Lolalb commited on
Commit
1344fd3
·
verified ·
1 Parent(s): 0dc9884

Upload AMPLIFY

Browse files
Files changed (7) hide show
  1. README.md +199 -0
  2. amplify.py +347 -0
  3. config.json +37 -0
  4. model.safetensors +3 -0
  5. rmsnorm.py +34 -0
  6. rotary.py +80 -0
  7. tokenizer.py +133 -0
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
amplify.py ADDED
@@ -0,0 +1,347 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # From https://stackoverflow.com/a/23689767
2
+ # From https://github.com/pytorch/pytorch/issues/97899
3
+ # From https://github.com/facebookresearch/llama/blob/main/llama/model.py
4
+ import yaml
5
+
6
+ import safetensors
7
+ import torch
8
+ from torch import nn
9
+ from torch.nn.functional import scaled_dot_product_attention
10
+ from flash_attn.flash_attn_interface import flash_attn_varlen_func
11
+ from xformers.ops import SwiGLU
12
+
13
+ from .rmsnorm import RMSNorm
14
+ from .rotary import precompute_freqs_cis, apply_rotary_emb
15
+ from .tokenizer import ProteinTokenizer
16
+
17
+ from transformers import PreTrainedModel, PretrainedConfig
18
+ from transformers.modeling_outputs import MaskedLMOutput
19
+
20
+
21
+ class DotDict(dict):
22
+ """Dictionary that supports the dot notation to access attributes (similarly to HuggingFace)."""
23
+
24
+ __getattr__ = dict.get
25
+ __setattr__ = dict.__setitem__
26
+ __delattr__ = dict.__delitem__
27
+
28
+
29
+ class AMPLIFYConfig(PretrainedConfig):
30
+ model_type = "AMPLIFY"
31
+
32
+ # All config parameters must have a default value.
33
+ def __init__(
34
+ self,
35
+ hidden_size: int = 960,
36
+ num_hidden_layers: int = 32,
37
+ num_attention_heads: int = 15,
38
+ intermediate_size: int = 3840,
39
+ dropout_prob: float = 0,
40
+ embedding_init_range: float = 0.02,
41
+ decoder_init_range: float = 0.02,
42
+ rms_norm: bool = True,
43
+ norm_eps: float = 1e-05,
44
+ hidden_act: str = "SwiGLU",
45
+ layer_norm_after_embedding: bool = False,
46
+ layer_norm_before_last_layer: bool = True,
47
+ vocab_size: int = 27,
48
+ ffn_bias: bool = False,
49
+ att_bias: bool = False,
50
+ pad_token_id: int = 0,
51
+ max_length: int = 2048,
52
+ **kwargs,
53
+ ):
54
+ super().__init__(**kwargs)
55
+
56
+ self.hidden_size = hidden_size
57
+ self.num_hidden_layers = num_hidden_layers
58
+ self.num_attention_heads = num_attention_heads
59
+ self.intermediate_size = intermediate_size
60
+ self.dropout_prob = dropout_prob
61
+ self.embedding_init_range = embedding_init_range
62
+ self.decoder_init_range = decoder_init_range
63
+ self.rms_norm = rms_norm
64
+ self.norm_eps = norm_eps
65
+ self.hidden_act = hidden_act
66
+ self.layer_norm_after_embedding = layer_norm_after_embedding
67
+ self.layer_norm_before_last_layer = layer_norm_before_last_layer
68
+ self.vocab_size = vocab_size
69
+ self.ffn_bias = ffn_bias
70
+ self.att_bias = att_bias
71
+ self.pad_token_id = pad_token_id
72
+ self.max_length = max_length
73
+
74
+
75
+ class EncoderBlock(nn.Module):
76
+ """Transformer encoder block."""
77
+
78
+ def __init__(self, config: AMPLIFYConfig):
79
+ """Initialize a EncoderBlock.
80
+
81
+ Args:
82
+ hidden_size (int): _description_
83
+ num_attention_heads (int): _description_
84
+ intermediate_size (int, optional): _description_. Defaults to 2048.
85
+ dropout_prob (float, optional): _description_. Defaults to 0.1.
