICY.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
https://falconllm-staging.tii.ae/falcon-2-acceptable-use-policy.html
|
LICENSE.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
https://falconllm-staging.tii.ae/falcon-2-terms-and-conditions.html
|
README.md
ADDED
@@ -0,0 +1,215 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- tiiuae/falcon-refinedweb
|
4 |
+
language:
|
5 |
+
- en
|
6 |
+
- de
|
7 |
+
- es
|
8 |
+
- fr
|
9 |
+
inference: false
|
10 |
+
---
|
11 |
+
|
12 |
+
# 🚀 Falcon2-11B
|
13 |
+
|
14 |
+
**Falcon2-11B is an 11B parameters causal decoder-only model built by [TII](https://www.tii.ae) and trained over 5,000B tokens of [RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb) enhanced with curated corpora. The model is made available under the [TII Falcon License 2.0](https://falconllm-staging.tii.ae/falcon-2-terms-and-conditions.html), the permissive Apache 2.0-based software license which includes an [acceptable use policy](https://falconllm-staging.tii.ae/falcon-2-acceptable-use-policy.html) that promotes the responsible use of AI.**
|
15 |
+
|
16 |
+
*Paper coming soon 😊.*
|
17 |
+
|
18 |
+
|
19 |
+
🤗 To get started with Falcon (inference, finetuning, quantization, etc.), we recommend reading [this great blogpost from HF](https://huggingface.co/blog/falcon)!
|
20 |
+
|
21 |
+
⚠️ **This is a raw, pretrained model, which should be further finetuned for most usecases.**
|
22 |
+
|
23 |
+
```python
|
24 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
25 |
+
import transformers
|
26 |
+
import torch
|
27 |
+
|
28 |
+
model = "tiiuae/falcon-11B"
|
29 |
+
|
30 |
+
tokenizer = AutoTokenizer.from_pretrained(model)
|
31 |
+
pipeline = transformers.pipeline(
|
32 |
+
"text-generation",
|
33 |
+
model=model,
|
34 |
+
tokenizer=tokenizer,
|
35 |
+
torch_dtype=torch.bfloat16,
|
36 |
+
)
|
37 |
+
sequences = pipeline(
|
38 |
+
"Can you explain the concepts of Quantum Computing?",
|
39 |
+
max_length=200,
|
40 |
+
do_sample=True,
|
41 |
+
top_k=10,
|
42 |
+
num_return_sequences=1,
|
43 |
+
eos_token_id=tokenizer.eos_token_id,
|
44 |
+
)
|
45 |
+
for seq in sequences:
|
46 |
+
print(f"Result: {seq['generated_text']}")
|
47 |
+
|
48 |
+
```
|
49 |
+
|
50 |
+
💥 **Falcon LLMs require PyTorch 2.0 for use with `transformers`!**
|
51 |
+
|
52 |
+
For fast inference with Falcon, check-out [Text Generation Inference](https://github.com/huggingface/text-generation-inference)! Read more in this [blogpost]((https://huggingface.co/blog/falcon).
|
53 |
+
|
54 |
+
# Model Card for Falcon2-11B
|
55 |
+
|
56 |
+
## Model Details
|
57 |
+
|
58 |
+
### Model Description
|
59 |
+
|
60 |
+
- **Developed by:** [https://www.tii.ae](https://www.tii.ae)
|
61 |
+
- **Model type:** Causal decoder-only
|
62 |
+
- **Language(s) (NLP):** English, German, Spanish, French, Italian, Portuguese, Polish, Dutch, Romanian, Czech, Swedish
|
63 |
+
- **License:** [TII Falcon License 2.0](https://falconllm-staging.tii.ae/falcon-2-terms-and-conditions.html)
|
64 |
+
|
65 |
+
### Model Source
|
66 |
+
|
67 |
+
- **Paper:** *coming soon*.
|
68 |
+
|
69 |
+
## Uses
|
70 |
+
|
71 |
+
### Direct Use
|
72 |
+
|
73 |
+
Research on large language models; as a foundation for further specialization and finetuning for specific usecases (e.g., summarization, text generation, chatbot, etc.)
|
74 |
+
|
75 |
+
### Out-of-Scope Use
|
76 |
+
|
77 |
+
Production use without adequate assessment of risks and mitigation; any use cases which may be considered irresponsible or harmful.
|
78 |
+
|
79 |
+
## Bias, Risks, and Limitations
|
80 |
+
|
81 |
+
Falcon2-11B is trained mostly on English, but also German, Spanish, French, Italian, Portuguese, Polish, Dutch, Romanian, Czech, Swedish. It will not generalize appropriately to other languages. Furthermore, as it is trained on a large-scale corpora representative of the web, it will carry the stereotypes and biases commonly encountered online.
|
82 |
+
|
83 |
+
### Recommendations
|
84 |
+
|
85 |
+
We recommend users of Falcon2-11B to consider finetuning it for the specific set of tasks of interest, and for guardrails and appropriate precautions to be taken for any production use.
|
86 |
+
|
87 |
+
## How to Get Started with the Model
|
88 |
+
|
89 |
+
|
90 |
+
```python
|
91 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
92 |
+
import transformers
|
93 |
+
import torch
|
94 |
+
|
95 |
+
model = "tiiuae/falcon-11B"
|
96 |
+
|
97 |
+
tokenizer = AutoTokenizer.from_pretrained(model)
|
98 |
+
pipeline = transformers.pipeline(
|
99 |
+
"text-generation",
|
100 |
+
model=model,
|
101 |
+
tokenizer=tokenizer,
|
102 |
+
torch_dtype=torch.bfloat16,
|
103 |
+
device_map="auto",
|
104 |
+
)
|
105 |
+
sequences = pipeline(
|
106 |
+
"Can you explain the concepts of Quantum Computing?",
|
107 |
+
max_length=200,
|
108 |
+
do_sample=True,
|
109 |
+
top_k=10,
|
110 |
+
num_return_sequences=1,
|
111 |
+
eos_token_id=tokenizer.eos_token_id,
|
112 |
+
)
|
113 |
+
for seq in sequences:
|
114 |
+
print(f"Result: {seq['generated_text']}")
|
115 |
+
|
116 |
+
```
|
117 |
+
|
118 |
+
## Training Details
|
119 |
+
|
120 |
+
### Training Data
|
121 |
+
|
122 |
+
Falcon2-11B was trained over 5,000B tokens of [RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb), a high-quality filtered and deduplicated web dataset which we enhanced with curated corpora. It followed a four stage training strategy. The first three stages were focused on increasing the context length, from to 2048 to 4096 and finally to 8192 tokens. The last stage aimed to further enhance performance using only high quality data.
|
123 |
+
|
124 |
+
Overall, the data sources included RefinedWeb-English, Refined Web-Europe (cs, de, es, fr, it, nl, pl, pt, ro, sv), high quality technical data, code data, and conversational data extracted from public sources.
|
125 |
+
|
126 |
+
|
127 |
+
The training stages were as follows:
|
128 |
+
|
129 |
+
| **Stage** | **Context length** | **Tokens** |
|
130 |
+
|--------------|-----------------|-------------|
|
131 |
+
| Stage 1 | 2048 | 4500 B |
|
132 |
+
| Stage 2 | 4096 | 250 B |
|
133 |
+
| Stage 3 | 8192 | 250 B |
|
134 |
+
| Stage 4 | 8192 | 500 B |
|
135 |
+
|
136 |
+
|
137 |
+
The data was tokenized with the Falcon-[7B](https://huggingface.co/tiiuae/falcon-7b)/[11B](https://huggingface.co/tiiuae/falcon-11B) tokenizer.
|
138 |
+
|
139 |
+
### Training Procedure
|
140 |
+
|
141 |
+
Falcon2-11B was trained on 1024 A100 40GB GPUs for the majority of the training, using a 3D parallelism strategy (TP=8, PP=1, DP=128) combined with ZeRO and Flash-Attention 2.
|
142 |
+
|
143 |
+
#### Training Hyperparameters
|
144 |
+
|
145 |
+
| **Hyperparameter** | **Value** | **Comment** |
|
146 |
+
|--------------------|------------|-------------------------------------------|
|
147 |
+
| Precision | `bfloat16` | |
|
148 |
+
| Optimizer | AdamW | |
|
149 |
+
| Max learning rate | 3.7e-4 | Following a linear warm-up, then cosine decay to 1.89e-5 across 4500 B tokens. |
|
150 |
+
| Weight decay | 1e-1 | |
|
151 |
+
| Z-loss | 1e-4 | |
|
152 |
+
| Batch size | Variable | Batch size was gradually increased during the training |
|
153 |
+
|
154 |
+
|
155 |
+
#### Speeds, Sizes, Times
|
156 |
+
|
157 |
+
The model training took roughly two months.
|
158 |
+
|
159 |
+
|
160 |
+
## Evaluation
|
161 |
+
|
162 |
+
|English Benchmark | **Value** |
|
163 |
+
|--------------------|------------|
|
164 |
+
| ARC-Challenge-25shots | 59.73 |
|
165 |
+
| HellaSwag-10shots | 82.91 |
|
166 |
+
| MMLU-5shots | 58.37 |
|
167 |
+
| Winogrande-5shots | 78.30 |
|
168 |
+
| TruthfulQA-0shot | 52.56 |
|
169 |
+
| GSM8k-5shots | 53.83 |
|
170 |
+
| ARC-Challenge-0shot | 50.17 |
|
171 |
+
| ARC-Easy-0shot | 77.78 |
|
172 |
+
| Hellaswag-0shot | 82.07 |
|
173 |
+
|
174 |
+
We thank the leaderboard team from HuggingFace for providing an official evaluation of our model on the leaderboard tasks.
|
175 |
+
|
176 |
+
## Technical Specifications
|
177 |
+
|
178 |
+
### Model Architecture and Objective
|
179 |
+
|
180 |
+
Falcon2-11B is a causal decoder-only model trained on a causal language modeling task (i.e., predict the next token).
|
181 |
+
|
182 |
+
The architecture is broadly adapted from the GPT-3 paper ([Brown et al., 2020](https://arxiv.org/abs/2005.14165)), with the following differences:
|
183 |
+
|
184 |
+
* **Positionnal embeddings:** rotary ([Su et al., 2021](https://arxiv.org/abs/2104.09864));
|
185 |
+
* **Attention:** multiquery ([Shazeer et al., 2019](https://arxiv.org/abs/1911.02150)) and FlashAttention-2 ([Dao, 2023](https://arxiv.org/abs/2307.08691));
|
186 |
+
* **Decoder-block:** parallel attention/MLP.
|
187 |
+
|
188 |
+
| **Hyperparameter** | **Value** | **Comment** |
|
189 |
+
|--------------------|-----------|----------------------------------------|
|
190 |
+
| Layers | 60 | |
|
191 |
+
| `d_model` | 4096 | |
|
192 |
+
| `head_dim` | 128 | |
|
193 |
+
| Vocabulary | 65024 | |
|
194 |
+
| Sequence length | 8192 | During stages 3 and 4 |
|
195 |
+
|
196 |
+
### Compute Infrastructure
|
197 |
+
|
198 |
+
#### Hardware
|
199 |
+
|
200 |
+
Falcon2-11B was trained on AWS SageMaker, using on average 1024 A100 40GB GPUs in 128 p4d instances.
|
201 |
+
|
202 |
+
#### Software
|
203 |
+
|
204 |
+
Falcon2-11B was trained a custom distributed training codebase, Gigatron. It uses a 3D parallelism approach combined with ZeRO, high-performance Triton kernels and FlashAttention-2. More details about the distributed training strategy can be found in [Almazrouei et.al](https://arxiv.org/abs/2311.16867).
|
205 |
+
|
206 |
+
## Citation
|
207 |
+
|
208 |
+
*Paper coming soon* 😊.
|
209 |
+
|
210 |
+
## License
|
211 |
+
|
212 |
+
Falcon2-11B is licenced under [TII Falcon License 2.0](https://falconllm-staging.tii.ae/falcon-2-terms-and-conditions.html), the permissive Apache 2.0-based software license which includes an [acceptable use policy](https://falconllm-staging.tii.ae/falcon-2-acceptable-use-policy.html) that promotes the responsible use of AI.
|
213 |
+
|
214 |
+
## Contact
|
215 |
+
falconllm@tii.ae
|
configuration_falcon.py
ADDED
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 the Falcon authors and HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Falcon configuration"""
|
16 |
+
from transformers.configuration_utils import PretrainedConfig
|
17 |
+
from transformers.utils import logging
|
18 |
+
|
19 |
+
|
20 |
+
logger = logging.get_logger(__name__)
|
21 |
+
|
22 |
+
FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
23 |
+
"tiiuae/falcon-40b": "https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json",
|
24 |
+
"tiiuae/falcon-7b": "https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json",
|
25 |
+
}
|
26 |
+
|
27 |
+
|
28 |
+
class FalconConfig(PretrainedConfig):
|
29 |
+
r"""
|
30 |
+
This is the configuration class to store the configuration of a [`FalconModel`]. It is used to instantiate a Falcon
|
31 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
32 |
+
defaults will yield a similar configuration to that of the
|
33 |
+
[tiiuae/falcon-7b](https://huggingface.co/tiiuae/falcon-7b) architecture.
|
34 |
+
|
35 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
36 |
+
documentation from [`PretrainedConfig`] for more information.
|
37 |
+
|
38 |
+
|
39 |
+
Args:
|
40 |
+
vocab_size (`int`, *optional*, defaults to 65024):
|
41 |
+
Vocabulary size of the Falcon model. Defines the number of different tokens that can be represented by the
|
42 |
+
`inputs_ids` passed when calling [`FalconModel`]
|
43 |
+
hidden_size (`int`, *optional*, defaults to 4544):
|
44 |
+
Dimension of the hidden representations.
|
45 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
46 |
+
Number of hidden layers in the Transformer decoder.
|
47 |
+
num_attention_heads (`int`, *optional*, defaults to 71):
|
48 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
49 |
+
layer_norm_epsilon (`float`, *optional*, defaults to 1e-05):
|
50 |
+
The epsilon used by the layer normalization layers.
|
51 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
52 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
53 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
54 |
+
Whether the model should return the last key/values attentions (not used by all models). Only relevant if
|
55 |
+
`config.is_decoder=True`.
|
56 |
+
hidden_dropout (`float`, *optional*, defaults to 0.0):
|
57 |
+
The dropout probability for MLP layers.
|
58 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
59 |
+
The dropout probability for attention layers.
|
60 |
+
num_kv_heads (`int`, *optional*):
|
61 |
+
Number of key-value heads to use per attention layer. If unset, defaults to the same value as
|
62 |
+
`num_attention_heads`.
|
63 |
+
alibi (`bool`, *optional*, defaults to `False`):
|
64 |
+
Whether to use ALiBi positional biases during self-attention.
|
65 |
+
new_decoder_architecture (`bool`, *optional*, defaults to `False`):
|
66 |
+
Whether to use the new (Falcon-40B) decoder architecture. If `True`, the `multi_query` and `parallel_attn`
|
67 |
+
arguments are ignored, as the new decoder always uses parallel attention.
|
68 |
+
multi_query (`bool`, *optional*, defaults to `True`):
|
69 |
+
Whether to use multi-query attention in the decoder. Ignored when `new_decoder_architecture` is `True`.
|
70 |
+
parallel_attn (`bool`, *optional*, defaults to `True`):
|
71 |
+
Whether to compute attention in parallel with the feedforward layer. If False, they are consecutive
|
72 |
+
instead, as in the original Transformer architecture. Ignored when `new_decoder_architecture` is `True`.
|
73 |
+
bias (`bool`, *optional*, defaults to `False`):
|
74 |
+
Whether to use bias on Linear layers.
|
75 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
76 |
+
The maximum sequence length that this model might ever be used with, when `alibi` is `False`. Pretrained
|
77 |
+
Falcon models with RoPE support up to 2048 tokens.
|
78 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
79 |
+
The base period of the RoPE embeddings.
|
80 |
+
rope_scaling (`Dict`, *optional*):
|
81 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
82 |
+
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
|
83 |
+
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
84 |
+
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
|
85 |
+
these scaling strategies behave:
|
86 |
+
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
|
87 |
+
experimental feature, subject to breaking API changes in future versions.
|
88 |
+
bos_token_id (`int`, *optional*, defaults to 11):
|
89 |
+
The id of the "beginning-of-sequence" token.
|
90 |
+
eos_token_id (`int`, *optional*, defaults to 11):
|
91 |
+
The id of the "end-of-sequence" token.
|
92 |
+
|
93 |
+
Example:
|
94 |
+
|
95 |
+
```python
|
96 |
+
>>> from transformers import FalconModel, FalconConfig
|
97 |
+
|
98 |
+
>>> # Initializing a small (2-layer) Falcon configuration
|
99 |
+
>>> configuration = FalconConfig(num_hidden_layers=2)
|
100 |
+
|
101 |
+
>>> # Initializing a model from the small configuration
|
102 |
+
>>> model = FalconModel(configuration)
|
103 |
+
|
104 |
+
>>> # Accessing the model configuration
|
105 |
+
>>> configuration = model.config
|
106 |
+
```"""
|
107 |
+
|
108 |
+
model_type = "falcon"
|
109 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
110 |
+
|
111 |
+
def __init__(
|
112 |
+
self,
|
113 |
+
vocab_size=65024,
|
114 |
+
hidden_size=4544,
|
115 |
+
num_hidden_layers=32,
|
116 |
+
num_attention_heads=71,
|
117 |
+
layer_norm_epsilon=1e-5,
|
118 |
+
initializer_range=0.02,
|
119 |
+
use_cache=True,
|
120 |
+
hidden_dropout=0.0,
|
121 |
+
attention_dropout=0.0,
|
122 |
+
num_kv_heads=None,
|
123 |
+
alibi=False,
|
124 |
+
new_decoder_architecture=False,
|
125 |
+
multi_query=True,
|
126 |
+
parallel_attn=True,
|
127 |
+
bias=False,
|
128 |
+
max_position_embeddings=8192,
|
129 |
+
rope_theta=10000.0,
|
130 |
+
rope_scaling=None,
|
131 |
+
bos_token_id=11,
|
132 |
+
eos_token_id=11,
|
133 |
+
**kwargs,
|
134 |
+
):
|
135 |
+
self.vocab_size = vocab_size
|
136 |
+
# Backward compatibility with n_embed kwarg
|
137 |
+
n_embed = kwargs.pop("n_embed", None)
|
138 |
+
self.hidden_size = hidden_size if n_embed is None else n_embed
|
139 |
+
self.num_hidden_layers = num_hidden_layers
|
140 |
+
self.num_attention_heads = num_attention_heads
|
141 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
142 |
+
self.initializer_range = initializer_range
|
143 |
+
self.use_cache = use_cache
|
144 |
+
self.hidden_dropout = hidden_dropout
|
145 |
+
self.attention_dropout = attention_dropout
|
146 |
+
|
147 |
+
self.bos_token_id = bos_token_id
|
148 |
+
self.eos_token_id = eos_token_id
|
149 |
+
self.num_kv_heads = num_attention_heads if num_kv_heads is None else num_kv_heads
|
150 |
+
self.alibi = alibi
|
151 |
+
self.new_decoder_architecture = new_decoder_architecture
|
152 |
+
self.multi_query = multi_query # Ignored when new_decoder_architecture is True
|
153 |
+
self.parallel_attn = parallel_attn
|
154 |
+
self.bias = bias
|
155 |
+
self.max_position_embeddings = max_position_embeddings
|
156 |
+
self.rope_theta = rope_theta
|
157 |
+
self.rope_scaling = rope_scaling
|
158 |
+
self._rope_scaling_validation()
|
159 |
+
|
160 |
+
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
161 |
+
|
162 |
+
@property
|
163 |
+
def head_dim(self):
|
164 |
+
return self.hidden_size // self.num_attention_heads
|
165 |
+
|
166 |
+
@property
|
167 |
+
def rotary(self):
|
168 |
+
return not self.alibi
|
169 |
+
|
170 |
+
def _rope_scaling_validation(self):
|
171 |
+
"""
|
172 |
+
Validate the `rope_scaling` configuration.
|
173 |
+
"""
|
174 |
+
if self.rope_scaling is None:
|
175 |
+
return
|
176 |
+
|
177 |
+
if self.alibi:
|
178 |
+
raise ValueError("`rope_scaling` is not supported when `alibi` is `True`.")
|
179 |
+
|
180 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
181 |
+
raise ValueError(
|
182 |
+
"`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
|
183 |
+
f"got {self.rope_scaling}"
|
184 |
+
)
|
185 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
186 |
+
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
187 |
+
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
188 |
+
raise ValueError(
|
189 |
+
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
190 |
+
)
|
191 |
+
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
|
192 |
+
raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
|
falcon-11B-Q3_K_L.gguf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:99026d047e0d1cc7e0f1bbf309c6ab9498a80c05ceb100aa8c3b8ac40d8ff128
|
3 |
+
size 5812387488
|
falcon-11B-Q4_K_M.gguf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:43940ec9c440e50ea197711bf05ad6a123f276c5a8ece02aff2349b884bf2888
|
3 |
+
size 6849674912
|
falcon-11B-Q5_K_M.gguf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:068cd836e25b4faf732248f943c82be97ac667e9e3ffcd44192e17b392ab1c49
|
3 |
+
size 8204959392
|
falcon-11B-Q6_K.gguf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2a8348d3cad51862a621fde3ebc2485e828b67924c0e6e4165c5107c67003a36
|
3 |
+
size 9176186528
|
falcon-11B-Q8_0.gguf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:167ed1e84fce8119a1f6c02f152727cd9f8e1a31386a82c8cb8c3a3dd2f2134d
|
3 |
+
size 11800526496
|
modeling_falcon.py
ADDED
@@ -0,0 +1,1670 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 the Falcon authors and HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""PyTorch Falcon model."""
|
16 |
+
|
17 |
+
import math
|
18 |
+
import warnings
|
19 |
+
from typing import TYPE_CHECKING, Optional, Tuple, Union
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import torch.utils.checkpoint
|
23 |
+
from torch import nn
|
24 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, LayerNorm, MSELoss
|
25 |
+
from torch.nn import functional as F
|
26 |
+
|
27 |
+
from transformers.modeling_attn_mask_utils import (
|
28 |
+
AttentionMaskConverter,
|
29 |
+
_prepare_4d_causal_attention_mask,
|
30 |
+
_prepare_4d_causal_attention_mask_for_sdpa,
|
31 |
+
)
|
32 |
+
from transformers.modeling_outputs import (
|
33 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
34 |
+
CausalLMOutputWithCrossAttentions,
|
35 |
+
QuestionAnsweringModelOutput,
|
36 |
+
SequenceClassifierOutputWithPast,
|
37 |
+
TokenClassifierOutput,
|
38 |
+
)
|
39 |
+
from transformers.modeling_utils import PreTrainedModel
|
40 |
+
from transformers.pytorch_utils import is_torch_greater_or_equal_than_2_0
|
41 |
+
from transformers.utils import (
|
42 |
+
add_code_sample_docstrings,
|
43 |
+
add_start_docstrings,
|
44 |
+
add_start_docstrings_to_model_forward,
|
45 |
+
is_flash_attn_2_available,
|
46 |
+
is_flash_attn_greater_or_equal_2_10,
|
47 |
+
logging,
|
48 |
+
)
|
49 |
+
from .configuration_falcon import FalconConfig
|
50 |
+
|
51 |
+
|
52 |
+
if TYPE_CHECKING:
|
53 |
+
from transformers.configuration_utils import PretrainedConfig
|
54 |
+
|
55 |
+
if is_flash_attn_2_available():
|
56 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
57 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
58 |
+
|
59 |
+
logger = logging.get_logger(__name__)
|
60 |
+
|
61 |
+
FALCON_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
62 |
+
"tiiuae/falcon-40b",
|
63 |
+
"tiiuae/falcon-40b-instruct",
|
64 |
+
"tiiuae/falcon-7b",
|
65 |
+
"tiiuae/falcon-7b-instruct",
|
66 |
+
"tiiuae/falcon-rw-7b",
|
67 |
+
"tiiuae/falcon-rw-1b",
|
68 |
+
]
|
69 |
+
_CHECKPOINT_FOR_DOC = "Rocketknight1/falcon-rw-1b"
|
70 |
+
_CONFIG_FOR_DOC = "FalconConfig"
|
71 |
+
|
72 |
+
|
73 |
+
# NOTE(Hesslow): Unfortunately we did not fuse matmul and bias during training, this means that there's one additional quantization to bfloat16 between the operations.
