Upload folder using huggingface_hub
Browse files- .ipynb_checkpoints/README-checkpoint.md +111 -0
- 1_Pooling/config.json +7 -0
- README.md +111 -3
- config.json +32 -0
- config_sentence_transformers.json +7 -0
- modules.json +14 -0
- pytorch_model.bin +3 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +58 -0
- vocab.txt +0 -0
.ipynb_checkpoints/README-checkpoint.md
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-4.0
|
3 |
+
language:
|
4 |
+
- az
|
5 |
+
metrics:
|
6 |
+
- pearsonr
|
7 |
+
base_model:
|
8 |
+
- sentence-transformers/LaBSE
|
9 |
+
pipeline_tag: sentence-similarity
|
10 |
+
widget:
|
11 |
+
- source_sentence: Bu xoşbəxt bir insandır
|
12 |
+
sentences:
|
13 |
+
- Bu xoşbəxt bir itdir
|
14 |
+
- Bu çox xoşbəxt bir insandır
|
15 |
+
- Bu gün günəşli bir gündür
|
16 |
+
example_title: Sentence Similarity
|
17 |
+
tags:
|
18 |
+
- labse
|
19 |
+
---
|
20 |
+
|
21 |
+
# TEmA-small
|
22 |
+
|
23 |
+
This model is a fine-tuned version of the [LaBSE](https://huggingface.co/sentence-transformers/LaBSE), which is specialized for sentence similarity tasks in Azerbaijan texts.
|
24 |
+
It maps sentences and paragraphs to a 768-dimensional dense vector space, useful for tasks like clustering, semantic search, and more.
|
25 |
+
|
26 |
+
|
27 |
+
|
28 |
+
|
29 |
+
## Benchmark Results
|
30 |
+
|
31 |
+
| STSBenchmark | biosses-sts | sickr-sts | sts12-sts | sts13-sts | sts15-sts | sts16-sts | Average Pearson | Model |
|
32 |
+
|--------------|-------------|-----------|-----------|-----------|-----------|-----------|-----------------|------------------------------------|
|
33 |
+
| 0.8253 | 0.7859 | 0.7924 | 0.8444 | 0.7490 | 0.8141 | 0.7600 | 0.7959 | TEmA-small |
|
34 |
+
| 0.7872 | 0.8303 | 0.7801 | 0.7978 | 0.6963 | 0.8052 | 0.7794 | 0.7823 | Cohere/embed-multilingual-v3.0 |
|
35 |
+
| 0.7927 | 0.6672 | 0.7758 | 0.8122 | 0.7312 | 0.7831 | 0.7416 | 0.7577 | BAAI/bge-m3 |
|
36 |
+
| 0.7572 | 0.8139 | 0.7328 | 0.7646 | 0.6318 | 0.7542 | 0.7092 | 0.7377 | intfloat/multilingual-e5-large-instruct |
|
37 |
+
| 0.7400 | 0.8216 | 0.6946 | 0.7098 | 0.6781 | 0.7637 | 0.7222 | 0.7329 | labse_stripped |
|
38 |
+
| 0.7485 | 0.7714 | 0.7271 | 0.7170 | 0.6496 | 0.7570 | 0.7255 | 0.7280 | intfloat/multilingual-e5-large |
|
39 |
+
| 0.7245 | 0.8237 | 0.6839 | 0.6570 | 0.7125 | 0.7612 | 0.7386 | 0.7288 | OpenAI/text-embedding-3-large |
|
40 |
+
| 0.7363 | 0.8148 | 0.7067 | 0.7050 | 0.6535 | 0.7514 | 0.7070 | 0.7250 | sentence-transformers/LaBSE |
|
41 |
+
| 0.7376 | 0.7917 | 0.7190 | 0.7441 | 0.6286 | 0.7461 | 0.7026 | 0.7242 | intfloat/multilingual-e5-small |
|
42 |
+
| 0.7192 | 0.8198 | 0.7160 | 0.7338 | 0.5815 | 0.7318 | 0.6973 | 0.7142 | Cohere/embed-multilingual-light-v3.0 |
|
43 |
+
| 0.6960 | 0.8185 | 0.6950 | 0.6752 | 0.5899 | 0.7186 | 0.6790 | 0.6960 | intfloat/multilingual-e5-base |
|
44 |
+
| 0.5830 | 0.2486 | 0.5921 | 0.5593 | 0.5559 | 0.5404 | 0.5289 | 0.5155 | antoinelouis/colbert-xm |
|
45 |
+
|
46 |
+
|
47 |
+
[STS-Benchmark](https://github.com/LocalDoc-Azerbaijan/STS-Benchmark)
|
48 |
+
|
49 |
+
|
50 |
+
|
51 |
+
|
52 |
+
## Accuracy Results
|
53 |
+
- **Cosine Distance:** 96.63
|
54 |
+
- **Manhattan Distance:** 96.52
|
55 |
+
- **Euclidean Distance:** 96.57
|
56 |
+
|
57 |
+
|
58 |
+
|
59 |
+
|
60 |
+
## Usage
|
61 |
+
|
62 |
+
```python
|
63 |
+
from transformers import AutoTokenizer, AutoModel
|
64 |
+
import torch
|
65 |
+
|
66 |
+
# Mean Pooling - Take attention mask into account for correct averaging
|
67 |
+
def mean_pooling(model_output, attention_mask):
|
68 |
+
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
69 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
70 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
71 |
+
|
72 |
+
# Function to normalize embeddings
|
73 |
+
def normalize_embeddings(embeddings):
|
74 |
+
return embeddings / embeddings.norm(dim=1, keepdim=True)
|
75 |
+
|
76 |
+
# Sentences we want embeddings for
|
77 |
+
sentences = [
|
78 |
+
"Bu xoşbəxt bir insandır",
|
79 |
+
"Bu çox xoşbəxt bir insandır",
|
80 |
+
"Bu gün günəşli bir gündür"
|
81 |
+
]
|
82 |
+
|
83 |
+
# Load model from HuggingFace Hub
|
84 |
+
tokenizer = AutoTokenizer.from_pretrained('LocalDoc/TEmA-small')
|
85 |
+
model = AutoModel.from_pretrained('LocalDoc/TEmA-small')
|
86 |
+
|
87 |
+
# Tokenize sentences
|
88 |
+
encoded_input = tokenizer(sentences, padding=True, truncation=True, max_length=128, return_tensors='pt')
|
89 |
+
|
90 |
+
# Compute token embeddings
|
91 |
+
with torch.no_grad():
|
92 |
+
model_output = model(**encoded_input)
|
93 |
+
|
94 |
+
# Perform pooling
|
95 |
+
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
96 |
+
|
97 |
+
# Normalize embeddings
|
98 |
+
sentence_embeddings = normalize_embeddings(sentence_embeddings)
|
99 |
+
|
100 |
+
# Calculate cosine similarities
|
101 |
+
cosine_similarities = torch.nn.functional.cosine_similarity(
|
102 |
+
sentence_embeddings[0].unsqueeze(0),
|
103 |
+
sentence_embeddings[1:],
|
104 |
+
dim=1
|
105 |
+
)
|
106 |
+
|
107 |
+
print("Cosine Similarities:")
|
108 |
+
for i, score in enumerate(cosine_similarities):
|
109 |
+
print(f"Sentence 1 <-> Sentence {i+2}: {score:.4f}")
|
110 |
+
```
|
111 |
+
|
1_Pooling/config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false
|
7 |
+
}
|
README.md
CHANGED
@@ -1,3 +1,111 @@
|
|
1 |
-
---
|
2 |
-
license: cc-by-4.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-4.0
|
3 |
+
language:
|
4 |
+
- az
|
5 |
+
metrics:
|
6 |
+
- pearsonr
|
7 |
+
base_model:
|
8 |
+
- sentence-transformers/LaBSE
|
9 |
+
pipeline_tag: sentence-similarity
|
10 |
+
widget:
|
11 |
+
- source_sentence: Bu xoşbəxt bir insandır
|
12 |
+
sentences:
|
13 |
+
- Bu xoşbəxt bir itdir
|
14 |
+
- Bu çox xoşbəxt bir insandır
|
15 |
+
- Bu gün günəşli bir gündür
|
16 |
+
example_title: Sentence Similarity
|
17 |
+
tags:
|
18 |
+
- labse
|
19 |
+
---
|
20 |
+
|
21 |
+
# TEmA-small
|
22 |
+
|
23 |
+
This model is a fine-tuned version of the [LaBSE](https://huggingface.co/sentence-transformers/LaBSE), which is specialized for sentence similarity tasks in Azerbaijan texts.
