{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7939553c97e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7939553c9870>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7939553c9900>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7939553c9990>", "_build": "<function ActorCriticPolicy._build at 0x7939553c9a20>", "forward": "<function ActorCriticPolicy.forward at 0x7939553c9ab0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7939553c9b40>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7939553c9bd0>", "_predict": "<function ActorCriticPolicy._predict at 0x7939553c9c60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7939553c9cf0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7939553c9d80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7939553c9e10>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x793955358fc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1721324487584948467, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGaoD7yPUmC6FxiLO0c6gbaWfnq7sWihugAAgD8AAIA/s5+EvVzDHronC0e7zcpeN1LuKro1DRo6AACAPwAAgD8Lwo6+edEwPyAIUz4gmbe+cj01vf0caD0AAAAAAAAAAAD+xzx7Vp66AnNju+2SXTdj0l86YM2+tgAAgD8AAIA/AKgAvnH+EbubLyA7PN1uOens9jsGrUm6AACAPwAAgD+N0Yk99gRiupHbwzo+CIA1hUZMOpC447kAAIA/AACAP+ZbDD1ap4k+h2+FO3yxLb6XWdw79z+FvQAAAAAAAAAAwPnLPcOZZboy2/q6yXaqNzgPADnod5M5AACAPwAAgD8zk7W6LqEXP0WgTj0vdW2+nZv2O4ME2TwAAAAAAAAAAM0qn7xIRYq6UsHfuoBYhraeXjg7q1//OQAAgD8AAIA/c4SAPa5VqboxDbI77w35N4a9f7raxgo1AACAPwAAgD+aBXg8jwIyuJYf3rvNUPs3sRggOv8YP7cAAIA/AACAPzNfeL3sqdy5sqjjt0Q6CrIM37y6ijAGNwAAgD8AAIA/s2tcvcP1YLpYCxM6qYUPNed0hbuxzyy5AACAPwAAgD8zl9s8XIsguqBh/ztEARg2EhJouk+rEDUAAIA/AACAP+Ynsj3XEyC5XG2CuwzvBT2xiFs7iguTuwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGbHFyq+8GuMAWyUTegDjAF0lEdAp27kyLyc1HV9lChoBkdAY1WBaLXL/2gHTegDaAhHQKdwgiqyWzF1fZQoaAZHQGSZ34bjtHBoB03oA2gIR0CncPcHnlnzdX2UKGgGR0BjghHNHH3laAdN6ANoCEdAp3HE+qzZ6HV9lChoBkdAR0/6wdKdx2gHS+poCEdAp3Lw++ueSXV9lChoBkdAY1oLehwl0GgHTegDaAhHQKd1vx6v7nB1fZQoaAZHQGGKd4VymyhoB03oA2gIR0CneLLm6oVEdX2UKGgGR0BhjjAxi5NHaAdN6ANoCEdAp3jfTTfBN3V9lChoBkdAZEJVZs9B8mgHTegDaAhHQKd+DAKOT7l1fZQoaAZHQFwm4nndO7BoB03oA2gIR0CnifE/jbSJdX2UKGgGR0BcSb0rbxmTaAdN6ANoCEdAp4rVanrIHXV9lChoBkdAZLu/wAlv62gHTegDaAhHQKeLO+gUUPB1fZQoaAZHQGJivbfxc3VoB03oA2gIR0Cnjla0QbuMdX2UKGgGR0Bk9aXfIjnnaAdN6ANoCEdAp5FZOtW+5HV9lChoBkdAZJkm+j/Mn2gHTegDaAhHQKeR0JUHY6J1fZQoaAZHQGVnwhOgxrVoB03oA2gIR0CnldiEYfnwdX2UKGgGR0Bhdmc2BJ7LaAdN6ANoCEdAp5bKADq4Y3V9lChoBkdAZQxJPqLS/mgHTegDaAhHQKeYBMt9QXR1fZQoaAZHQEUfBhQWN3poB0v8aAhHQKeYR9RaX8h1fZQoaAZHQGRnB5HEuQJoB03oA2gIR0CnmFoXj2i+dX2UKGgGR0BhTMLH+6y0aAdN6ANoCEdAp5jdmQKa5XV9lChoBkdAQveSbH6uXGgHTRIBaAhHQKeZMzdk8Rt1fZQoaAZHQGhbEUKzAvdoB03oA2gIR0CnmZ19nbqRdX2UKGgGR0BeYHxBmf5DaAdN6ANoCEdAp5t/4bjtHHV9lChoBkdAZFoTQmeDnWgHTegDaAhHQKed7U4rBj51fZQoaAZHQGPPA7YChexoB03oA2gIR0CnnhRmTTvzdX2UKGgGR0BEP9j5KvmpaAdL+2gIR0CnnztdiUgTdX2UKGgGR0BeL149ovi+aAdN6ANoCEdAp6PXZ26kI3V9lChoBkdAYvnxffGdZ2gHTegDaAhHQKenwguAZsN1fZQoaAZHQF95mpVCHARoB03oA2gIR0CnslScTakAdX2UKGgGR0Bk166e5Fw2aAdN6ANoCEdAp7KWNT987nV9lChoBkdAZs/hDw6QvGgHTegDaAhHQKe1D2AXl8x1fZQoaAZHQF7otxMnJDFoB03oA2gIR0CnvT9h7VridX2UKGgGR0BwispTdcjaaAdNrgNoCEdAp75B9kSVW3V9lChoBkdAZISjcEeQuGgHTegDaAhHQKe+Sk5ZKWd1fZQoaAZHQGHDyjpLVWloB03oA2gIR0Cnv4bMottidX2UKGgGR0BiwKySmqHXaAdN6ANoCEdAp7/nM0P6K3V9lChoBkdAZrvM8ox59mgHTegDaAhHQKfAvrY5DJF1fZQoaAZHQGBdXeN1hb5oB03oA2gIR0CnwTMgdOqOdX2UKGgGR0BiqdxsEaESaAdN6ANoCEdAp8SvMfRu0nV9lChoBkdAYvECCBf8dmgHTegDaAhHQKfHPErGza91fZQoaAZHQGKtCr92ovVoB03oA2gIR0Cnx2Ky4Wk8dX2UKGgGR0BhOuTgVGkOaAdN6ANoCEdAp8iJqj8DS3V9lChoBkdAXVUu14Pf9GgHTegDaAhHQKfL6CbMHKR1fZQoaAZHQEiTC66J66doB0vyaAhHQKfN9sbedkJ1fZQoaAZHQGXL15a/yoZoB03oA2gIR0CnzmvaL4vfdX2UKGgGR0BoQXD7655JaAdN6ANoCEdAp88F2icoY3V9lChoBkdAYjqID5j6N2gHTegDaAhHQKfPRzDn/1h1fZQoaAZHQGXkyBbwBo5oB03oA2gIR0Cn2uKL0jC6dX2UKGgGR0BD7Uo0ALiNaAdL7mgIR0Cn4DRzBAObdX2UKGgGR0BloQmE4//vaAdN6ANoCEdAp+P0WAPNFHV9lChoBkdAY5zSNOuaF2gHTegDaAhHQKfk7y925hB1fZQoaAZHQGN7YPXkHUtoB03oA2gIR0Cn5Pdp7CzkdX2UKGgGR0BinA3zcynDaAdN6ANoCEdAp+Y9cdHUdHV9lChoBkdAY4szNUwSJ2gHTegDaAhHQKfmgZWJaaF1fZQoaAZHQGZwBnjABT5oB03oA2gIR0Cn5yacqe9SdX2UKGgGR0BvLx1HOKO1aAdNbQNoCEdAp+dB4fOlf3V9lChoBkdAYuEVKPGQ0WgHTegDaAhHQKfnhqTKT0R1fZQoaAZHQHDvhoAXEZRoB017AmgIR0Cn6saxgRbsdX2UKGgGR0BQeH8baRISaAdL7mgIR0Cn6ubzkIX1dX2UKGgGR0Bj/E54nndPaAdN6ANoCEdAp+zZb+tKZnV9lChoBkdAXUvCpFTef2gHTegDaAhHQKfuPxffGdZ1fZQoaAZHQF4M4W1twaRoB03oA2gIR0Cn8cNVrAP/dX2UKGgGR0BjxNjurp7kaAdN6ANoCEdAp/REy1uzhXV9lChoBkdAYx1mLcbiqGgHTegDaAhHQKf03AnDziF1fZQoaAZHQGKPIToMa0hoB03oA2gIR0CoAzKCg9NfdX2UKGgGR0BhqZSJj2BbaAdN6ANoCEdAqAfS6UaAF3V9lChoBkdAZAjIJZ4fOmgHTegDaAhHQKgLt4D9wWF1fZQoaAZHQGPZXUhFEzBoB03oA2gIR0CoDPmhVU++dX2UKGgGR0BitdQO4G2UaAdN6ANoCEdAqA673oLXtnV9lChoBkdAZAbbKRuCPWgHTegDaAhHQKgPK1fE4vN1fZQoaAZHQGJfoS13MZBoB03oA2gIR0CoECZ8KG+LdX2UKGgGR0Bgg8R3/xUeaAdN6ANoCEdAqBBNd9lVcXV9lChoBkdAZmDzxwyZa2gHTegDaAhHQKgQqeFL39J1fZQoaAZHQGvlWEkB0ZFoB01oA2gIR0CoESmBFuvVdX2UKGgGR0BHK32/SH/MaAdL/2gIR0CoFBIpH7P6dX2UKGgGR0BktP/m1YyPaAdN6ANoCEdAqBRUVFhG6XV9lChoBkdAY5ZRD1Gsm2gHTegDaAhHQKgWRFTefqZ1fZQoaAZHQGEmsk6cRUZoB03oA2gIR0CoF7Nm+TNddX2UKGgGR0A7QAAAAAAAaAdNCwFoCEdAqBgVQj2SMnV9lChoBkdAZB7pSJj2BmgHTegDaAhHQKgbd0p3HJd1fZQoaAZHQGMfbWVeKKpoB03oA2gIR0CoHb8yvcJudX2UKGgGR0BcOrSVnmJWaAdN6ANoCEdAqB4+qkuYhXV9lChoBkdAZevTc6/7BWgHTegDaAhHQKgr+2FWXC11fZQoaAZHQGUvXhwVCX1oB03oA2gIR0CoMPJRXOnmdX2UKGgGR0BjagyGi5/caAdN6ANoCEdAqDXuReTmn3V9lChoBkdAZ5F8YyfthWgHTegDaAhHQKg3TY1YQrd1fZQoaAZHQGUl+/QBxPxoB03oA2gIR0CoN5m9pRGddX2UKGgGR0BjFsn9ehPCaAdN6ANoCEdAqDhSSHM2WXV9lChoBkdAZSiur6tT1mgHTegDaAhHQKg4bxkupS91fZQoaAZHQFyjtu1ndwhoB03oA2gIR0CoOLGIsRQKdX2UKGgGR0BhB63XqZ+haAdN6ANoCEdAqDus+u/1x3V9lChoBkdAZDVh86V+qmgHTegDaAhHQKg774j8k2R1fZQoaAZHQGX26akRBeJoB03oA2gIR0CoPc8CYCyRdX2UKGgGR0BJ3c8kleF+aAdL/WgIR0CoPlfAj6eodX2UKGgGR0BnFmP91loUaAdN6ANoCEdAqD841+AmRnV9lChoBkdAYgVLg4wRG2gHTegDaAhHQKg/nmRNh3J1fZQoaAZHQGXXML4N7SloB03oA2gIR0CoQ4vC2tuDdX2UKGgGR0BoAkXaakRBaAdN6ANoCEdAqEXSKLsKLXV9lChoBkdAZcV0JWvKU2gHTegDaAhHQKhGQAiFCcB1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |