|
|
|
|
|
import logging |
|
|
import math |
|
|
import os |
|
|
import cv2 |
|
|
import types |
|
|
from copy import deepcopy |
|
|
from functools import partial |
|
|
from einops import rearrange |
|
|
import numpy as np |
|
|
import torch |
|
|
|
|
|
import torch.distributed as dist |
|
|
from peft import set_peft_model_state_dict |
|
|
from decord import VideoReader |
|
|
from tqdm import tqdm |
|
|
import torch.nn.functional as F |
|
|
from .distributed.fsdp import shard_model |
|
|
from .distributed.sequence_parallel import sp_attn_forward, sp_dit_forward |
|
|
from .distributed.util import get_world_size |
|
|
|
|
|
from .modules.animate import WanAnimateModel |
|
|
from .modules.animate import CLIPModel |
|
|
from .modules.t5 import T5EncoderModel |
|
|
from .modules.vae2_1 import Wan2_1_VAE |
|
|
from .modules.animate.animate_utils import TensorList, get_loraconfig |
|
|
from .utils.fm_solvers import ( |
|
|
FlowDPMSolverMultistepScheduler, |
|
|
get_sampling_sigmas, |
|
|
retrieve_timesteps, |
|
|
) |
|
|
from .utils.fm_solvers_unipc import FlowUniPCMultistepScheduler |
|
|
|
|
|
|
|
|
|
|
|
class WanAnimate: |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
config, |
|
|
checkpoint_dir, |
|
|
device_id=0, |
|
|
rank=0, |
|
|
t5_fsdp=False, |
|
|
dit_fsdp=False, |
|
|
use_sp=False, |
|
|
t5_cpu=False, |
|
|
init_on_cpu=True, |
|
|
convert_model_dtype=False, |
|
|
use_relighting_lora=False |
|
|
): |
|
|
r""" |
|
|
Initializes the generation model components. |
|
|
|
|
|
Args: |
|
|
config (EasyDict): |
|
|
Object containing model parameters initialized from config.py |
|
|
checkpoint_dir (`str`): |
|
|
Path to directory containing model checkpoints |
|
|
device_id (`int`, *optional*, defaults to 0): |
|
|
Id of target GPU device |
|
|
rank (`int`, *optional*, defaults to 0): |
|
|
Process rank for distributed training |
|
|
t5_fsdp (`bool`, *optional*, defaults to False): |
|
|
Enable FSDP sharding for T5 model |
|
|
dit_fsdp (`bool`, *optional*, defaults to False): |
|
|
Enable FSDP sharding for DiT model |
|
|
use_sp (`bool`, *optional*, defaults to False): |
|
|
Enable distribution strategy of sequence parallel. |
|
|
t5_cpu (`bool`, *optional*, defaults to False): |
|
|
Whether to place T5 model on CPU. Only works without t5_fsdp. |
|
|
init_on_cpu (`bool`, *optional*, defaults to True): |
|
|
Enable initializing Transformer Model on CPU. Only works without FSDP or USP. |
|
|
convert_model_dtype (`bool`, *optional*, defaults to False): |
|
|
Convert DiT model parameters dtype to 'config.param_dtype'. |
|
|
Only works without FSDP. |
|
|
use_relighting_lora (`bool`, *optional*, defaults to False): |
|
|
Whether to use relighting lora for character replacement. |
|
|
""" |
|
|
self.device = torch.device(f"cuda:{device_id}") |
|
|
self.config = config |
|
|
self.rank = rank |
|
|
self.t5_cpu = t5_cpu |
|
|
self.init_on_cpu = init_on_cpu |
|
|
|
|
|
self.num_train_timesteps = config.num_train_timesteps |
|
|
self.param_dtype = config.param_dtype |
|
|
|
|
|
if t5_fsdp or dit_fsdp or use_sp: |
|
|
self.init_on_cpu = False |
|
|
|
|
|
shard_fn = partial(shard_model, device_id=device_id) |
|
|
self.text_encoder = T5EncoderModel( |
|
|
text_len=config.text_len, |
|
|
dtype=config.t5_dtype, |
|
|
device=torch.device('cpu'), |
|
|
checkpoint_path=os.path.join(checkpoint_dir, config.t5_checkpoint), |
|
|
tokenizer_path=os.path.join(checkpoint_dir, config.t5_tokenizer), |
|
|
shard_fn=shard_fn if t5_fsdp else None, |
|
|
) |
|
|
|
|
|
self.clip = CLIPModel( |
|
|
dtype=torch.float16, |
|
|
device=self.device, |
|
|
checkpoint_path=os.path.join(checkpoint_dir, |
|
|
config.clip_checkpoint), |
|
|
tokenizer_path=os.path.join(checkpoint_dir, config.clip_tokenizer)) |
|
|
|
|
|
self.vae = Wan2_1_VAE( |
|
|
vae_pth=os.path.join(checkpoint_dir, config.vae_checkpoint), |
|
|
device=self.device) |
|
|
|
|
|
logging.info(f"Creating WanAnimate from {checkpoint_dir}") |
|
|
|
|
|
if not dit_fsdp: |
|
|
self.noise_model = WanAnimateModel.from_pretrained( |
|
|
checkpoint_dir, |
|
|
torch_dtype=self.param_dtype, |
|
|
device_map=self.device) |
|
|
else: |
|
|
self.noise_model = WanAnimateModel.from_pretrained( |
|
|
checkpoint_dir, torch_dtype=self.param_dtype) |
|
|
|
|
|
self.noise_model = self._configure_model( |
|
|
model=self.noise_model, |
|
|
use_sp=use_sp, |
|
|
dit_fsdp=dit_fsdp, |
|
|
shard_fn=shard_fn, |
|
|
convert_model_dtype=convert_model_dtype, |
|
|
use_lora=use_relighting_lora, |
|
|
checkpoint_dir=checkpoint_dir, |
|
|
config=config |
|
|
) |
|
|
|
|
|
if use_sp: |
|
|
self.sp_size = get_world_size() |
|
|
else: |
|
|
self.sp_size = 1 |
|
|
|
|
|
self.sample_neg_prompt = config.sample_neg_prompt |
|
|
self.sample_prompt = config.prompt |
|
|
|
|
|
|
|
|
def _configure_model(self, model, use_sp, dit_fsdp, shard_fn, |
|
|
convert_model_dtype, use_lora, checkpoint_dir, config): |
|
|
""" |
|
|
Configures a model object. This includes setting evaluation modes, |
|
|
applying distributed parallel strategy, and handling device placement. |
|
|
|
|
|
Args: |
|
|
model (torch.nn.Module): |
|
|
The model instance to configure. |
|
|
use_sp (`bool`): |
|
|
Enable distribution strategy of sequence parallel. |
|
|
dit_fsdp (`bool`): |
|
|
Enable FSDP sharding for DiT model. |
|
|
shard_fn (callable): |
|
|
The function to apply FSDP sharding. |
|
|
convert_model_dtype (`bool`): |
|
|
Convert DiT model parameters dtype to 'config.param_dtype'. |
|
|
Only works without FSDP. |
|
|
|
|
|
Returns: |
|
|
torch.nn.Module: |
|
|
The configured model. |
|
|
""" |
|
|
model.eval().requires_grad_(False) |
|
|
|
|
|
if use_sp: |
|
|
for block in model.blocks: |
|
|
block.self_attn.forward = types.MethodType( |
|
|
sp_attn_forward, block.self_attn) |
|
|
|
|
|
model.use_context_parallel = True |
|
|
|
|
|
if dist.is_initialized(): |
|
|
dist.barrier() |
|
|
|
|
|
if use_lora: |
|
|
logging.info("Loading Relighting Lora. ") |
|
|
lora_config = get_loraconfig( |
|
|
transformer=model, |
|
|
rank=128, |
|
|
alpha=128 |
|
|
) |
|
|
model.add_adapter(lora_config) |
|
|
lora_path = os.path.join(checkpoint_dir, config.lora_checkpoint) |
|
|
peft_state_dict = torch.load(lora_path)["state_dict"] |
|
|
set_peft_model_state_dict(model, peft_state_dict) |
|
|
|
|
|
if dit_fsdp: |
|
|
model = shard_fn(model, use_lora=use_lora) |
|
|
else: |
|
|
if convert_model_dtype: |
|
|
model.to(self.param_dtype) |
|
|
if not self.init_on_cpu: |
|
|
model.to(self.device) |
|
|
|
|
|
return model |
|
|
|
|
|
def inputs_padding(self, array, target_len): |
|
|
idx = 0 |
|
|
flip = False |
|
|
target_array = [] |
|
|
while len(target_array) < target_len: |
|
|
target_array.append(deepcopy(array[idx])) |
|
|
if flip: |
|
|
idx -= 1 |
|
|
else: |
|
|
idx += 1 |
|
|
if idx == 0 or idx == len(array) - 1: |
|
|
flip = not flip |
|
|
return target_array[:target_len] |
|
|
|
|
|
def get_valid_len(self, real_len, clip_len=81, overlap=1): |
|
|
real_clip_len = clip_len - overlap |
|
|
last_clip_num = (real_len - overlap) % real_clip_len |
|
|
if last_clip_num == 0: |
|
|
extra = 0 |
|
|
else: |
|
|
extra = real_clip_len - last_clip_num |
|
|
target_len = real_len + extra |
|
|
return target_len |
|
|
|
|
|
|
|
|
def get_i2v_mask(self, lat_t, lat_h, lat_w, mask_len=1, mask_pixel_values=None, device="cuda"): |
|
|
if mask_pixel_values is None: |
|
|
msk = torch.zeros(1, (lat_t-1) * 4 + 1, lat_h, lat_w, device=device) |
|
|
else: |
|
|
msk = mask_pixel_values.clone() |
|
|
msk[:, :mask_len] = 1 |
|
|
msk = torch.concat([torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:]], dim=1) |
|
|
msk = msk.view(1, msk.shape[1] // 4, 4, lat_h, lat_w) |
|
|
msk = msk.transpose(1, 2)[0] |
|
|
return msk |
|
|
|
|
|
def padding_resize(self, img_ori, height=512, width=512, padding_color=(0, 0, 0), interpolation=cv2.INTER_LINEAR): |
|
|
ori_height = img_ori.shape[0] |
|
|
ori_width = img_ori.shape[1] |
|
|
channel = img_ori.shape[2] |
|
|
|
|
|
img_pad = np.zeros((height, width, channel)) |
|
|
if channel == 1: |
|
|
img_pad[:, :, 0] = padding_color[0] |
|
|
else: |
|
|
img_pad[:, :, 0] = padding_color[0] |
|
|
img_pad[:, :, 1] = padding_color[1] |
|
|
img_pad[:, :, 2] = padding_color[2] |
|
|
|
|
|
if (ori_height / ori_width) > (height / width): |
|
|
new_width = int(height / ori_height * ori_width) |
|
|
img = cv2.resize(img_ori, (new_width, height), interpolation=interpolation) |
|
|
padding = int((width - new_width) / 2) |
|
|
if len(img.shape) == 2: |
|
|
img = img[:, :, np.newaxis] |
|
|
img_pad[:, padding: padding + new_width, :] = img |
|
|
else: |
|
|
new_height = int(width / ori_width * ori_height) |
|
|
img = cv2.resize(img_ori, (width, new_height), interpolation=interpolation) |