|
74 |
+
# In order not to degrade the quality of our HF-port, we keep these characteristics in the final model.
|
75 |
+
class FalconLinear(nn.Linear):
|
76 |
+
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
77 |
+
hidden_states = input @ self.weight.T
|
78 |
+
if self.bias is None:
|
79 |
+
return hidden_states
|
80 |
+
return hidden_states + self.bias
|
81 |
+
|
82 |
+
|
83 |
+
# Copied from transformers.models.llama.modeling_llama.rotate_half
|
84 |
+
def rotate_half(x):
|
85 |
+
"""Rotates half the hidden dims of the input."""
|
86 |
+
x1 = x[..., : x.shape[-1] // 2]
|
87 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
88 |
+
return torch.cat((-x2, x1), dim=-1)
|
89 |
+
|
90 |
+
|
91 |
+
# Copied from transformers.models.mistral.modeling_mistral.apply_rotary_pos_emb
|
92 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
|
93 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
94 |
+
|
95 |
+
Args:
|
96 |
+
q (`torch.Tensor`): The query tensor.
|
97 |
+
k (`torch.Tensor`): The key tensor.
|
98 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
99 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
100 |
+
position_ids (`torch.Tensor`):
|
101 |
+
The position indices of the tokens corresponding to the query and key tensors. For example, this can be
|
102 |
+
used to pass offsetted position ids when working with a KV-cache.
|
103 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
104 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
105 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
106 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
107 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
108 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
109 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
110 |
+
Returns:
|
111 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
112 |
+
"""
|
113 |
+
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
|
114 |
+
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
|
115 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
116 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
117 |
+
return q_embed, k_embed
|
118 |
+
|
119 |
+
|
120 |
+
@torch.jit.script
|
121 |
+
def get_max_seqlen_in_batch(attention_mask: torch.Tensor) -> torch.Tensor:
|
122 |
+
max_num = int(torch.max(attention_mask).item())
|
123 |
+
batch_size, _ = attention_mask.shape
|
124 |
+
counts = torch.zeros((batch_size, max_num), dtype=torch.int32)
|
125 |
+
|
126 |
+
for i in range(1, max_num + 1):
|
127 |
+
mask = attention_mask == i
|
128 |
+
counts[:, i - 1] = torch.sum(mask, dim=-1).to(dtype=torch.int32)
|
129 |
+
|
130 |
+
result = counts.flatten()
|
131 |
+
nonzero_indices = torch.nonzero(result).squeeze(-1)
|
132 |
+
return result[nonzero_indices]
|
133 |
+
|
134 |
+
|
135 |
+
@torch.jit.script
|
136 |
+
def _get_unpad_data(attention_mask: torch.Tensor):
|
137 |
+
device = attention_mask.device
|
138 |
+
seqlens_in_batch = get_max_seqlen_in_batch(attention_mask)
|
139 |
+
indices = torch.nonzero(attention_mask.flatten()).flatten()
|
140 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
141 |
+
cu_seqlens = (
|
142 |
+
F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
143 |
+
.to(device=device)
|
144 |
+
.detach()
|
145 |
+
)
|
146 |
+
return (
|
147 |
+
indices,
|
148 |
+
cu_seqlens,
|
149 |
+
max_seqlen_in_batch,
|
150 |
+
)
|
151 |
+
|
152 |
+
# Copied from transformers.models.mistral.modeling_mistral.MistralRotaryEmbedding with Mistral->Falcon
|
153 |
+
class FalconRotaryEmbedding(nn.Module):
|
154 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
155 |
+
super().__init__()
|
156 |
+
|
157 |
+
self.dim = dim
|
158 |
+
self.max_position_embeddings = max_position_embeddings
|
159 |
+
self.base = base
|
160 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
|
161 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
162 |
+
|
163 |
+
# Build here to make `torch.jit.trace` work.
|
164 |
+
self._set_cos_sin_cache(
|
165 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
166 |
+
)
|
167 |
+
|
168 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
169 |
+
self.max_seq_len_cached = seq_len
|
170 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
|
171 |
+
|
172 |
+
freqs = torch.outer(t, self.inv_freq)
|
173 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
174 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
175 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
176 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
177 |
+
|
178 |
+
def forward(self, x, seq_len=None):
|
179 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
180 |
+
if seq_len > self.max_seq_len_cached:
|
181 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
182 |
+
|
183 |
+
return (
|
184 |
+
self.cos_cached[:seq_len].to(dtype=x.dtype),
|
185 |
+
self.sin_cached[:seq_len].to(dtype=x.dtype),
|
186 |
+
)
|
187 |
+
|
188 |
+
|
189 |
+
# copied from transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->Falcon
|
190 |
+
# TODO @joao no longer copied from LLama after static cache, fix me (copied -> Copied)
|
191 |
+
class FalconLinearScalingRotaryEmbedding(FalconRotaryEmbedding):
|
192 |
+
"""FalconRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
193 |
+
|
194 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
195 |
+
self.scaling_factor = scaling_factor
|
196 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
197 |
+
|
198 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
199 |
+
self.max_seq_len_cached = seq_len
|
200 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
|
201 |
+
t = t / self.scaling_factor
|
202 |
+
|
203 |
+
freqs = torch.outer(t, self.inv_freq)
|
204 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
205 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
206 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
207 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
208 |
+
|
209 |
+
|
210 |
+
# copied from transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->Falcon
|
211 |
+
# TODO @joao no longer copied from LLama after static cache, fix me (copied -> Copied)
|
212 |
+
class FalconDynamicNTKScalingRotaryEmbedding(FalconRotaryEmbedding):
|
213 |
+
"""FalconRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
214 |
+
|
215 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
216 |
+
self.scaling_factor = scaling_factor
|
217 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
218 |
+
|
219 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
220 |
+
self.max_seq_len_cached = seq_len
|
221 |
+
|
222 |
+
if seq_len > self.max_position_embeddings:
|
223 |
+
base = self.base * (
|
224 |
+
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
|
225 |
+
) ** (self.dim / (self.dim - 2))
|
226 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
|
227 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
228 |
+
|
229 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
|
230 |
+
|
231 |
+
freqs = torch.outer(t, self.inv_freq)
|
232 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
233 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
234 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
235 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
236 |
+
|
237 |
+
|
238 |
+
def build_alibi_tensor(attention_mask: torch.Tensor, num_heads: int, dtype: torch.dtype) -> torch.Tensor:
|
239 |
+
batch_size, seq_length = attention_mask.shape
|
240 |
+
closest_power_of_2 = 2 ** math.floor(math.log2(num_heads))
|
241 |
+
base = torch.tensor(
|
242 |
+
2 ** (-(2 ** -(math.log2(closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32
|
243 |
+
)
|
244 |
+
powers = torch.arange(1, 1 + closest_power_of_2, device=attention_mask.device, dtype=torch.int32)
|
245 |
+
slopes = torch.pow(base, powers)
|
246 |
+
|
247 |
+
if closest_power_of_2 != num_heads:
|
248 |
+
extra_base = torch.tensor(
|
249 |
+
2 ** (-(2 ** -(math.log2(2 * closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32
|
250 |
+
)
|
251 |
+
num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2)
|
252 |
+
extra_powers = torch.arange(1, 1 + 2 * num_remaining_heads, 2, device=attention_mask.device, dtype=torch.int32)
|
253 |
+
slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0)
|
254 |
+
|
255 |
+
# Note: alibi will added to the attention bias that will be applied to the query, key product of attention
|
256 |
+
# => therefore alibi will have to be of shape (batch_size, num_heads, query_length, key_length)
|
257 |
+
# => here we set (batch_size=1, num_heads=num_heads, query_length=1, key_length=max_length)
|
258 |
+
# => the query_length dimension will then be broadcasted correctly
|
259 |
+
# This is more or less identical to T5's relative position bias:
|
260 |
+
# https://github.com/huggingface/transformers/blob/f681437203baa7671de3174b0fa583c349d9d5e1/src/transformers/models/t5/modeling_t5.py#L527
|
261 |
+
arange_tensor = ((attention_mask.cumsum(dim=-1) - 1) * attention_mask)[:, None, :]
|
262 |
+
alibi = slopes[..., None].bfloat16() * arange_tensor
|
263 |
+
return alibi.reshape(batch_size * num_heads, 1, seq_length).to(dtype)
|
264 |
+
|
265 |
+
|
266 |
+
# Copied from transformers.models.bloom.modeling_bloom.dropout_add
|
267 |
+
def dropout_add(x: torch.Tensor, residual: torch.Tensor, prob: float, training: bool) -> torch.Tensor:
|
268 |
+
"""
|
269 |
+
Dropout add function
|
270 |
+
|
271 |
+
Args:
|
272 |
+
x (`torch.tensor`, *required*):
|
273 |
+
input tensor
|
274 |
+
residual (`torch.tensor`, *required*):
|
275 |
+
residual tensor
|
276 |
+
prob (`float`, *required*):
|
277 |
+
dropout probability
|
278 |
+
training (`bool`, *required*):
|
279 |
+
training mode
|
280 |
+
"""
|
281 |
+
out = F.dropout(x, p=prob, training=training)
|
282 |
+
out = residual + out
|
283 |
+
return out
|
284 |
+
|
285 |
+
|
286 |
+
class FalconAttention(nn.Module):
|
287 |
+
def __init__(self, config: FalconConfig):
|
288 |
+
super().__init__()
|
289 |
+
|
290 |
+
self.config = config
|
291 |
+
self.hidden_size = config.hidden_size
|
292 |
+
self.num_heads = config.num_attention_heads
|
293 |
+
self.head_dim = self.hidden_size // self.num_heads
|
294 |
+
self.split_size = self.hidden_size
|
295 |
+
self.hidden_dropout = config.hidden_dropout
|
296 |
+
self.max_position_embeddings = config.max_position_embeddings
|
297 |
+
self.rope_theta = config.rope_theta
|
298 |
+
self.is_causal = True
|
299 |
+
self._use_sdpa = config._attn_implementation == "sdpa"
|
300 |
+
|
301 |
+
if self.head_dim * self.num_heads != self.hidden_size:
|
302 |
+
raise ValueError(
|
303 |
+
f"`hidden_size` must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`:"
|
304 |
+
f" {self.num_heads})."