86
+ activation (str, optional): _description_. Defaults to "relu".
87
+ rms_norm (bool, optional): _description_. Defaults to True.
88
+ norm_eps (float, optional): _description_. Defaults to 1e-5.
89
+ pad_token_id (int, optional): _description_. Defaults to 0.
90
+ max_length (int, optional): _description_. Defaults to 2048.
91
+ ffn_bias (bool, optional): _description_. Defaults to False.
92
+ att_bias (bool, optional): _description_. Defaults to False.
93
+ """
94
+ super().__init__()
95
+
96
+ self.config = config
97
+ self.d_head = config.hidden_size // config.num_attention_heads
98
+
99
+ # Attention
100
+ self.q = nn.Linear(in_features=config.hidden_size, out_features=config.hidden_size, bias=config.att_bias)
101
+ self.k = nn.Linear(in_features=config.hidden_size, out_features=config.hidden_size, bias=config.att_bias)
102
+ self.v = nn.Linear(in_features=config.hidden_size, out_features=config.hidden_size, bias=config.att_bias)
103
+ self.wo = nn.Linear(in_features=config.hidden_size, out_features=config.hidden_size, bias=config.att_bias)
104
+ self.resid_dropout = nn.Dropout(config.dropout_prob)
105
+
106
+ # Feedforward network
107
+ act = config.hidden_act.lower()
108
+ if act == "swiglu":
109
+ # To keep the number of parameters and the amount of computation constant, we reduce the number of
110
+ # hidden units by a factor of 2/3 (https://arxiv.org/pdf/2002.05202.pdf) and make it a multiple of 8 to
111
+ # avoid RuntimeError due to misaligned operand
112
+ multiple_of = 8
113
+ intermediate_size = int(2 * config.intermediate_size / 3)
114
+ intermediate_size = multiple_of * ((intermediate_size + multiple_of - 1) // multiple_of)
115
+ self.ffn = SwiGLU(config.hidden_size, intermediate_size, config.hidden_size, bias=config.ffn_bias)
116
+ elif act == "relu":
117
+ self.ffn = nn.Sequential(
118
+ nn.Linear(config.hidden_size, config.intermediate_size, bias=config.ffn_bias),
119
+ nn.ReLU(),
120
+ nn.Linear(config.intermediate_size, config.hidden_size, bias=config.ffn_bias),
121
+ )
122
+ elif act == "gelu":
123
+ self.ffn = nn.Sequential(
124
+ nn.Linear(config.hidden_size, config.intermediate_size, bias=config.ffn_bias),
125
+ nn.GELU(),
126
+ nn.Linear(config.intermediate_size, config.hidden_size, bias=config.ffn_bias),
127
+ )
128
+ else:
129
+ raise ValueError(f"Unsupported hidden_act: {config.hidden_act}")
130
+
131
+ self.attention_norm = (
132
+ RMSNorm(config.hidden_size, config.norm_eps) if config.rms_norm else nn.LayerNorm(config.hidden_size, config.norm_eps)
133
+ )
134
+ self.ffn_norm = (
135
+ RMSNorm(config.hidden_size, config.norm_eps) if config.rms_norm else nn.LayerNorm(config.hidden_size, config.norm_eps)
136
+ )
137
+
138
+ self.ffn_dropout = nn.Dropout(config.dropout_prob)
139
+
140
+ def forward(
141
+ self,
142
+ x: torch.Tensor,
143
+ pad_mask: torch.Tensor,
144
+ freqs_cis: torch.Tensor,
145
+ output_attentions: bool,
146
+ max_seqlen: int = None,
147
+ cu_seqlens: torch.Tensor = None,
148
+ ):
149
+ attn, contact = self._att_block(self.attention_norm(x), pad_mask, freqs_cis, output_attentions, max_seqlen, cu_seqlens)
150
+ x = x + attn
151
+ x = x + self._ff_block(self.ffn_norm(x))
152
+ return x, contact
153
+
154
+ def _att_block(
155
+ self,
156
+ x: torch.Tensor,
157
+ pad_mask: torch.Tensor,
158
+ freqs_cis: torch.Tensor,
159
+ output_attentions: bool,
160
+ max_seqlen: int = None,
161
+ cu_seqlens: torch.Tensor = None,
162
+ ):
163
+ batch_size, seq_len, _ = x.shape
164
+ xq, xk, xv = self.q(x), self.k(x), self.v(x)
165
+
166
+ # Reshape for rotary embeddings
167
+ xq = xq.view(batch_size, seq_len, self.config.num_attention_heads, self.d_head)
168
+ xk = xk.view(batch_size, seq_len, self.config.num_attention_heads, self.d_head)
169
+ xv = xv.view(batch_size, seq_len, self.config.num_attention_heads, self.d_head)
170
+ xq, xk = apply_rotary_emb(xq, xk, freqs_cis)
171
+
172
+ # Attn block
173
+ attn_weights = None
174
+
175
+ # Flash attention if the tensors are packed
176
+ if cu_seqlens is not None:
177
+ attn = flash_attn_varlen_func(
178
+ q=xq.squeeze(0),
179
+ k=xk.squeeze(0),
180
+ v=xv.squeeze(0),
181
+ cu_seqlens_q=cu_seqlens,
182
+ cu_seqlens_k=cu_seqlens,
183
+ max_seqlen_q=max_seqlen,
184
+ max_seqlen_k=max_seqlen,
185
+ dropout_p=0.0,
186
+ causal=False,
187
+ )
188
+
189
+ # Eager attention if attention weights are needed in the output
190
+ elif output_attentions:
191
+ attn_weights = xq.permute(0, 2, 1, 3) @ xk.permute(0, 2, 3, 1) / (xq.size(-1) ** 0.5)
192
+ if pad_mask is not None:
193
+ attn_weights = attn_weights + pad_mask.type(attn_weights.dtype)
194
+ attn_weights = attn_weights.softmax(-1)
195
+ attn = attn_weights @ xv.permute(0, 2, 1, 3)
196
+ attn = attn.transpose(1, 2)
197
+
198
+ # SDPA will pick an appropriate backend otherwise
199
+ else:
200
+ attn = scaled_dot_product_attention(
201
+ query=xq.transpose(1, 2),
202
+ key=xk.transpose(1, 2),
203
+ value=xv.transpose(1, 2),
204
+ attn_mask=pad_mask,
205
+ dropout_p=0,
206
+ ).transpose(1, 2)
207
+
208
+ attn_scores = self.wo(attn.reshape(batch_size, seq_len, self.config.num_attention_heads * self.d_head))
209
+ return (self.resid_dropout(attn_scores), attn_weights)
210
+
211
+ def _ff_block(self, x: torch.Tensor):
212
+ return self.ffn_dropout(self.ffn(x))
213
+
214
+
215
+ class AMPLIFYPreTrainedModel(PreTrainedModel):
216
+ config_class = AMPLIFYConfig
217
+
218
+ def _init_weights(self, module):
219
+ if isinstance(module, nn.Linear):
220
+ module.weight.data.uniform_(-self.config.decoder_init_range, self.config.decoder_init_range)
221
+ if module.bias is not None:
222
+ module.bias.data.zero_()
223
+ elif isinstance(module, nn.Embedding):
224
+ module.weight.data.uniform_(-self.config.embedding_init_range, self.config.embedding_init_range)
225
+
226
+
227
+ class AMPLIFY(AMPLIFYPreTrainedModel):
228
+ """The main model class.
229
+
230
+ Args:
231
+ config (amplify.model.amplify.AMPLIFYConfig): model configuration, usually defined from the Hydra configuration.