|
|
padding = int((height - new_height) / 2) |
|
|
if len(img.shape) == 2: |
|
|
img = img[:, :, np.newaxis] |
|
|
img_pad[padding: padding + new_height, :, :] = img |
|
|
|
|
|
img_pad = np.uint8(img_pad) |
|
|
|
|
|
return img_pad |
|
|
|
|
|
def prepare_source(self, src_pose_path, src_face_path, src_ref_path): |
|
|
pose_video_reader = VideoReader(src_pose_path) |
|
|
pose_len = len(pose_video_reader) |
|
|
pose_idxs = list(range(pose_len)) |
|
|
cond_images = pose_video_reader.get_batch(pose_idxs).asnumpy() |
|
|
|
|
|
face_video_reader = VideoReader(src_face_path) |
|
|
face_len = len(face_video_reader) |
|
|
face_idxs = list(range(face_len)) |
|
|
face_images = face_video_reader.get_batch(face_idxs).asnumpy() |
|
|
height, width = cond_images[0].shape[:2] |
|
|
refer_images = cv2.imread(src_ref_path)[..., ::-1] |
|
|
refer_images = self.padding_resize(refer_images, height=height, width=width) |
|
|
return cond_images, face_images, refer_images |
|
|
|
|
|
def prepare_source_for_replace(self, src_bg_path, src_mask_path): |
|
|
bg_video_reader = VideoReader(src_bg_path) |
|
|
bg_len = len(bg_video_reader) |
|
|
bg_idxs = list(range(bg_len)) |
|
|
bg_images = bg_video_reader.get_batch(bg_idxs).asnumpy() |
|
|
|
|
|
mask_video_reader = VideoReader(src_mask_path) |
|
|
mask_len = len(mask_video_reader) |
|
|
mask_idxs = list(range(mask_len)) |
|
|
mask_images = mask_video_reader.get_batch(mask_idxs).asnumpy() |
|
|
mask_images = mask_images[:, :, :, 0] / 255 |
|
|
return bg_images, mask_images |
|
|
|
|
|
def generate( |
|
|
self, |
|
|
src_root_path, |
|
|
replace_flag=False, |
|
|
clip_len=77, |
|
|
refert_num=1, |
|
|
shift=5.0, |
|
|
sample_solver='dpm++', |
|
|
sampling_steps=20, |
|
|
guide_scale=1, |
|
|
input_prompt="", |
|
|
n_prompt="", |
|
|
seed=-1, |
|
|
offload_model=True, |
|
|
): |
|
|
r""" |
|
|
Generates video frames from input image using diffusion process. |
|
|
|
|
|
Args: |
|
|
src_root_path ('str'): |
|
|
Process output path |
|
|
replace_flag (`bool`, *optional*, defaults to False): |
|
|
Whether to use character replace. |
|
|
clip_len (`int`, *optional*, defaults to 77): |
|
|
How many frames to generate per clips. The number should be 4n+1 |
|
|
refert_num (`int`, *optional*, defaults to 1): |
|
|
How many frames used for temporal guidance. Recommended to be 1 or 5. |
|
|
shift (`float`, *optional*, defaults to 5.0): |
|
|
Noise schedule shift parameter. |
|
|
sample_solver (`str`, *optional*, defaults to 'dpm++'): |
|
|
Solver used to sample the video. |
|
|
sampling_steps (`int`, *optional*, defaults to 20): |
|
|
Number of diffusion sampling steps. Higher values improve quality but slow generation |
|
|
guide_scale (`float` or tuple[`float`], *optional*, defaults 1.0): |
|
|
Classifier-free guidance scale. We only use it for expression control. |
|
|
In most cases, it's not necessary and faster generation can be achieved without it. |
|
|
When expression adjustments are needed, you may consider using this feature. |
|
|
input_prompt (`str`): |
|
|
Text prompt for content generation. We don't recommend custom prompts (although they work) |
|
|
n_prompt (`str`, *optional*, defaults to ""): |
|
|
Negative prompt for content exclusion. If not given, use `config.sample_neg_prompt` |
|
|
seed (`int`, *optional*, defaults to -1): |
|
|
Random seed for noise generation. If -1, use random seed |
|
|
offload_model (`bool`, *optional*, defaults to True): |
|
|
If True, offloads models to CPU during generation to save VRAM |
|
|
|
|
|
Returns: |
|
|
torch.Tensor: |
|
|
Generated video frames tensor. Dimensions: (C, N, H, W) where: |
|
|
- C: Color channels (3 for RGB) |
|
|
- N: Number of frames |
|
|
- H: Frame height |
|
|
- W: Frame width |
|
|
""" |
|
|
assert refert_num == 1 or refert_num == 5, "refert_num should be 1 or 5." |
|
|
|
|
|
seed_g = torch.Generator(device=self.device) |
|
|
seed_g.manual_seed(seed) |
|
|
|
|
|
if n_prompt == "": |
|
|
n_prompt = self.sample_neg_prompt |
|
|
|
|
|
if input_prompt == "": |
|
|
input_prompt = self.sample_prompt |
|
|
|
|
|
src_pose_path = os.path.join(src_root_path, "src_pose.mp4") |
|
|
src_face_path = os.path.join(src_root_path, "src_face.mp4") |
|
|
src_ref_path = os.path.join(src_root_path, "src_ref.png") |
|
|
|
|
|
cond_images, face_images, refer_images = self.prepare_source(src_pose_path=src_pose_path, src_face_path=src_face_path, src_ref_path=src_ref_path) |
|
|
|
|
|
if not self.t5_cpu: |
|
|
self.text_encoder.model.to(self.device) |
|
|
context = self.text_encoder([input_prompt], self.device) |
|
|
context_null = self.text_encoder([n_prompt], self.device) |
|
|
if offload_model: |
|
|
self.text_encoder.model.cpu() |
|
|
else: |
|
|
context = self.text_encoder([input_prompt], torch.device('cpu')) |
|
|
context_null = self.text_encoder([n_prompt], torch.device('cpu')) |
|
|
context = [t.to(self.device) for t in context] |
|
|
context_null = [t.to(self.device) for t in context_null] |
|
|
|
|
|
real_frame_len = len(cond_images) |
|
|
target_len = self.get_valid_len(real_frame_len, clip_len, overlap=refert_num) |
|
|
logging.info('real frames: {} target frames: {}'.format(real_frame_len, target_len)) |
|
|
cond_images = self.inputs_padding(cond_images, target_len) |
|
|
face_images = self.inputs_padding(face_images, target_len) |
|
|
|
|
|
if replace_flag: |
|
|
src_bg_path = os.path.join(src_root_path, "src_bg.mp4") |
|
|
src_mask_path = os.path.join(src_root_path, "src_mask.mp4") |
|
|
bg_images, mask_images = self.prepare_source_for_replace(src_bg_path, src_mask_path) |
|
|
bg_images = self.inputs_padding(bg_images, target_len) |
|
|
mask_images = self.inputs_padding(mask_images, target_len) |
|
|
|
|
|
height, width = refer_images.shape[:2] |
|
|
start = 0 |
|