|
305 |
+
)
|
306 |
+
|
307 |
+
if config.rotary:
|
308 |
+
self._init_rope()
|
309 |
+
|
310 |
+
# Layer-wise attention scaling
|
311 |
+
self.inv_norm_factor = 1.0 / math.sqrt(self.head_dim)
|
312 |
+
self.beta = self.inv_norm_factor
|
313 |
+
if config.new_decoder_architecture:
|
314 |
+
qkv_out_dim = (config.num_kv_heads * 2 + config.num_attention_heads) * self.head_dim
|
315 |
+
elif config.multi_query:
|
316 |
+
qkv_out_dim = self.hidden_size + 2 * self.head_dim
|
317 |
+
else:
|
318 |
+
qkv_out_dim = 3 * self.hidden_size
|
319 |
+
self.query_key_value = FalconLinear(self.hidden_size, qkv_out_dim, bias=config.bias)
|
320 |
+
self.new_decoder_architecture = config.new_decoder_architecture
|
321 |
+
self.multi_query = config.multi_query
|
322 |
+
self.dense = FalconLinear(self.hidden_size, self.hidden_size, bias=config.bias)
|
323 |
+
self.attention_dropout = nn.Dropout(config.attention_dropout)
|
324 |
+
self.num_kv_heads = config.num_kv_heads if (self.new_decoder_architecture or not self.multi_query) else 1
|
325 |
+
|
326 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaAttention._init_rope with Llama->Falcon
|
327 |
+
def _init_rope(self):
|
328 |
+
if self.config.rope_scaling is None:
|
329 |
+
self.rotary_emb = FalconRotaryEmbedding(
|
330 |
+
self.head_dim,
|
331 |
+
max_position_embeddings=self.max_position_embeddings,
|
332 |
+
base=self.rope_theta,
|
333 |
+
)
|
334 |
+
else:
|
335 |
+
scaling_type = self.config.rope_scaling["type"]
|
336 |
+
scaling_factor = self.config.rope_scaling["factor"]
|
337 |
+
if scaling_type == "linear":
|
338 |
+
self.rotary_emb = FalconLinearScalingRotaryEmbedding(
|
339 |
+
self.head_dim,
|
340 |
+
max_position_embeddings=self.max_position_embeddings,
|
341 |
+
scaling_factor=scaling_factor,
|
342 |
+
base=self.rope_theta,
|
343 |
+
)
|
344 |
+
elif scaling_type == "dynamic":
|
345 |
+
self.rotary_emb = FalconDynamicNTKScalingRotaryEmbedding(
|
346 |
+
self.head_dim,
|
347 |
+
max_position_embeddings=self.max_position_embeddings,
|
348 |
+
scaling_factor=scaling_factor,
|
349 |
+
base=self.rope_theta,
|
350 |
+
)
|
351 |
+
else:
|
352 |
+
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
353 |
+
|
354 |
+
def _split_heads(self, fused_qkv: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
355 |
+
"""
|
356 |
+
Split the last dimension into (num_heads, head_dim), results share same memory storage as `fused_qkv`
|
357 |
+
|
358 |
+
Args:
|
359 |
+
fused_qkv (`torch.tensor`, *required*): [batch_size, seq_length, num_heads * 3 * head_dim]
|
360 |
+
|
361 |
+
Returns:
|
362 |
+
query: [batch_size, seq_length, num_heads, head_dim] key: [batch_size, seq_length, num_heads, head_dim]
|
363 |
+
value: [batch_size, seq_length, num_heads, head_dim]
|
364 |
+
"""
|
365 |
+
if self.new_decoder_architecture:
|
366 |
+
batch, seq_len, _ = fused_qkv.shape
|
367 |
+
qkv = fused_qkv.view(batch, seq_len, -1, self.num_heads // self.num_kv_heads + 2, self.head_dim)
|
368 |
+
query = qkv[:, :, :, :-2]
|
369 |
+
key = qkv[:, :, :, [-2]]
|
370 |
+
value = qkv[:, :, :, [-1]]
|
371 |
+
key = torch.broadcast_to(key, query.shape)
|
372 |
+
value = torch.broadcast_to(value, query.shape)
|
373 |
+
|
374 |
+
query, key, value = [x.flatten(2, 3) for x in (query, key, value)]
|
375 |
+
return query, key, value
|
376 |
+
elif not self.multi_query:
|
377 |
+
batch_size, seq_length, three_times_hidden_size = fused_qkv.shape
|
378 |
+
fused_qkv = fused_qkv.view(batch_size, seq_length, self.num_heads, 3, self.head_dim)
|
379 |
+
return fused_qkv[..., 0, :], fused_qkv[..., 1, :], fused_qkv[..., 2, :]
|
380 |
+
else:
|
381 |
+
batch_size, seq_length, three_times_hidden_size = fused_qkv.shape
|
382 |
+
fused_qkv = fused_qkv.view(batch_size, seq_length, self.num_heads + 2, self.head_dim)
|
383 |
+
return fused_qkv[..., :-2, :], fused_qkv[..., [-2], :], fused_qkv[..., [-1], :]
|
384 |
+
|
385 |
+
# Copied from transformers.models.bloom.modeling_bloom.BloomAttention._merge_heads
|
386 |
+
def _merge_heads(self, x: torch.Tensor) -> torch.Tensor:
|
387 |
+
"""
|
388 |
+
Merge heads together over the last dimension
|
389 |
+
|
390 |
+
Args:
|
391 |
+
x (`torch.tensor`, *required*): [batch_size * num_heads, seq_length, head_dim]
|
392 |
+
|
393 |
+
Returns:
|
394 |
+
torch.tensor: [batch_size, seq_length, num_heads * head_dim]
|
395 |
+
"""
|
396 |
+
# What we want to achieve is:
|
397 |
+
# batch_size * num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads * head_dim
|
398 |
+
batch_size_and_num_heads, seq_length, _ = x.shape
|
399 |
+
batch_size = batch_size_and_num_heads // self.num_heads
|
400 |
+
|
401 |
+
# First view to decompose the batch size
|
402 |
+
# batch_size * num_heads, seq_length, head_dim -> batch_size, num_heads, seq_length, head_dim
|
403 |
+
x = x.view(batch_size, self.num_heads, seq_length, self.head_dim)
|
404 |
+
|
405 |
+
# batch_size, num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads, head_dim
|
406 |
+
x = x.permute(0, 2, 1, 3)
|
407 |
+
|
408 |
+
# batch_size, seq_length, num_heads, head_dim -> batch_size, seq_length, num_heads * head_dim
|
409 |
+
return x.reshape(batch_size, seq_length, self.num_heads * self.head_dim)
|
410 |
+
|
411 |
+
def forward(
|
412 |
+
self,
|
413 |
+
hidden_states: torch.Tensor,
|
414 |
+
alibi: Optional[torch.Tensor],
|
415 |
+
attention_mask: torch.Tensor,
|
416 |
+
position_ids: Optional[torch.LongTensor] = None,
|
417 |
+
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
418 |
+
head_mask: Optional[torch.Tensor] = None,
|
419 |
+
use_cache: bool = False,
|
420 |
+
output_attentions: bool = False,
|
421 |
+
**kwargs,
|
422 |
+
):
|
423 |
+
if "padding_mask" in kwargs:
|
424 |
+
warnings.warn(
|
425 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
426 |
+
)
|
427 |
+
|
428 |
+
fused_qkv = self.query_key_value(hidden_states) # [batch_size, seq_length, 3 x hidden_size]
|
429 |
+
num_kv_heads = self.num_heads if self.new_decoder_architecture else self.num_kv_heads
|
430 |
+
# 3 x [batch_size, seq_length, num_heads, head_dim]
|
431 |
+
(query_layer, key_layer, value_layer) = self._split_heads(fused_qkv)
|
432 |
+
|
433 |
+
batch_size, query_length, _, _ = query_layer.shape
|
434 |
+
|
435 |
+
query_layer = query_layer.transpose(1, 2).reshape(batch_size, self.num_heads, query_length, self.head_dim)
|
436 |
+
key_layer = key_layer.transpose(1, 2).reshape(batch_size, num_kv_heads, query_length, self.head_dim)
|
437 |
+
value_layer = value_layer.transpose(1, 2).reshape(batch_size, num_kv_heads, query_length, self.head_dim)
|
438 |
+
|
439 |
+
kv_seq_len = key_layer.shape[-2]
|
440 |
+
if layer_past is not None:
|
441 |
+
kv_seq_len += layer_past[0].shape[-2]
|
442 |
+
if alibi is None:
|
443 |
+
cos, sin = self.rotary_emb(value_layer, seq_len=kv_seq_len)
|
444 |
+
query_layer, key_layer = apply_rotary_pos_emb(query_layer, key_layer, cos, sin, position_ids)
|
445 |
+
|
446 |
+
if layer_past is not None:
|
447 |
+
past_key, past_value = layer_past
|
448 |
+
# concatenate along seq_length dimension:
|
449 |
+
# - key: [batch_size, self.num_heads, kv_length, head_dim]
|
450 |
+
# - value: [batch_size, self.num_heads, kv_length, head_dim]
|
451 |
+
key_layer = torch.cat((past_key, key_layer), dim=-2)
|
452 |
+
value_layer = torch.cat((past_value, value_layer), dim=-2)
|
453 |
+
|
454 |
+
kv_length = key_layer.shape[-2]
|
455 |
+
if use_cache:
|
456 |
+
present = (key_layer, value_layer)
|
457 |
+
else:
|
458 |
+
present = None
|
459 |
+
|
460 |
+
if self._use_sdpa and query_layer.device.type == "cuda" and attention_mask is not None:
|
461 |
+
# For torch<=2.1.2, SDPA with memory-efficient backend is bugged with non-contiguous inputs with custom attn_mask,
|
462 |
+
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
463 |
+
query_layer = query_layer.contiguous()
|
464 |
+
key_layer = key_layer.contiguous()
|
465 |
+
value_layer = value_layer.contiguous()
|
466 |
+
|
467 |
+
if alibi is None:
|
468 |
+
if self._use_sdpa and not output_attentions:
|
469 |
+
attn_output = F.scaled_dot_product_attention(
|
470 |
+
query_layer,
|
471 |
+
key_layer,
|
472 |
+
value_layer,
|
473 |
+
attention_mask,
|
474 |
+
0.0,
|
475 |
+
# The query_length > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case query_length == 1.
|
476 |
+
is_causal=self.is_causal and attention_mask is None and query_length > 1,
|
477 |
+
)
|
478 |
+
|
479 |
+
attention_scores = None
|
480 |
+
else:
|
481 |
+
attention_scores = query_layer @ key_layer.transpose(-1, -2)
|
482 |
+
attention_scores /= math.sqrt(self.head_dim)
|
483 |
+
|
484 |
+
attention_scores = F.softmax(attention_scores + attention_mask, dim=-1, dtype=hidden_states.dtype)
|
485 |
+
# It is unclear why neither dropout nor head_mask is applied here (while it is with alibi).
|
486 |
+
attn_output = attention_scores @ value_layer
|
487 |
+
|
488 |
+
attn_output = attn_output.view(batch_size, self.num_heads, query_length, self.head_dim)
|
489 |
+
attn_output = attn_output.permute(0, 2, 1, 3)
|
490 |
+
attn_output = attn_output.reshape(batch_size, query_length, self.num_heads * self.head_dim)
|
491 |
+
|
492 |
+
attn_output = self.dense(attn_output)
|
493 |
+
|
494 |
+
if output_attentions:
|
495 |
+
return attn_output, present, attention_scores
|
496 |
+
else:
|
497 |
+
return attn_output, present
|
498 |
+
|
499 |
+
else:
|
500 |
+
if self._use_sdpa and not output_attentions and head_mask is None:
|
501 |
+
attn_output = F.scaled_dot_product_attention(
|
502 |
+
query_layer,
|
503 |
+
key_layer,
|
504 |
+
value_layer,
|
505 |
+
attn_mask=attention_mask,
|
506 |
+
dropout_p=self.attention_dropout.p if self.training else 0.0,
|
507 |
+
is_causal=self.is_causal and attention_mask is None and query_length > 1,
|
508 |
+
)
|
509 |
+
attn_output = attn_output.transpose(1, 2)
|
510 |
+
attn_output = attn_output.reshape(batch_size, query_length, self.num_heads * self.head_dim)
|
511 |
+
|
512 |
+
attn_output = self.dense(attn_output)
|
513 |
+
else:
|
514 |
+
matmul_result = query_layer @ key_layer.transpose(-1, -2)
|
515 |
+
|
516 |
+
# change view to [batch_size, num_heads, q_length, kv_length]
|
517 |
+
attention_scores = matmul_result.view(batch_size, self.num_heads, query_length, kv_length)
|
518 |
+
|
519 |
+
# cast attention scores to fp32, compute scaled softmax and cast back to initial dtype - [batch_size, num_heads, q_length, kv_length]
|
520 |
+
input_dtype = attention_scores.dtype
|
521 |
+
# `float16` has a minimum value of -65504.0, whereas `bfloat16` and `float32` have a minimum value of `-3.4e+38`
|
522 |
+
if input_dtype == torch.float16 or input_dtype == torch.bfloat16:
|
523 |
+
attention_scores = attention_scores.to(torch.float32)
|
524 |
+
|
525 |
+
attention_logits = attention_scores + alibi.view(batch_size, self.num_heads, 1, -1)
|
526 |
+
attention_logits *= self.inv_norm_factor
|
527 |
+
attention_probs = F.softmax(attention_logits + attention_mask, dim=-1, dtype=hidden_states.dtype)
|
528 |
+
# [batch_size, num_heads, q_length, kv_length]
|
529 |
+
attention_probs = self.attention_dropout(attention_probs)
|
530 |
+
|
531 |
+
if head_mask is not None:
|
532 |
+
attention_probs = attention_probs * head_mask
|
533 |
+
|
534 |
+
# change view [batch_size, num_heads, q_length, kv_length]
|
535 |
+
attention_probs_reshaped = attention_probs.view(batch_size, self.num_heads, query_length, kv_length)
|
536 |
+
|
537 |
+
# matmul: [batch_size * num_heads, q_length, head_dim]
|
538 |
+
attn_output = (attention_probs_reshaped @ value_layer).flatten(0, 1)
|
539 |
+
|
540 |
+
# change view [batch_size, q_length, num_heads * head_dim]
|
541 |
+
attn_output = self._merge_heads(attn_output)
|
542 |
+
|
543 |
+
attn_output = self.dense(attn_output)
|
544 |
+
|
545 |
+
if output_attentions:
|
546 |
+
return attn_output, present, attention_probs
|
547 |
+
else:
|
548 |
+
return attn_output, present
|
549 |
+
|
550 |
+
|
551 |
+
class FalconFlashAttention2(FalconAttention):
|
552 |
+
"""
|
553 |
+
Falcon flash attention module. This module inherits from `FalconAttention` as the weights of the module stays
|
554 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
555 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
556 |
+
"""
|
557 |
+
|
558 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
|
559 |
+
def __init__(self, *args, **kwargs):
|
560 |
+
super().__init__(*args, **kwargs)
|
561 |
+
|
562 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
563 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
564 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
565 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
566 |
+
|
567 |
+
def forward(
|
568 |
+
self,
|
569 |
+
hidden_states: torch.Tensor,
|
570 |
+
alibi: Optional[torch.Tensor],
|
571 |
+
attention_mask: torch.Tensor,
|
572 |
+
position_ids: Optional[torch.LongTensor] = None,
|
573 |
+
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
574 |
+
head_mask: Optional[torch.Tensor] = None,
|
575 |
+
use_cache: bool = False,
|
576 |
+
output_attentions: bool = False,
|
577 |
+
**kwargs,
|
578 |
+
):
|
579 |
+
if "padding_mask" in kwargs:
|
580 |
+
warnings.warn(
|
581 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
582 |
+
)
|
583 |
+
|
584 |
+
# overwrite attention_mask with padding_mask
|
585 |
+
attention_mask = kwargs.pop("padding_mask")
|
586 |
+
|
587 |
+
fused_qkv = self.query_key_value(hidden_states) # [batch_size, seq_length, 3 x hidden_size]
|
588 |
+
num_kv_heads = self.num_heads if self.new_decoder_architecture else self.num_kv_heads
|
589 |
+
# 3 x [batch_size, seq_length, num_heads, head_dim]
|
590 |
+
(query_layer, key_layer, value_layer) = self._split_heads(fused_qkv)
|
591 |
+
|
592 |
+
batch_size, query_length, _, _ = query_layer.shape
|
593 |
+
|
594 |
+
query_layer = query_layer.transpose(1, 2).reshape(batch_size, self.num_heads, query_length, self.head_dim)
|
595 |
+
key_layer = key_layer.transpose(1, 2).reshape(batch_size, num_kv_heads, query_length, self.head_dim)
|
596 |
+
value_layer = value_layer.transpose(1, 2).reshape(batch_size, num_kv_heads, query_length, self.head_dim)
|
597 |
+
|
598 |
+
kv_seq_len = key_layer.shape[-2]
|
599 |
+
if layer_past is not None:
|
600 |
+
kv_seq_len += layer_past[0].shape[-2]
|
601 |
+
if alibi is None:
|
602 |
+
cos, sin = self.rotary_emb(value_layer, seq_len=kv_seq_len)
|
603 |
+
query_layer, key_layer = apply_rotary_pos_emb(query_layer, key_layer, cos, sin, position_ids)
|
604 |
+
|
605 |
+
if layer_past is not None and use_cache:
|
606 |
+
past_key, past_value = layer_past
|
607 |
+
# concatenate along seq_length dimension:
|
608 |
+
# - key: [batch_size, self.num_heads, kv_length, head_dim]
|
609 |
+
# - value: [batch_size, self.num_heads, kv_length, head_dim]
|
610 |
+
key_layer = torch.cat((past_key, key_layer), dim=-2)
|
611 |
+
value_layer = torch.cat((past_value, value_layer), dim=-2)
|
612 |
+
|
613 |
+
past_key_value = (key_layer, value_layer) if use_cache else None
|
614 |
+
|
615 |
+
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
616 |
+
# to be able to avoid many of these transpose/reshape/view.
|
617 |
+
query_layer = query_layer.transpose(1, 2)
|
618 |
+
key_layer = key_layer.transpose(1, 2)
|
619 |
+
value_layer = value_layer.transpose(1, 2)
|
620 |
+
|
621 |
+
if alibi is not None:
|
622 |
+
raise ValueError("`alibi` is not supported when `use_flash_attn` is True")
|
623 |
+
|
624 |
+
attn_dropout = self.config.attention_dropout if self.training else 0.0
|
625 |
+
|
626 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
627 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
628 |
+
# cast them back in float16 just to be sure everything works as expected.
|
629 |
+
input_dtype = query_layer.dtype
|
630 |
+
if input_dtype == torch.float32:
|
631 |
+
if torch.is_autocast_enabled():
|
632 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
633 |
+
# Handle the case where the model is quantized
|
634 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
635 |
+
target_dtype = self.config._pre_quantization_dtype
|
636 |
+
else:
|
637 |
+
target_dtype = self.query_key_value.weight.dtype
|
638 |
+
|
639 |
+
logger.warning_once(
|
640 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
641 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
642 |
+
f" {target_dtype}."
|
643 |
+
)
|
644 |
+
|
645 |
+
query_layer = query_layer.to(target_dtype)
|
646 |
+
key_layer = key_layer.to(target_dtype)
|
647 |
+
value_layer = value_layer.to(target_dtype)
|
648 |
+
|
649 |
+
attn_output = self._flash_attention_forward(
|
650 |
+
query_layer, key_layer, value_layer, attention_mask, query_length, dropout=attn_dropout
|
651 |
+
)
|
652 |
+
|
653 |
+
attn_weights = attn_output.reshape(batch_size, query_length, self.num_heads * self.head_dim)
|
654 |
+
attn_output = self.dense(attn_weights)
|
655 |
+
|
656 |
+
if not output_attentions:
|
657 |
+
attn_weights = None
|
658 |
+
|
659 |
+
return attn_output, past_key_value, attn_weights
|
660 |
+
|
661 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._flash_attention_forward
|
662 |
+
def _flash_attention_forward(
|
663 |
+
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
664 |
+
):
|
665 |
+
"""
|
666 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
667 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
668 |
+
|
669 |
+
Args:
|
670 |
+
query_states (`torch.Tensor`):
|
671 |
+
Input query states to be passed to Flash Attention API
|
672 |
+
key_states (`torch.Tensor`):
|
673 |
+
Input key states to be passed to Flash Attention API
|
674 |
+
value_states (`torch.Tensor`):
|
675 |
+
Input value states to be passed to Flash Attention API
|
676 |
+
attention_mask (`torch.Tensor`):
|
677 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
678 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
679 |
+
dropout (`float`):
|
680 |
+
Attention dropout
|
681 |
+
softmax_scale (`float`, *optional*):
|
682 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
683 |
+
"""
|
684 |
+
if not self._flash_attn_uses_top_left_mask:
|
685 |
+
causal = self.is_causal
|
686 |
+
else:
|
687 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
688 |
+
causal = self.is_causal and query_length != 1
|
689 |
+
|
690 |
+
# Contains at least one padding token in the sequence
|
691 |
+
if attention_mask is not None:
|
692 |
+
batch_size = query_states.shape[0]
|
693 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
694 |
+
query_states, key_states, value_states, attention_mask, query_length
|
695 |
+
)
|
696 |
+
|
697 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
698 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
699 |
+
|
700 |
+
attn_output_unpad = flash_attn_varlen_func(
|
701 |
+
query_states,
|
702 |
+
key_states,
|
703 |
+
value_states,
|
704 |
+
cu_seqlens_q=cu_seqlens_q,
|
705 |
+
cu_seqlens_k=cu_seqlens_k,
|
706 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
707 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
708 |
+
dropout_p=dropout,
|
709 |
+
softmax_scale=softmax_scale,
|
710 |
+
causal=causal,
|
711 |
+
)
|
712 |
+
|
713 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
714 |
+
else:
|
715 |
+
attn_output = flash_attn_func(
|
716 |
+
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
|
717 |
+
)
|
718 |
+
|
719 |
+
return attn_output
|
720 |
+
|
721 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._upad_input
|
722 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
723 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
724 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
725 |
+
|
726 |
+
key_layer = index_first_axis(
|
727 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
728 |
+
)
|
729 |
+
value_layer = index_first_axis(
|
730 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
731 |
+
)
|
732 |
+
if query_length == kv_seq_len:
|
733 |
+
query_layer = index_first_axis(
|
734 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
|
735 |
+
)
|
736 |
+
cu_seqlens_q = cu_seqlens_k
|
737 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
738 |
+
indices_q = indices_k
|
739 |
+
elif query_length == 1:
|
740 |
+
max_seqlen_in_batch_q = 1
|
741 |
+
cu_seqlens_q = torch.arange(
|
742 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
743 |
+
) # There is a memcpy here, that is very bad.
|
744 |
+
indices_q = cu_seqlens_q[:-1]
|
745 |
+
query_layer = query_layer.squeeze(1)
|
746 |
+
else:
|
747 |
+
# The -q_len: slice assumes left padding.
|
748 |
+
attention_mask = attention_mask[:, -query_length:]
|
749 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
750 |
+
|
751 |
+
return (
|
752 |
+
query_layer,
|
753 |
+
key_layer,
|
754 |
+
value_layer,
|
755 |
+
indices_q,
|
756 |
+
(cu_seqlens_q, cu_seqlens_k),
|
757 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
758 |
+
)
|
759 |
+
|
760 |
+
|
761 |
+
class FalconMLP(nn.Module):
|
762 |
+
def __init__(self, config: FalconConfig):
|
763 |
+
super().__init__()
|
764 |
+
hidden_size = config.hidden_size
|
765 |
+
|
766 |
+
self.dense_h_to_4h = FalconLinear(
|
767 |
+
hidden_size, config.ff_factor * hidden_size, bias=config.bias
|
768 |
+
)
|
769 |
+
self.act = nn.GELU()
|
770 |
+
self.dense_4h_to_h = FalconLinear(
|
771 |
+
config.ff_factor * hidden_size, hidden_size, bias=config.bias
|
772 |
+
)
|
773 |
+
self.hidden_dropout = config.hidden_dropout
|
774 |
+
|
775 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
776 |
+
x = self.act(self.dense_h_to_4h(x))
|
777 |
+
x = self.dense_4h_to_h(x)
|
778 |
+
return x
|
779 |
+
|
780 |
+
FALCON_ATTENTION_CLASSES = {
|
781 |
+
"eager": FalconAttention,
|
782 |
+
"sdpa": FalconAttention, # FalconAttention originally implemented both a forward with & without SDPA
|
783 |
+
"flash_attention_2": FalconFlashAttention2,
|
784 |
+
}
|
785 |
+
|
786 |
+
|
787 |
+
class FalconDecoderLayer(nn.Module):
|
788 |
+
def __init__(self, config: FalconConfig):
|
789 |
+
super().__init__()
|
790 |
+
hidden_size = config.hidden_size
|
791 |
+
self.num_heads = config.num_attention_heads
|
792 |
+
|
793 |
+
self.self_attention = FALCON_ATTENTION_CLASSES[config._attn_implementation](config)
|
794 |
+
self.mlp = FalconMLP(config)
|
795 |
+
self.hidden_dropout = config.hidden_dropout
|
796 |
+
self.config = config
|
797 |
+
|
798 |
+
if config.new_decoder_architecture and config.num_ln_in_parallel_attn == 2:
|
799 |
+
# The layer norm before self-attention
|
800 |
+
self.ln_attn = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
801 |
+
# The layer norm before the MLP
|
802 |
+
self.ln_mlp = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
803 |
+
else:
|
804 |
+
self.input_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
805 |
+
if not config.parallel_attn:
|
806 |
+
self.post_attention_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
807 |
+
|
808 |
+
def forward(
|
809 |
+
self,
|
810 |
+
hidden_states: torch.Tensor,
|
811 |
+
alibi: Optional[torch.Tensor],
|
812 |
+
attention_mask: torch.Tensor,
|
813 |
+
position_ids: Optional[torch.LongTensor] = None,
|
814 |
+
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
815 |
+
head_mask: Optional[torch.Tensor] = None,
|
816 |
+
use_cache: bool = False,
|
817 |
+
output_attentions: bool = False,
|
818 |
+
**kwargs,
|
819 |
+
):
|
820 |
+
if "padding_mask" in kwargs:
|
821 |
+
warnings.warn(
|
822 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
823 |
+
)
|
824 |
+
|
825 |
+
residual = hidden_states
|
826 |
+
|
827 |
+
if self.config.num_ln_in_parallel_attn == 2:
|
828 |
+
attention_layernorm_out = self.ln_attn(hidden_states)
|
829 |
+
mlp_layernorm_out = self.ln_mlp(hidden_states)
|
830 |
+
else:
|
831 |
+
attention_layernorm_out = self.input_layernorm(hidden_states)