232
+ """
233
+
234
+ def __init__(self, config: AMPLIFYConfig, **kwargs):
235
+ super().__init__(config)
236
+
237
+ self.config = config
238
+
239
+ self.encoder = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
240
+
241
+ if config.layer_norm_after_embedding:
242
+ self.layer_norm_1 = (
243
+ RMSNorm(config.hidden_size, config.norm_eps) if config.rms_norm else nn.LayerNorm(config.hidden_size, config.norm_eps)
244
+ )
245
+
246
+ self.transformer_encoder = nn.ModuleList()
247
+ for _ in range(config.num_hidden_layers):
248
+ self.transformer_encoder.append(EncoderBlock(config))
249
+
250
+ if config.layer_norm_before_last_layer:
251
+ self.layer_norm_2 = (
252
+ RMSNorm(config.hidden_size, config.norm_eps) if config.rms_norm else nn.LayerNorm(config.hidden_size, config.norm_eps)
253
+ )
254
+
255
+ self.decoder = nn.Linear(config.hidden_size, config.vocab_size)
256
+
257
+ freqs_cis = precompute_freqs_cis(config.hidden_size // config.num_attention_heads, config.max_length)
258
+
259
+ # Ensures freqs_cis is moved to the same devices as the model. Non-persistent buffers are not saved in the state_dict.
260
+ self.register_buffer("freqs_cis", freqs_cis, persistent=False)
261
+
262
+ # Initialize weights and apply final processing
263
+ self.post_init()
264
+
265
+ @classmethod
266
+ def load(cls, checkpoint_path: str, config_path: str):
267
+
268
+ with open(config_path, "r") as file:
269
+ cfg = yaml.safe_load(file)
270
+
271
+ model = AMPLIFY(AMPLIFYConfig(**cfg["model"], **cfg["tokenizer"]))
272
+
273
+ if checkpoint_path.endswith(".safetensors"):
274
+ state_dict = safetensors.torch.load_file(checkpoint_path)
275
+ elif checkpoint_path.endswith(".pt"):
276
+ state_dict = torch.load(checkpoint_path)
277
+ else:
278
+ raise ValueError(f"Expected checkpoint to be a `.pt` or `.safetensors` file.")
279
+
280
+ model.load_state_dict(state_dict)
281
+ cfg["tokenizer"]["vocab_path"] = "/home/mila/l/lola.lebreton/AMPLIFY/conf/tokenizer/amplify_vocab.txt"
282
+ tokenizer = ProteinTokenizer(**cfg["tokenizer"])
283
+ return model, tokenizer
284
+
285
+ def forward(
286
+ self,
287
+ src,
288
+ position_ids: torch.Tensor = None,
289
+ max_seqlen: int = None,
290
+ cu_seqlens: torch.Tensor = None,
291
+ pad_mask=None,
292
+ output_hidden_states=False,
293
+ output_attentions=False,
294
+ ):
295
+ # Initialize
296
+ hidden_states, attentions = [], []
297
+
298
+ # We will output all the hidden_states that have an index higher than output_hidden_index
299
+ if type(output_hidden_states) == bool and not output_hidden_states:
300
+ output_hidden_index = self.config.num_hidden_layers + 1
301
+ elif type(output_hidden_states) == int:
302
+ output_hidden_index = output_hidden_states
303
+ else:
304
+ output_hidden_index = 0
305
+
306
+ # Expand and repeat: (Batch, Length) -> (Batch, Heads, Length, Length)
307
+ if pad_mask is not None:
308
+ pad_mask = pad_mask.unsqueeze(1).unsqueeze(1).repeat(1, self.config.num_attention_heads, pad_mask.size(-1), 1)
309
+
310
+ if output_attentions:
311
+ pad_mask = torch.where(pad_mask == 1, float(0.0), float("-inf"))
312
+
313
+ # Checks to be done if inputs are packed sequences
314
+ if cu_seqlens is not None:
315
+ assert not output_attentions, "Output attentions is not supported when sequences are packed."
316
+ assert max_seqlen is not None, "Missing max_seqlen. It must be provided when cu_seqlens are not None."
317
+ assert src.shape[0] == 1, "Cumulative sequence lengths are provided but src are not packed."
318
+ assert src.is_cuda, "Packing uses an implementation of flash-attention and is only supported on GPU."
319
+
320
+ # Create position_ids if not provided
321
+ if position_ids is None:
322
+ position_ids = torch.stack([torch.arange(0, seqlen, device=src.device) for seqlen in cu_seqlens], dim=0)
323
+
324
+ # RoPE
325
+ if position_ids is not None:
326
+ freqs_cis = self.freqs_cis[position_ids]
327
+ else:
328
+ freqs_cis = self.freqs_cis[: src.shape[1]]
329
+
330
+ # Embedding
331
+ x = self.encoder(src)
332
+ if self.config.layer_norm_after_embedding:
333
+ x = self.layer_norm_1(x)
334
+
335
+ # Transformer encoder
336
+ for idx, layer in enumerate(self.transformer_encoder):
337
+ x, attn = layer(x, pad_mask, freqs_cis, output_attentions, max_seqlen, cu_seqlens)
338
+ if idx >= output_hidden_index:
339
+ hidden_states.append(x)
340
+ if output_attentions:
341
+ attentions.append(attn)
342
+
343
+ # Classification head with layer norm
344
+ logits = self.decoder(self.layer_norm_2(x) if self.config.layer_norm_before_last_layer else x)
345
+
346
+ # Return logits or the output of the last hidden layer
347
+ return MaskedLMOutput(logits=logits, hidden_states=hidden_states, attentions=attentions)
config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_": "PLM",
3
+ "architectures": [
4
+ "AMPLIFY"
5
+ ],
6
+ "att_bias": false,
7
+ "auto_map": {
8
+ "AutoConfig": "amplify.AMPLIFYConfig",
9
+ "AutoModel": "amplify.AMPLIFY"
10
+ },
11
+ "bos_token_id": 3,
12
+ "decoder_init_range": 0.02,
13
+ "dropout_prob": 0,
14
+ "embedding_init_range": 0.02,
15
+ "eos_token_id": 4,
16
+ "ffn_bias": false,
17
+ "hidden_act": "SwiGLU",
18
+ "hidden_size": 640,
19
+ "intermediate_size": 2560,
20
+ "layer_norm_after_embedding": false,
21
+ "layer_norm_before_last_layer": true,
22
+ "mask_token_id": 2,
23
+ "max_length": 2048,
24
+ "model_type": "AMPLIFY",
25
+ "norm_eps": 1e-05,
26
+ "num_attention_heads": 10,
27
+ "num_hidden_layers": 24,
28
+ "other_special_token_ids": null,
29
+ "pad_token_id": 0,
30
+ "pre_activation_layer_norm": true,
31
+ "rms_norm": true,
32
+ "torch_dtype": "float32",
33
+ "transformers_version": "4.46.3",
34
+ "unk_token_id": 1,
35
+ "vocab_path": "conf/tokenizer/plm_vocab.txt",
36
+ "vocab_size": 27
37
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a2375f1f54cbe00bdbe27eedcd039c92d12f165720c0349bc582a6eb42c099ce
3
+ size 473126988
rmsnorm.py ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+
4
+
5
+ class RMSNorm(nn.Module):
6
+ def __init__(self, dim: int, eps: float = 1e-6):
7
+ """
8
+ Initialize the RMSNorm normalization layer.
9
+
10
+ Args:
11
+ dim (int): The dimension of the input tensor.
12
+ eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6.
13
+
14
+ Attributes:
15
+ eps (float): A small value added to the denominator for numerical stability.
16
+ weight (nn.Parameter): Learnable scaling parameter.
17
+
18
+ """
19
+ super().__init__()
20
+ self.eps = eps
21
+ self.weight = nn.Parameter(torch.ones(dim))
22
+
23
+ def forward(self, x):
24
+ """
25
+ Forward pass through the RMSNorm layer.
26
+
27
+ Args:
28
+ x (torch.Tensor): The input tensor.
29
+
30
+ Returns:
31
+ torch.Tensor: The output tensor after applying RMSNorm.
32
+
33
+ """
34
+ return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) * self.weight
rotary.py ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from typing import Tuple
3
+
4
+
5
+ def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0):
6
+ """
7
+ Precompute the frequency tensor for complex exponentials (cis) with given dimensions.
8
+
9
+ This function calculates a frequency tensor with complex exponentials using the given dimension 'dim'
10
+ and the end index 'end'. The 'theta' parameter scales the frequencies.
11
+ The returned tensor contains complex values in complex64 data type.
12
+
13
+ Args:
14
+ dim (int): Dimension of the frequency tensor.
15
+ end (int): End index for precomputing frequencies.
16
+ theta (float, optional): Scaling factor for frequency computation. Defaults to 10000.0.