|
end = clip_len |
|
|
all_out_frames = [] |
|
|
while True: |
|
|
if start + refert_num >= len(cond_images): |
|
|
break |
|
|
|
|
|
if start == 0: |
|
|
mask_reft_len = 0 |
|
|
else: |
|
|
mask_reft_len = refert_num |
|
|
|
|
|
batch = { |
|
|
"conditioning_pixel_values": torch.zeros(1, 3, clip_len, height, width), |
|
|
"bg_pixel_values": torch.zeros(1, 3, clip_len, height, width), |
|
|
"mask_pixel_values": torch.zeros(1, 1, clip_len, height, width), |
|
|
"face_pixel_values": torch.zeros(1, 3, clip_len, 512, 512), |
|
|
"refer_pixel_values": torch.zeros(1, 3, height, width), |
|
|
"refer_t_pixel_values": torch.zeros(refert_num, 3, height, width) |
|
|
} |
|
|
|
|
|
batch["conditioning_pixel_values"] = rearrange( |
|
|
torch.tensor(np.stack(cond_images[start:end]) / 127.5 - 1), |
|
|
"t h w c -> 1 c t h w", |
|
|
) |
|
|
batch["face_pixel_values"] = rearrange( |
|
|
torch.tensor(np.stack(face_images[start:end]) / 127.5 - 1), |
|
|
"t h w c -> 1 c t h w", |
|
|
) |
|
|
|
|
|
batch["refer_pixel_values"] = rearrange( |
|
|
torch.tensor(refer_images / 127.5 - 1), "h w c -> 1 c h w" |
|
|
) |
|
|
|
|
|
if start > 0: |
|
|
batch["refer_t_pixel_values"] = rearrange( |
|
|
out_frames[0, :, -refert_num:].clone().detach(), |
|
|
"c t h w -> t c h w", |
|
|
) |
|
|
|
|
|
batch["refer_t_pixel_values"] = rearrange(batch["refer_t_pixel_values"], |
|
|
"t c h w -> 1 c t h w", |
|
|
) |
|
|
|
|
|
if replace_flag: |
|
|
batch["bg_pixel_values"] = rearrange( |
|
|
torch.tensor(np.stack(bg_images[start:end]) / 127.5 - 1), |
|
|
"t h w c -> 1 c t h w", |
|
|
) |
|
|
|
|
|
batch["mask_pixel_values"] = rearrange( |
|
|
torch.tensor(np.stack(mask_images[start:end])[:, :, :, None]), |
|
|
"t h w c -> 1 t c h w", |
|
|
) |
|
|
|
|
|
|
|
|
for key, value in batch.items(): |
|
|
if isinstance(value, torch.Tensor): |
|
|
batch[key] = value.to(device=self.device, dtype=torch.bfloat16) |
|
|
|
|
|
ref_pixel_values = batch["refer_pixel_values"] |
|
|
refer_t_pixel_values = batch["refer_t_pixel_values"] |
|
|
conditioning_pixel_values = batch["conditioning_pixel_values"] |
|
|
face_pixel_values = batch["face_pixel_values"] |
|
|
|
|
|
B, _, H, W = ref_pixel_values.shape |
|
|
T = clip_len |
|
|
lat_h = H // 8 |
|
|
lat_w = W // 8 |
|
|
lat_t = T // 4 + 1 |
|
|
target_shape = [lat_t + 1, lat_h, lat_w] |
|
|
noise = [ |
|
|
torch.randn( |
|
|
16, |
|
|
target_shape[0], |
|
|
target_shape[1], |
|
|
target_shape[2], |
|
|
dtype=torch.float32, |
|
|
device=self.device, |
|
|
generator=seed_g, |
|
|
) |
|
|
] |
|
|
|
|
|
max_seq_len = int(math.ceil(np.prod(target_shape) // 4 / self.sp_size)) * self.sp_size |
|
|
if max_seq_len % self.sp_size != 0: |
|
|
raise ValueError(f"max_seq_len {max_seq_len} is not divisible by sp_size {self.sp_size}") |
|
|
|
|
|
with ( |
|
|
torch.autocast(device_type=str(self.device), dtype=torch.bfloat16, enabled=True), |
|
|
torch.no_grad() |