|
832 |
+
|
833 |
+
# Self attention.
|
834 |
+
attn_outputs = self.self_attention(
|
835 |
+
attention_layernorm_out,
|
836 |
+
layer_past=layer_past,
|
837 |
+
attention_mask=attention_mask,
|
838 |
+
position_ids=position_ids,
|
839 |
+
alibi=alibi,
|
840 |
+
head_mask=head_mask,
|
841 |
+
use_cache=use_cache,
|
842 |
+
output_attentions=output_attentions,
|
843 |
+
**kwargs,
|
844 |
+
)
|
845 |
+
|
846 |
+
attention_output = attn_outputs[0]
|
847 |
+
|
848 |
+
if self.config.num_ln_in_parallel_attn == 1:
|
849 |
+
if self.config.parallel_attn:
|
850 |
+
mlp_layernorm_out = attention_layernorm_out
|
851 |
+
else:
|
852 |
+
residual = dropout_add(
|
853 |
+
attention_output, residual, self.config.attention_dropout, training=self.training
|
854 |
+
)
|
855 |
+
mlp_layernorm_out = self.post_attention_layernorm(residual)
|
856 |
+
|
857 |
+
outputs = attn_outputs[1:]
|
858 |
+
|
859 |
+
# MLP.
|
860 |
+
mlp_output = self.mlp(mlp_layernorm_out)
|
861 |
+
|
862 |
+
if self.config.new_decoder_architecture or self.config.parallel_attn:
|
863 |
+
mlp_output += attention_output
|
864 |
+
|
865 |
+
output = dropout_add(mlp_output, residual, self.config.hidden_dropout, training=self.training)
|
866 |
+
|
867 |
+
if use_cache:
|
868 |
+
outputs = (output,) + outputs
|
869 |
+
else:
|
870 |
+
outputs = (output,) + outputs[1:]
|
871 |
+
|
872 |
+
return outputs # hidden_states, present, attentions
|
873 |
+
|
874 |
+
|
875 |
+
FALCON_START_DOCSTRING = r"""
|
876 |
+
|
877 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
878 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings etc.)
|
879 |
+
|
880 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
881 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
882 |
+
and behavior.
|
883 |
+
|
884 |
+
Parameters:
|
885 |
+
config ([`FalconConfig`]): Model configuration class with all the parameters of the model.
|
886 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
887 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
888 |
+
"""
|
889 |
+
|
890 |
+
FALCON_INPUTS_DOCSTRING = r"""
|
891 |
+
Args:
|
892 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
|
893 |
+
`input_ids_length` = `sequence_length` if `past_key_values` is `None` else `past_key_values[0][0].shape[2]`
|
894 |
+
(`sequence_length` of input past key value states). Indices of input sequence tokens in the vocabulary.
|
895 |
+
|
896 |
+
If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as
|
897 |
+
`input_ids`.
|
898 |
+
|
899 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
900 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
901 |
+
|
902 |
+
[What are input IDs?](../glossary#input-ids)
|
903 |
+
past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.num_hidden_layers`):
|
904 |
+
Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see
|
905 |
+
`past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have
|
906 |
+
their past given to this model should not be passed as `input_ids` as they have already been computed.
|
907 |
+
|
908 |
+
Each element of `past_key_values` is a tuple (past_key, past_value):
|
909 |
+
- past_key: [batch_size * num_heads, head_dim, kv_length]
|
910 |
+
- past_value: [batch_size * num_heads, kv_length, head_dim]
|
911 |
+
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
912 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
913 |
+
|
914 |
+
- 1 for tokens that are **not masked**,
|
915 |
+
- 0 for tokens that are **masked**.
|
916 |
+
|
917 |
+
[What are attention masks?](../glossary#attention-mask)
|
918 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
919 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
920 |
+
config.n_positions - 1]`.
|
921 |
+
|
922 |
+
[What are position IDs?](../glossary#position-ids)
|
923 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
924 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
925 |
+
|
926 |
+
- 1 indicates the head is **not masked**,
|
927 |
+
- 0 indicates the head is **masked**.
|
928 |
+
|
929 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
930 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
931 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
932 |
+
model's internal embedding lookup matrix.
|
933 |
+
|
934 |
+
If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see
|
935 |
+
`past_key_values`).
|
936 |
+
use_cache (`bool`, *optional*):
|
937 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
938 |
+
`past_key_values`).
|
939 |
+
output_attentions (`bool`, *optional*):
|
940 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
941 |
+
tensors for more detail.
|
942 |
+
output_hidden_states (`bool`, *optional*):
|
943 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
944 |
+
more detail.
|
945 |
+
return_dict (`bool`, *optional*):
|
946 |
+
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
|
947 |
+
"""
|
948 |
+
|
949 |
+
|
950 |
+
class FalconPreTrainedModel(PreTrainedModel):
|
951 |
+
"""
|
952 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
953 |
+
models.
|
954 |
+
"""
|
955 |
+
|
956 |
+
config_class = FalconConfig
|
957 |
+
base_model_prefix = "transformer"
|
958 |
+
supports_gradient_checkpointing = True
|
959 |
+
_no_split_modules = ["FalconDecoderLayer"]
|
960 |
+
_supports_flash_attn_2 = True
|
961 |
+
_supports_sdpa = True
|
962 |
+
|
963 |
+
def __init__(self, *inputs, **kwargs):
|
964 |
+
super().__init__(*inputs, **kwargs)
|
965 |
+
|
966 |
+
def _init_weights(self, module: nn.Module):
|
967 |
+
"""Initialize the weights."""
|
968 |
+
if isinstance(module, nn.Linear) or isinstance(module, FalconLinear):
|
969 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
970 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
971 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
972 |
+
if module.bias is not None:
|
973 |
+
module.bias.data.zero_()
|
974 |
+
elif isinstance(module, nn.Embedding):
|
975 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
976 |
+
if module.padding_idx is not None:
|
977 |
+
module.weight.data[module.padding_idx].zero_()
|
978 |
+
elif isinstance(module, LayerNorm):
|
979 |
+
module.bias.data.zero_()
|
980 |
+
module.weight.data.fill_(1.0)
|
981 |
+
|
982 |
+
# Adapted from transformers.modeling_utils.PreTrainedModel._check_and_enable_sdpa
|
983 |
+
@classmethod
|
984 |
+
def _check_and_enable_sdpa(cls, config, hard_check_only: bool = False) -> "PretrainedConfig":
|
985 |
+
# NOTE: Falcon supported SDPA from PyTorch 2.0. We keep it like that for backward compatibility (automatically use SDPA for torch>=2.0).
|
986 |
+
if hard_check_only:
|
987 |
+
if not is_torch_greater_or_equal_than_2_0:
|
988 |
+
raise ImportError("PyTorch SDPA requirements in Transformers are not met. Please install torch>=2.0.")
|
989 |
+
|
990 |
+
if not is_torch_greater_or_equal_than_2_0:
|
991 |
+
return config
|
992 |
+
|
993 |
+
_is_bettertransformer = getattr(cls, "use_bettertransformer", False)
|
994 |
+
if _is_bettertransformer:
|
995 |
+
return config
|
996 |
+
|
997 |
+
if not hard_check_only:
|
998 |
+
config._attn_implementation = "sdpa"
|
999 |
+
return config
|
1000 |
+
|
1001 |
+
|
1002 |
+
@add_start_docstrings(
|
1003 |
+
"The bare Falcon Model transformer outputting raw hidden-states without any specific head on top.",
|
1004 |
+
FALCON_START_DOCSTRING,
|
1005 |
+
)
|
1006 |
+
class FalconModel(FalconPreTrainedModel):
|
1007 |
+
def __init__(self, config: FalconConfig):
|
1008 |
+
super().__init__(config)
|
1009 |
+
|
1010 |
+
self.embed_dim = config.hidden_size
|
1011 |
+
self.num_heads = config.num_attention_heads
|
1012 |
+
self.use_alibi = config.alibi
|
1013 |
+
|
1014 |
+
# Embedding + LN Embedding
|
1015 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, self.embed_dim)
|
1016 |
+
|
1017 |
+
# Transformer blocks
|
1018 |
+
self.h = nn.ModuleList([FalconDecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
1019 |
+
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
|
1020 |
+
self._use_sdpa = config._attn_implementation == "sdpa"
|
1021 |
+
|
1022 |
+
# Final Layer Norm
|
1023 |
+
self.ln_f = LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
1024 |
+
|
1025 |
+
self.gradient_checkpointing = False
|
1026 |
+
|
1027 |
+
# Initialize weights and apply final processing
|
1028 |
+
self.post_init()
|
1029 |
+
|
1030 |
+
def get_input_embeddings(self):
|
1031 |
+
return self.word_embeddings
|
1032 |
+
|
1033 |
+
def set_input_embeddings(self, new_embeddings: torch.Tensor):
|
1034 |
+
self.word_embeddings = new_embeddings
|
1035 |
+
|
1036 |
+
@add_start_docstrings_to_model_forward(FALCON_INPUTS_DOCSTRING)
|
1037 |
+
@add_code_sample_docstrings(
|
1038 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1039 |
+
output_type=BaseModelOutputWithPastAndCrossAttentions,
|
1040 |
+
config_class=_CONFIG_FOR_DOC,
|
1041 |
+
)
|
1042 |
+
def forward(
|
1043 |
+
self,
|
1044 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1045 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
1046 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1047 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1048 |
+
head_mask: Optional[torch.LongTensor] = None,
|
1049 |
+
inputs_embeds: Optional[torch.LongTensor] = None,
|
1050 |
+
use_cache: Optional[bool] = None,
|
1051 |
+
output_attentions: Optional[bool] = None,
|
1052 |
+
output_hidden_states: Optional[bool] = None,
|
1053 |
+
return_dict: Optional[bool] = None,
|
1054 |
+
) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]:
|
1055 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1056 |
+
output_hidden_states = (
|
1057 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1058 |
+
)
|
1059 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1060 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1061 |
+
|
1062 |
+
if input_ids is not None and inputs_embeds is not None:
|
1063 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
1064 |
+
elif input_ids is not None:
|
1065 |
+
batch_size, seq_length = input_ids.shape
|
1066 |
+
elif inputs_embeds is not None:
|
1067 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
1068 |
+
else:
|
1069 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
1070 |
+
|
1071 |
+
if past_key_values is None:
|
1072 |
+
past_key_values = tuple([None] * len(self.h))
|
1073 |
+
|
1074 |
+
if inputs_embeds is None:
|
1075 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
1076 |
+
|
1077 |
+
hidden_states = inputs_embeds
|
1078 |
+
|
1079 |
+
if self.gradient_checkpointing and self.training:
|
1080 |
+
if use_cache:
|
1081 |
+
logger.warning(
|
1082 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
1083 |
+
)
|
1084 |
+
use_cache = False
|
1085 |
+
presents = () if use_cache else None
|
1086 |
+
all_self_attentions = () if output_attentions else None
|
1087 |
+
all_hidden_states = () if output_hidden_states else None
|
1088 |
+
|
1089 |
+
# Compute alibi tensor: check build_alibi_tensor documentation
|
1090 |
+
past_key_values_length = 0
|
1091 |
+
if past_key_values[0] is not None:
|
1092 |
+
past_key_values_length = past_key_values[0][0].shape[-2]
|
1093 |
+
|
1094 |
+
if self.use_alibi:
|
1095 |
+
mask = (
|
1096 |
+
torch.ones(
|
1097 |
+
(batch_size, seq_length + past_key_values_length), device=inputs_embeds.device, dtype=torch.long
|
1098 |
+
)
|
1099 |
+
if attention_mask is None
|
1100 |
+
else attention_mask
|
1101 |
+
)
|
1102 |
+
alibi = build_alibi_tensor(mask, self.num_heads, dtype=hidden_states.dtype)
|
1103 |
+
else:
|
1104 |
+
alibi = None
|
1105 |
+
if position_ids is None:
|
1106 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
1107 |
+
position_ids = torch.arange(
|
1108 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
1109 |
+
)
|
1110 |
+
position_ids = position_ids.unsqueeze(0)
|
1111 |
+
|
1112 |
+
if self._use_flash_attention_2:
|
1113 |
+
# 2d mask is passed through the layers
|
1114 |
+
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
1115 |
+
elif self._use_sdpa and not output_attentions:
|
1116 |
+
# output_attentions=True can not be supported when using SDPA, and we fall back on
|
1117 |
+
# the manual implementation that requires a 4D causal mask in all cases.
|
1118 |
+
if alibi is None:
|
1119 |
+
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
|
1120 |
+
attention_mask,
|
1121 |
+
(batch_size, seq_length),
|
1122 |
+
inputs_embeds,
|
1123 |
+
past_key_values_length,
|
1124 |
+
)
|
1125 |
+
elif head_mask is None:
|
1126 |
+
alibi = alibi.reshape(batch_size, -1, *alibi.shape[1:])
|
1127 |
+
|
1128 |
+
attention_mask_2d = attention_mask
|
1129 |
+
# We don't call _prepare_4d_causal_attention_mask_for_sdpa as we need to mask alibi using the 4D attention_mask untouched.
|
1130 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
1131 |
+
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
1132 |
+
)
|
1133 |
+
|
1134 |
+
# We take care to integrate alibi bias in the attention_mask here.
|
1135 |
+
if attention_mask_2d is None:
|
1136 |
+
attention_mask = alibi / math.sqrt(self.config.hidden_size // self.num_heads)
|
1137 |
+
else:
|
1138 |
+
min_dtype = torch.finfo(alibi.dtype).min
|
1139 |
+
attention_mask = torch.masked_fill(
|
1140 |
+
alibi / math.sqrt(self.config.hidden_size // self.num_heads),
|
1141 |
+
attention_mask < -1,
|
1142 |
+
min_dtype,
|
1143 |
+
)
|
1144 |
+
|
1145 |
+
# From PyTorch 2.1 onwards, F.scaled_dot_product_attention with the memory-efficient attention backend
|
1146 |
+
# produces nans if sequences are completely unattended in the attention mask. Details: https://github.com/pytorch/pytorch/issues/110213
|
1147 |
+
if seq_length > 1 and attention_mask.device.type == "cuda":
|
1148 |
+
attention_mask = AttentionMaskConverter._unmask_unattended(attention_mask, min_dtype=min_dtype)
|
1149 |
+
else:
|
1150 |
+
# PyTorch SDPA does not support head_mask, we fall back on the eager implementation in this case.
|
1151 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
1152 |
+
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
1153 |
+
)
|
1154 |
+
else:
|
1155 |
+
# 4d mask is passed through the layers
|
1156 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
1157 |
+
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
1158 |
+
)
|
1159 |
+
|
1160 |
+
# Prepare head mask if needed
|
1161 |
+
# 1.0 in head_mask indicate we keep the head
|
1162 |
+
# attention_probs has shape batch_size x num_heads x N x N
|
1163 |
+
# head_mask has shape n_layer x batch x num_heads x N x N
|
1164 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
1165 |
+
|
1166 |
+
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
1167 |
+
if output_hidden_states:
|
1168 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
1169 |
+
|
1170 |
+
if self.gradient_checkpointing and self.training:
|
1171 |
+
outputs = self._gradient_checkpointing_func(
|
1172 |
+
block.__call__,
|
1173 |
+
hidden_states,
|
1174 |
+
alibi,
|
1175 |
+
attention_mask,
|
1176 |
+
position_ids,
|
1177 |
+
head_mask[i],
|
1178 |
+
layer_past,
|
1179 |
+
use_cache,
|
1180 |
+
output_attentions,
|
1181 |
+
)
|
1182 |
+
else:
|
1183 |
+
outputs = block(
|
1184 |
+
hidden_states,
|
1185 |
+
layer_past=layer_past,
|
1186 |
+
attention_mask=attention_mask,
|
1187 |
+
position_ids=position_ids,
|
1188 |
+
head_mask=head_mask[i],
|
1189 |
+
use_cache=use_cache,
|
1190 |
+
output_attentions=output_attentions,
|
1191 |
+
alibi=alibi,
|
1192 |
+
)
|
1193 |
+
|
1194 |
+
hidden_states = outputs[0]
|
1195 |
+
if use_cache is True:
|
1196 |
+
presents = presents + (outputs[1],)
|
1197 |
+
|
1198 |
+
if output_attentions:
|
1199 |
+
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
|
1200 |
+
|
1201 |
+
# Add last hidden state
|
1202 |
+
hidden_states = self.ln_f(hidden_states)
|
1203 |
+
|
1204 |
+
if output_hidden_states:
|
1205 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
1206 |
+
|
1207 |
+
if not return_dict:
|
1208 |
+
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
|
1209 |
+
|
1210 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
1211 |
+
last_hidden_state=hidden_states,
|
1212 |
+
past_key_values=presents,
|
1213 |
+
hidden_states=all_hidden_states,
|
1214 |
+
attentions=all_self_attentions,
|
1215 |
+
)
|
1216 |
+
|
1217 |
+
|
1218 |
+
@add_start_docstrings(
|
1219 |
+
"The Falcon Model transformer with a language modeling head on top (linear layer with weights tied to the input embeddings).",
|
1220 |
+
FALCON_START_DOCSTRING,
|
1221 |
+
)
|
1222 |
+
class FalconForCausalLM(FalconPreTrainedModel):
|
1223 |
+
_tied_weights_keys = None # ["lm_head.weight"]
|
1224 |
+
|
1225 |
+
def __init__(self, config: FalconConfig):
|
1226 |
+
super().__init__(config)
|
1227 |
+
self.transformer = FalconModel(config)
|
1228 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1229 |
+
|
1230 |
+
# Initialize weights and apply final processing
|
1231 |
+
self.post_init()
|
1232 |
+
|
1233 |
+
def get_output_embeddings(self):
|
1234 |
+
return self.lm_head
|
1235 |
+
|
1236 |
+
def set_output_embeddings(self, new_embeddings: torch.Tensor):
|
1237 |
+
self.lm_head = new_embeddings
|
1238 |
+
|
1239 |
+
def prepare_inputs_for_generation(
|
1240 |
+
self,
|
1241 |
+
input_ids: torch.LongTensor,
|
1242 |
+
past_key_values: Optional[torch.Tensor] = None,
|
1243 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1244 |
+
position_ids: Optional[torch.Tensor] = None,
|
1245 |
+
**kwargs,
|
1246 |
+
) -> dict:
|
1247 |
+
if past_key_values is not None:
|
1248 |
+
past_length = past_key_values[0][0].shape[2]
|
1249 |
+
|
1250 |
+
# Some generation methods already pass only the last input ID
|
1251 |
+
if input_ids.shape[1] > past_length:
|
1252 |
+
remove_prefix_length = past_length
|
1253 |
+
else:
|
1254 |
+
# Default to old behavior: keep only final ID
|
1255 |
+
remove_prefix_length = input_ids.shape[1] - 1
|
1256 |
+
|
1257 |
+
input_ids = input_ids[:, remove_prefix_length:]
|
1258 |
+
|
1259 |
+
# Note: versions of Falcon with alibi do not use position_ids. It is used with RoPE.
|
1260 |
+
if not self.transformer.use_alibi and attention_mask is not None and position_ids is None:
|
1261 |
+
# create position_ids on the fly for batch generation
|
1262 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1263 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1264 |
+
if past_key_values:
|
1265 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
1266 |
+
|
1267 |
+
return {
|
1268 |
+
"input_ids": input_ids,
|
1269 |
+
"position_ids": position_ids,
|
1270 |
+
"past_key_values": past_key_values,
|
1271 |
+
"use_cache": kwargs.get("use_cache"),
|
1272 |
+
"attention_mask": attention_mask,
|
1273 |
+
}
|
1274 |
+
|
1275 |
+
@add_start_docstrings_to_model_forward(FALCON_INPUTS_DOCSTRING)
|
1276 |
+
@add_code_sample_docstrings(
|
1277 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1278 |
+
output_type=CausalLMOutputWithCrossAttentions,
|
1279 |
+
config_class=_CONFIG_FOR_DOC,
|
1280 |
+
)
|
1281 |
+
def forward(
|
1282 |
+
self,
|
1283 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1284 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
1285 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1286 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1287 |
+
head_mask: Optional[torch.Tensor] = None,
|
1288 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1289 |
+
labels: Optional[torch.Tensor] = None,
|
1290 |
+
use_cache: Optional[bool] = None,
|
1291 |
+
output_attentions: Optional[bool] = None,
|
1292 |
+
output_hidden_states: Optional[bool] = None,
|
1293 |
+
return_dict: Optional[bool] = None,
|
1294 |
+
) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
|
1295 |
+
r"""
|
1296 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1297 |
+
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
1298 |
+
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
1299 |
+
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
1300 |
+
"""
|
1301 |
+
|
1302 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1303 |
+
|
1304 |
+
transformer_outputs = self.transformer(
|
1305 |
+
input_ids,
|
1306 |
+
past_key_values=past_key_values,
|
1307 |
+
attention_mask=attention_mask,
|
1308 |
+
position_ids=position_ids,
|
1309 |
+
head_mask=head_mask,
|
1310 |
+
inputs_embeds=inputs_embeds,
|
1311 |
+
use_cache=use_cache,
|
1312 |
+
output_attentions=output_attentions,
|
1313 |
+
output_hidden_states=output_hidden_states,
|
1314 |
+
return_dict=return_dict,
|
1315 |
+
)
|
1316 |
+
hidden_states = transformer_outputs[0]
|
1317 |
+
|
1318 |
+
lm_logits = self.lm_head(hidden_states)
|
1319 |
+
|
1320 |
+
loss = None
|
1321 |
+
if labels is not None:
|
1322 |
+
# Shift so that tokens < n predict n
|
1323 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
1324 |
+
shift_labels = labels[..., 1:].contiguous()
|
1325 |
+
batch_size, seq_length, vocab_size = shift_logits.shape
|
1326 |
+
# Flatten the tokens
|
1327 |
+
loss_fct = CrossEntropyLoss()
|
1328 |
+
loss = loss_fct(
|
1329 |
+
shift_logits.view(batch_size * seq_length, vocab_size), shift_labels.view(batch_size * seq_length)
|
1330 |
+
)
|
1331 |
+
|
1332 |
+
if not return_dict:
|
1333 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
1334 |
+
return ((loss,) + output) if loss is not None else output
|
1335 |
+
|
1336 |
+
return CausalLMOutputWithCrossAttentions(
|
1337 |
+
loss=loss,
|
1338 |
+
logits=lm_logits,
|
1339 |
+
past_key_values=transformer_outputs.past_key_values,
|
1340 |
+
hidden_states=transformer_outputs.hidden_states,
|
1341 |
+
attentions=transformer_outputs.attentions,
|
1342 |
+
)
|
1343 |
+
|
1344 |
+
def _reorder_cache(
|
1345 |
+
self, past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor
|
1346 |
+
) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]:
|
1347 |
+
"""
|
1348 |
+
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
|
1349 |
+
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
|
1350 |
+
beam_idx at every generation step.
|
1351 |
+
|
1352 |
+
Output shares the same memory storage as `past`.
|
1353 |
+
"""
|
1354 |
+
|
1355 |
+
# Get a copy of `beam_idx` on all the devices where we need those indices.
|
1356 |
+
device_to_beam_idx = {
|
1357 |
+
past_state.device: beam_idx.to(past_state.device) for layer_past in past for past_state in layer_past
|
1358 |
+
}
|
1359 |
+
reordered_past = tuple(
|
1360 |
+
(
|
1361 |
+
layer_past[0].index_select(0, device_to_beam_idx[layer_past[0].device]),
|
1362 |
+
layer_past[1].index_select(0, device_to_beam_idx[layer_past[0].device]),
|
1363 |
+
)
|
1364 |
+
for layer_past in past
|
1365 |
+
)
|
1366 |
+
return reordered_past
|
1367 |
+
|
1368 |
+
|
1369 |
+
@add_start_docstrings(
|
1370 |
+
"""
|
1371 |
+
The Falcon Model transformer with a sequence classification head on top (linear layer).
|
1372 |
+
|
1373 |
+
[`FalconForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
1374 |
+
(e.g. GPT-1) do.
|
1375 |
+
|
1376 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
1377 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
1378 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
1379 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1380 |
+
each row of the batch).
|
1381 |
+
""",
|
1382 |
+
FALCON_START_DOCSTRING,
|
1383 |
+
)
|
1384 |
+
class FalconForSequenceClassification(FalconPreTrainedModel):
|
1385 |
+
def __init__(self, config: FalconConfig):
|
1386 |
+
super().__init__(config)
|
1387 |
+
self.num_labels = config.num_labels
|
1388 |
+
self.transformer = FalconModel(config)
|
1389 |
+
self.score = nn.Linear(config.hidden_size, config.num_labels, bias=False)
|
1390 |
+
|
1391 |
+
# Initialize weights and apply final processing
|
1392 |
+
self.post_init()
|
1393 |
+
|
1394 |
+
@add_start_docstrings_to_model_forward(FALCON_INPUTS_DOCSTRING)
|
1395 |
+
@add_code_sample_docstrings(
|
1396 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1397 |
+
output_type=SequenceClassifierOutputWithPast,
|
1398 |
+
config_class=_CONFIG_FOR_DOC,
|
1399 |
+
)
|
1400 |
+
def forward(
|
1401 |
+
self,
|
1402 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1403 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
1404 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1405 |
+
head_mask: Optional[torch.Tensor] = None,
|
1406 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1407 |
+
labels: Optional[torch.Tensor] = None,
|
1408 |
+
use_cache: Optional[bool] = None,
|
1409 |
+
output_attentions: Optional[bool] = None,
|
1410 |
+
output_hidden_states: Optional[bool] = None,
|
1411 |
+
return_dict: Optional[bool] = None,
|
1412 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutputWithPast]:
|
1413 |
+
r"""
|
1414 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1415 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1416 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1417 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1418 |
+
"""
|
1419 |
+
|
1420 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1421 |
+
|
1422 |
+
transformer_outputs = self.transformer(
|
1423 |
+
input_ids,
|
1424 |
+
past_key_values=past_key_values,
|
1425 |
+
attention_mask=attention_mask,
|
1426 |
+
head_mask=head_mask,
|
1427 |
+
inputs_embeds=inputs_embeds,
|
1428 |
+
use_cache=use_cache,
|
1429 |
+
output_attentions=output_attentions,
|
1430 |
+
output_hidden_states=output_hidden_states,
|
1431 |
+
return_dict=return_dict,
|
1432 |
+
)
|
1433 |
+
|
1434 |
+
hidden_states = transformer_outputs[0]
|
1435 |
+
logits = self.score(hidden_states)
|
1436 |
+
|
1437 |
+
if input_ids is not None:
|
1438 |
+
batch_size = input_ids.shape[0]
|
1439 |
+
else:
|
1440 |
+
batch_size = inputs_embeds.shape[0]
|
1441 |
+
|
1442 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
1443 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
1444 |
+
if self.config.pad_token_id is None:
|
1445 |
+
sequence_lengths = -1
|
1446 |
+
else:
|
1447 |
+
if input_ids is not None:
|
1448 |
+
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
1449 |
+
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
1450 |
+
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
1451 |
+
sequence_lengths = sequence_lengths.to(logits.device)
|
1452 |
+
else:
|
1453 |
+
sequence_lengths = -1
|
1454 |
+
logger.warning(
|
1455 |
+
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
|
1456 |
+
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
|
1457 |
+
)
|
1458 |
+
|
1459 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
1460 |
+
|
1461 |
+
loss = None
|
1462 |
+
if labels is not None:
|
1463 |
+
if self.config.problem_type is None:
|
1464 |
+
if self.num_labels == 1:
|
1465 |
+
self.config.problem_type = "regression"
|
1466 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1467 |
+
self.config.problem_type = "single_label_classification"
|
1468 |
+
else:
|
1469 |
+
self.config.problem_type = "multi_label_classification"
|
1470 |
+
|
1471 |
+
if self.config.problem_type == "regression":
|
1472 |
+
loss_fct = MSELoss()
|
1473 |
+
if self.num_labels == 1:
|
1474 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
1475 |
+
else:
|
1476 |
+
loss = loss_fct(pooled_logits, labels)
|
1477 |
+
elif self.config.problem_type == "single_label_classification":
|
1478 |
+
loss_fct = CrossEntropyLoss()
|
1479 |
+
loss = loss_fct(pooled_logits, labels)
|
1480 |
+
elif self.config.problem_type == "multi_label_classification":
|
1481 |
+
loss_fct = BCEWithLogitsLoss()
|
1482 |
+
loss = loss_fct(pooled_logits, labels)
|
1483 |
+
if not return_dict:
|
1484 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
1485 |
+
return ((loss,) + output) if loss is not None else output
|
1486 |
+
|
1487 |
+
return SequenceClassifierOutputWithPast(
|
1488 |
+
loss=loss,
|
1489 |
+
logits=pooled_logits,
|
1490 |
+
past_key_values=transformer_outputs.past_key_values,
|
1491 |
+
hidden_states=transformer_outputs.hidden_states,
|
1492 |
+
attentions=transformer_outputs.attentions,
|
1493 |
+
)
|
1494 |
+
|
1495 |
+
|
1496 |
+
@add_start_docstrings(
|
1497 |
+
"""
|
1498 |
+
Falcon Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
1499 |
+
Named-Entity-Recognition (NER) tasks.
|
1500 |
+
""",
|
1501 |
+
FALCON_START_DOCSTRING,
|
1502 |
+
)
|
1503 |
+
class FalconForTokenClassification(FalconPreTrainedModel):
|
1504 |
+
def __init__(self, config: FalconConfig):
|
1505 |
+
super().__init__(config)
|
1506 |
+
self.num_labels = config.num_labels
|
1507 |
+
|
1508 |
+
self.transformer = FalconModel(config)
|
1509 |
+
if getattr(config, "classifier_dropout", None) is not None:
|
1510 |
+
classifier_dropout = config.classifier_dropout
|
1511 |
+
elif getattr(config, "hidden_dropout", None) is not None:
|
1512 |
+
classifier_dropout = config.hidden_dropout
|
1513 |
+
else:
|
1514 |
+
classifier_dropout = 0.1
|
1515 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1516 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1517 |
+
|
1518 |
+
# Initialize weights and apply final processing
|
1519 |
+
self.post_init()
|
1520 |
+
|
1521 |
+
@add_start_docstrings_to_model_forward(FALCON_INPUTS_DOCSTRING)
|
1522 |
+
@add_code_sample_docstrings(
|
1523 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1524 |
+
output_type=TokenClassifierOutput,
|
1525 |
+
config_class=_CONFIG_FOR_DOC,
|
1526 |
+
)
|
1527 |
+
def forward(
|
1528 |
+
self,
|
1529 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1530 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
1531 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1532 |
+
head_mask: Optional[torch.Tensor] = None,
|
1533 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1534 |
+
labels: Optional[torch.Tensor] = None,
|
1535 |
+
use_cache: Optional[bool] = None,
|
1536 |
+
output_attentions: Optional[bool] = None,
|
1537 |
+
output_hidden_states: Optional[bool] = None,
|
1538 |
+
return_dict: Optional[bool] = None,
|
1539 |
+
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
|
1540 |
+
r"""
|
1541 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1542 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1543 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1544 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1545 |
+
"""
|
1546 |
+
|
1547 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1548 |
+
|
1549 |
+
transformer_outputs = self.transformer(
|
1550 |
+
input_ids,
|
1551 |
+
past_key_values=past_key_values,
|
1552 |
+
attention_mask=attention_mask,
|
1553 |
+
head_mask=head_mask,
|
1554 |
+
inputs_embeds=inputs_embeds,
|
1555 |
+
use_cache=use_cache,
|
1556 |
+
output_attentions=output_attentions,
|
1557 |
+
output_hidden_states=output_hidden_states,
|
1558 |
+
return_dict=return_dict,
|
1559 |
+
)
|
1560 |
+
|
1561 |
+
hidden_states = transformer_outputs[0]
|
1562 |
+
hidden_states = self.dropout(hidden_states)
|
1563 |
+
logits = self.classifier(hidden_states)
|
1564 |
+
|
1565 |
+
loss = None
|
1566 |
+
if labels is not None:
|
1567 |
+
batch_size, seq_length = labels.shape
|
1568 |
+
loss_fct = CrossEntropyLoss()
|
1569 |
+
loss = loss_fct(
|
1570 |
+
logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length)
|
1571 |
+
)
|
1572 |
+
|
1573 |
+
if not return_dict:
|
1574 |
+
output = (logits,) + transformer_outputs[2:]
|
1575 |
+
return ((loss,) + output) if loss is not None else output
|
1576 |
+
|
1577 |
+
return TokenClassifierOutput(
|
1578 |
+
loss=loss,
|
1579 |
+
logits=logits,
|
1580 |
+
hidden_states=transformer_outputs.hidden_states,
|
1581 |
+
attentions=transformer_outputs.attentions,
|
1582 |
+
)
|
1583 |
+
|
1584 |
+
|
1585 |
+
@add_start_docstrings(
|
1586 |
+
"""
|
1587 |
+
The Falcon Model transformer with a span classification head on top for extractive question-answering tasks like
|
1588 |
+
SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1589 |
+
""",
|
1590 |
+
FALCON_START_DOCSTRING,
|
1591 |
+
)
|
1592 |
+
class FalconForQuestionAnswering(FalconPreTrainedModel):
|
1593 |
+
def __init__(self, config):
|
1594 |
+
super().__init__(config)
|
1595 |
+
self.transformer = FalconModel(config)
|
1596 |
+
self.qa_outputs = nn.Linear(config.hidden_size, 2)
|
1597 |
+
|
1598 |
+
# Initialize weights and apply final processing
|
1599 |
+
self.post_init()
|
1600 |
+
|
1601 |
+
@add_start_docstrings_to_model_forward(FALCON_INPUTS_DOCSTRING)
|
1602 |
+
def forward(
|
1603 |
+
self,
|
1604 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1605 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1606 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1607 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1608 |
+
start_positions: Optional[torch.LongTensor] = None,
|
1609 |
+
end_positions: Optional[torch.LongTensor] = None,
|
1610 |
+
output_attentions: Optional[bool] = None,
|
1611 |
+
output_hidden_states: Optional[bool] = None,
|
1612 |
+
return_dict: Optional[bool] = None,
|
1613 |
+
) -> Union[Tuple, QuestionAnsweringModelOutput]:
|
1614 |
+
r"""
|
1615 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1616 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1617 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1618 |
+
are not taken into account for computing the loss.
|
1619 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1620 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1621 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1622 |
+
are not taken into account for computing the loss.
|
1623 |
+
"""
|
1624 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1625 |
+
|
1626 |
+
outputs = self.transformer(
|
1627 |
+
input_ids,
|
1628 |
+
attention_mask=attention_mask,
|
1629 |
+
head_mask=head_mask,
|
1630 |
+
inputs_embeds=inputs_embeds,
|
1631 |
+
output_attentions=output_attentions,
|
1632 |
+
output_hidden_states=output_hidden_states,
|
1633 |
+
return_dict=return_dict,
|
1634 |
+
)
|
1635 |
+
|
1636 |
+
sequence_output = outputs[0]
|
1637 |
+
|
1638 |
+
logits = self.qa_outputs(sequence_output)
|
1639 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
1640 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
1641 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
1642 |
+
|
1643 |
+
total_loss = None
|
1644 |
+
if start_positions is not None and end_positions is not None:
|
1645 |
+
# If we are on multi-GPU, split add a dimension
|
1646 |
+
if len(start_positions.size()) > 1:
|
1647 |
+
start_positions = start_positions.squeeze(-1)
|
1648 |
+
if len(end_positions.size()) > 1:
|
1649 |
+
end_positions = end_positions.squeeze(-1)
|
1650 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
1651 |
+
ignored_index = start_logits.size(1)
|
1652 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
1653 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
1654 |
+
|
1655 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
1656 |
+
start_loss = loss_fct(start_logits, start_positions)
|
1657 |
+
end_loss = loss_fct(end_logits, end_positions)
|
1658 |
+
total_loss = (start_loss + end_loss) / 2
|
1659 |
+
|
1660 |
+
if not return_dict:
|
1661 |
+
output = (start_logits, end_logits) + outputs[2:]
|
1662 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1663 |
+
|
1664 |
+
return QuestionAnsweringModelOutput(
|
1665 |
+
loss=total_loss,
|
1666 |
+
start_logits=start_logits,
|
1667 |
+
end_logits=end_logits,
|
1668 |
+
hidden_states=outputs.hidden_states,
|
1669 |
+
attentions=outputs.attentions,
|
1670 |
+
)
|