17
+
18
+ Returns:
19
+ torch.Tensor: Precomputed frequency tensor with complex exponentials.
20
+ """
21
+
22
+ freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
23
+ t = torch.arange(end, device=freqs.device) # type: ignore
24
+ freqs = torch.outer(t, freqs).float() # type: ignore
25
+ return torch.polar(torch.ones_like(freqs), freqs) # complex64
26
+
27
+
28
+ def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
29
+ """
30
+ Reshape frequency tensor for broadcasting it with another tensor.
31
+
32
+ This function reshapes the frequency tensor to have the same shape as the target tensor 'x'
33
+ for the purpose of broadcasting the frequency tensor during element-wise operations.
34
+
35
+ Args:
36
+ freqs_cis (torch.Tensor): Frequency tensor to be reshaped.
37
+ x (torch.Tensor): Target tensor for broadcasting compatibility.
38
+
39
+ Returns:
40
+ torch.Tensor: Reshaped frequency tensor.
41
+
42
+ Raises:
43
+ AssertionError: If the frequency tensor doesn't match the expected shape.
44
+ AssertionError: If the target tensor 'x' doesn't have the expected number of dimensions.
45
+ """
46
+
47
+ ndim = x.ndim
48
+ assert 0 <= 1 < ndim
49
+ assert freqs_cis.shape == (x.shape[1], x.shape[-1])
50
+ shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
51
+ return freqs_cis.view(*shape)
52
+
53
+
54
+ def apply_rotary_emb(
55
+ xq: torch.Tensor,
56
+ xk: torch.Tensor,
57
+ freqs_cis: torch.Tensor,
58
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
59
+ """
60
+ Apply rotary embeddings to input tensors using the given frequency tensor.
61
+
62
+ This function applies rotary embeddings to the given query 'xq' and key 'xk' tensors using the provided
63
+ frequency tensor 'freqs_cis'. The input tensors are reshaped as complex numbers, and the frequency tensor
64
+ is reshaped for broadcasting compatibility. The resulting tensors contain rotary embeddings and are
65
+ returned as real tensors.
66
+
67
+ Args:
68
+ xq (torch.Tensor): Query tensor to apply rotary embeddings.
69
+ xk (torch.Tensor): Key tensor to apply rotary embeddings.
70
+ freqs_cis (torch.Tensor): Precomputed frequency tensor for complex exponentials.
71
+
72
+ Returns:
73
+ Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings.
74
+ """
75
+ xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
76
+ xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
77
+ freqs_cis = reshape_for_broadcast(freqs_cis, xq_)
78
+ xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3)
79
+ xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3)
80
+ return xq_out.type_as(xq), xk_out.type_as(xk)
tokenizer.py ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from typing import List, Optional, Union
3
+ from torch import Tensor
4
+
5
+
6
+ class ProteinTokenizer(object):
7
+ def __init__(
8
+ self,
9
+ vocab_path: str,
10
+ pad_token_id: int,
11
+ mask_token_id: int,
12
+ bos_token_id: int,
13
+ eos_token_id: int,
14
+ unk_token_id: int,
15
+ other_special_token_ids: Optional[List[int]],
16
+ **kwargs,
17
+ ):
18
+ """Vocabulary comprising the amino acids, and the special tokens <unk>, <bos>, <eos>, <pad> and <mask>.
19
+
20
+ Args:
21
+ vocab_path (str): Path to the vocabulary file to load.
22
+ pad_token_id (int): <PAD> token index.
23
+ mask_token_id (int): <MASK> token index.
24
+ bos_token_id (int): <BOS> token index.
25
+ eos_token_id (int): <EOS> token index.
26
+ unk_token_id (int): <UNK> token index.
27
+ other_special_token_ids (Optional[List[int]]): List of additional special tokens.