|
|
): |
|
|
if sample_solver == 'unipc': |
|
|
sample_scheduler = FlowUniPCMultistepScheduler( |
|
|
num_train_timesteps=self.num_train_timesteps, |
|
|
shift=1, |
|
|
use_dynamic_shifting=False) |
|
|
sample_scheduler.set_timesteps( |
|
|
sampling_steps, device=self.device, shift=shift) |
|
|
timesteps = sample_scheduler.timesteps |
|
|
elif sample_solver == 'dpm++': |
|
|
sample_scheduler = FlowDPMSolverMultistepScheduler( |
|
|
num_train_timesteps=self.num_train_timesteps, |
|
|
shift=1, |
|
|
use_dynamic_shifting=False) |
|
|
sampling_sigmas = get_sampling_sigmas(sampling_steps, shift) |
|
|
timesteps, _ = retrieve_timesteps( |
|
|
sample_scheduler, |
|
|
device=self.device, |
|
|
sigmas=sampling_sigmas) |
|
|
else: |
|
|
raise NotImplementedError("Unsupported solver.") |
|
|
|
|
|
latents = noise |
|
|
|
|
|
pose_latents_no_ref = self.vae.encode(conditioning_pixel_values.to(torch.bfloat16)) |
|
|
pose_latents_no_ref = torch.stack(pose_latents_no_ref) |
|
|
pose_latents = torch.cat([pose_latents_no_ref], dim=2) |
|
|
|
|
|
ref_pixel_values = rearrange(ref_pixel_values, "t c h w -> 1 c t h w") |
|
|
ref_latents = self.vae.encode(ref_pixel_values.to(torch.bfloat16)) |
|
|
ref_latents = torch.stack(ref_latents) |
|
|
|
|
|
mask_ref = self.get_i2v_mask(1, lat_h, lat_w, 1, device=self.device) |
|
|
y_ref = torch.concat([mask_ref, ref_latents[0]]).to(dtype=torch.bfloat16, device=self.device) |
|
|
|
|
|
img = ref_pixel_values[0, :, 0] |
|
|
clip_context = self.clip.visual([img[:, None, :, :]]).to(dtype=torch.bfloat16, device=self.device) |
|
|
|
|
|
if mask_reft_len > 0: |
|
|
if replace_flag: |
|
|
bg_pixel_values = batch["bg_pixel_values"] |
|
|
y_reft = self.vae.encode( |
|
|
[ |
|
|
torch.concat([refer_t_pixel_values[0, :, :mask_reft_len], bg_pixel_values[0, :, mask_reft_len:]], dim=1).to(self.device) |
|
|
] |
|
|
)[0] |
|
|
mask_pixel_values = 1 - batch["mask_pixel_values"] |
|
|
mask_pixel_values = rearrange(mask_pixel_values, "b t c h w -> (b t) c h w") |
|
|
mask_pixel_values = F.interpolate(mask_pixel_values, size=(H//8, W//8), mode='nearest') |
|
|
mask_pixel_values = rearrange(mask_pixel_values, "(b t) c h w -> b t c h w", b=1)[:,:,0] |
|
|
msk_reft = self.get_i2v_mask(lat_t, lat_h, lat_w, mask_reft_len, mask_pixel_values=mask_pixel_values, device=self.device) |
|
|
else: |
|
|
y_reft = self.vae.encode( |
|
|
[ |
|
|
torch.concat( |
|
|
[ |
|
|
torch.nn.functional.interpolate(refer_t_pixel_values[0, :, :mask_reft_len].cpu(), |
|
|
size=(H, W), mode="bicubic"), |
|
|
torch.zeros(3, T - mask_reft_len, H, W), |
|
|
], |
|
|
dim=1, |
|
|
).to(self.device) |
|
|
] |
|
|
)[0] |
|
|
msk_reft = self.get_i2v_mask(lat_t, lat_h, lat_w, mask_reft_len, device=self.device) |
|
|
else: |
|
|
if replace_flag: |
|
|
bg_pixel_values = batch["bg_pixel_values"] |
|
|
mask_pixel_values = 1 - batch["mask_pixel_values"] |
|
|