28
+ """
29
+ self._token_to_id = dict()
30
+ self._id_to_token = dict()
31
+
32
+ with open(vocab_path, "r") as vocab_file:
33
+ for i, token in enumerate(vocab_file):
34
+ token = token.strip()
35
+ self._token_to_id[token] = i
36
+ self._id_to_token[i] = token
37
+
38
+ # Padding token
39
+ self.pad_token_id = pad_token_id
40
+ self.pad_token = self._token_to_id.get(pad_token_id)
41
+
42
+ # Beginning and end of sequence
43
+ self.bos_token_id = bos_token_id
44
+ self.eos_token_id = eos_token_id
45
+ self.bos_token = self._token_to_id.get(bos_token_id)
46
+ self.eos_token = self._token_to_id.get(eos_token_id)
47
+
48
+ # Mask token
49
+ self.mask_token_id = mask_token_id
50
+ self.mask_token = self._token_to_id.get(mask_token_id)
51
+
52
+ # Unknown token
53
+ self.unk_token_id = unk_token_id
54
+ self.unk_token = self._id_to_token.get(unk_token_id)
55
+
56
+ # Set of all special token indices
57
+ self.special_token_ids = set()
58
+ self.special_token_ids.add(pad_token_id)
59
+ self.special_token_ids.add(mask_token_id)
60
+ self.special_token_ids.add(bos_token_id)
61
+ self.special_token_ids.add(eos_token_id)
62
+ self.special_token_ids.add(unk_token_id)
63
+ if other_special_token_ids is not None:
64
+ self.special_token_ids.update(other_special_token_ids)
65
+
66
+ def __len__(self) -> int:
67
+ return len(self._token_to_id)
68
+
69
+ def token_to_id(self, token: str) -> int:
70
+ return self._token_to_id.get(token, self.unk_token_id)
71
+
72
+ def id_to_token(self, index: int) -> str:
73
+ return self._id_to_token.get(index, self.unk_token)
74
+
75
+ def encode(
76
+ self,
77
+ tokens: List[str],
78
+ max_length: Optional[int] = None,
79
+ add_special_tokens: bool = True,
80
+ random_truncate: bool = True,
81
+ **kwargs,
82
+ ) -> Union[List[int], Tensor]:
83
+ """Encodes a list of tokens into a list or tensor of token indices.
84
+
85
+ Args:
86
+ tokens (List[str]): Sequence of tokens to encode.
87
+ max_length (Optional[int], optional): Truncate the sequence to the specified length. Defaults to None.
88
+ add_special_tokens (bool, optional): Add special tokens <bos> and <eos> at the start and end.. Defaults to True.
89
+ random_truncate (bool, optional): Truncate the sequence to a random subsequence of if longer than truncate.
90
+ Defaults to True.
91
+
92
+ Returns:
93
+ Union[List[int], Tensor]: Token indices.
94
+ """
95
+ token_ids = list(map(self.token_to_id, tokens))
96
+ if add_special_tokens:
97
+ token_ids = [self.bos_token_id] + token_ids + [self.eos_token_id]
98
+ if max_length is not None and max_length < len(token_ids):
99
+ if random_truncate:
100
+ offset = int(torch.randint(0, len(token_ids) - max_length, (1,)).item())
101
+ else:
102
+ offset = 0
103
+ token_ids = token_ids[offset : offset + max_length]
104
+ return torch.as_tensor(token_ids, dtype=torch.long)
105
+
106
+ def decode(
107
+ self,
108
+ token_ids: List[int],
109
+ skip_special_tokens: bool = True,
110
+ **kwargs,
111
+ ) -> Union[List[str], str]:
112
+ """Decodes a list or tensor of token ids into a list or string of tokens.
113
+
114
+ Args:
115
+ token_ids (List[int]): Token indices to decode.
116
+ skip_special_tokens (bool, optional): Skip the special tokens <bos> and <eos> at the start and end.
117
+ Defaults to True.
118
+
119
+ Returns:
120
+ Union[List[str], str]: Protein.
121
+ """
122
+ if torch.is_tensor(token_ids):
123
+ token_ids = token_ids.tolist()
124
+
125
+ if skip_special_tokens:
126
+ if len(token_ids) > 0 and token_ids[0] in self.special_token_ids:
127
+ token_ids = token_ids[1:]
128
+ if len(token_ids) > 0 and token_ids[-1] in self.special_token_ids:
129
+ token_ids = token_ids[:-1]
130
+
131
+ tokens = " ".join(map(self.id_to_token, token_ids))
132
+
133
+ return tokens