mask_pixel_values = rearrange(mask_pixel_values, "b t c h w -> (b t) c h w") |
|
|
mask_pixel_values = F.interpolate(mask_pixel_values, size=(H//8, W//8), mode='nearest') |
|
|
mask_pixel_values = rearrange(mask_pixel_values, "(b t) c h w -> b t c h w", b=1)[:,:,0] |
|
|
y_reft = self.vae.encode( |
|
|
[ |
|
|
torch.concat( |
|
|
[ |
|
|
bg_pixel_values[0], |
|
|
], |
|
|
dim=1, |
|
|
).to(self.device) |
|
|
] |
|
|
)[0] |
|
|
msk_reft = self.get_i2v_mask(lat_t, lat_h, lat_w, mask_reft_len, mask_pixel_values=mask_pixel_values, device=self.device) |
|
|
else: |
|
|
y_reft = self.vae.encode( |
|
|
[ |
|
|
torch.concat( |
|
|
[ |
|
|
torch.zeros(3, T - mask_reft_len, H, W), |
|
|
], |
|
|
dim=1, |
|
|
).to(self.device) |
|
|
] |
|
|
)[0] |
|
|
msk_reft = self.get_i2v_mask(lat_t, lat_h, lat_w, mask_reft_len, device=self.device) |
|
|
|
|
|
y_reft = torch.concat([msk_reft, y_reft]).to(dtype=torch.bfloat16, device=self.device) |
|
|
y = torch.concat([y_ref, y_reft], dim=1) |
|
|
|
|
|
arg_c = { |
|
|
"context": context, |
|
|
"seq_len": max_seq_len, |
|
|
"clip_fea": clip_context.to(dtype=torch.bfloat16, device=self.device), |
|
|
"y": [y], |
|
|
"pose_latents": pose_latents, |
|
|
"face_pixel_values": face_pixel_values, |
|
|
} |
|
|
|
|
|
if guide_scale > 1: |
|
|
face_pixel_values_uncond = face_pixel_values * 0 - 1 |
|
|
arg_null = { |
|
|
"context": context_null, |
|
|
"seq_len": max_seq_len, |
|
|
"clip_fea": clip_context.to(dtype=torch.bfloat16, device=self.device), |
|
|
"y": [y], |
|
|
"pose_latents": pose_latents, |
|
|
"face_pixel_values": face_pixel_values_uncond, |
|
|
} |
|
|
|
|
|
for i, t in enumerate(tqdm(timesteps)): |
|
|
latent_model_input = latents |
|
|
timestep = [t] |
|
|
|
|
|
timestep = torch.stack(timestep) |
|
|
|
|
|
noise_pred_cond = TensorList( |
|
|
self.noise_model(TensorList(latent_model_input), t=timestep, **arg_c) |
|
|
) |
|
|
|
|
|
if guide_scale > 1: |
|
|
noise_pred_uncond = TensorList( |
|
|
self.noise_model( |
|
|
TensorList(latent_model_input), t=timestep, **arg_null |
|
|
) |
|
|
) |
|
|
noise_pred = noise_pred_uncond + guide_scale * ( |
|
|
noise_pred_cond - noise_pred_uncond |
|
|
) |
|
|
else: |
|
|
noise_pred = noise_pred_cond |
|
|
|
|
|
temp_x0 = sample_scheduler.step( |
|
|
noise_pred[0].unsqueeze(0), |
|
|
t, |
|
|
latents[0].unsqueeze(0), |
|
|
return_dict=False, |
|
|
generator=seed_g, |
|
|
)[0] |
|
|
latents[0] = temp_x0.squeeze(0) |
|
|
|
|
|
x0 = latents |
|
|
|
|
|
x0 = [x.to(dtype=torch.float32) for x in x0] |
|
|
out_frames = torch.stack(self.vae.decode([x0[0][:, 1:]])) |
|
|
|
|
|
if start != 0: |
|
|
out_frames = out_frames[:, :, refert_num:] |
|
|
|
|
|
all_out_frames.append(out_frames.cpu()) |
|
|
|
|
|
start += clip_len - refert_num |
|
|
end += clip_len - refert_num |
|
|
|
|
|
videos = torch.cat(all_out_frames, dim=2)[:, :, :real_frame_len] |
|
|
return videos[0] if self.rank == 0 else None |
|
|
|