|
24 |
+
It maps sentences and paragraphs to a 768-dimensional dense vector space, useful for tasks like clustering, semantic search, and more.
|
25 |
+
|
26 |
+
|
27 |
+
|
28 |
+
|
29 |
+
## Benchmark Results
|
30 |
+
|
31 |
+
| STSBenchmark | biosses-sts | sickr-sts | sts12-sts | sts13-sts | sts15-sts | sts16-sts | Average Pearson | Model |
|
32 |
+
|--------------|-------------|-----------|-----------|-----------|-----------|-----------|-----------------|------------------------------------|
|
33 |
+
| 0.8253 | 0.7859 | 0.7924 | 0.8444 | 0.7490 | 0.8141 | 0.7600 | 0.7959 | TEmA-small |
|
34 |
+
| 0.7872 | 0.8303 | 0.7801 | 0.7978 | 0.6963 | 0.8052 | 0.7794 | 0.7823 | Cohere/embed-multilingual-v3.0 |
|
35 |
+
| 0.7927 | 0.6672 | 0.7758 | 0.8122 | 0.7312 | 0.7831 | 0.7416 | 0.7577 | BAAI/bge-m3 |
|
36 |
+
| 0.7572 | 0.8139 | 0.7328 | 0.7646 | 0.6318 | 0.7542 | 0.7092 | 0.7377 | intfloat/multilingual-e5-large-instruct |
|
37 |
+
| 0.7400 | 0.8216 | 0.6946 | 0.7098 | 0.6781 | 0.7637 | 0.7222 | 0.7329 | labse_stripped |
|
38 |
+
| 0.7485 | 0.7714 | 0.7271 | 0.7170 | 0.6496 | 0.7570 | 0.7255 | 0.7280 | intfloat/multilingual-e5-large |
|
39 |
+
| 0.7245 | 0.8237 | 0.6839 | 0.6570 | 0.7125 | 0.7612 | 0.7386 | 0.7288 | OpenAI/text-embedding-3-large |
|
40 |
+
| 0.7363 | 0.8148 | 0.7067 | 0.7050 | 0.6535 | 0.7514 | 0.7070 | 0.7250 | sentence-transformers/LaBSE |
|
41 |
+
| 0.7376 | 0.7917 | 0.7190 | 0.7441 | 0.6286 | 0.7461 | 0.7026 | 0.7242 | intfloat/multilingual-e5-small |
|
42 |
+
| 0.7192 | 0.8198 | 0.7160 | 0.7338 | 0.5815 | 0.7318 | 0.6973 | 0.7142 | Cohere/embed-multilingual-light-v3.0 |
|
43 |
+
| 0.6960 | 0.8185 | 0.6950 | 0.6752 | 0.5899 | 0.7186 | 0.6790 | 0.6960 | intfloat/multilingual-e5-base |
|
44 |
+
| 0.5830 | 0.2486 | 0.5921 | 0.5593 | 0.5559 | 0.5404 | 0.5289 | 0.5155 | antoinelouis/colbert-xm |
|
45 |
+
|
46 |
+
|
47 |
+
[STS-Benchmark](https://github.com/LocalDoc-Azerbaijan/STS-Benchmark)
|
48 |
+
|
49 |
+
|
50 |
+
|
51 |
+
|
52 |
+
## Accuracy Results
|
53 |
+
- **Cosine Distance:** 96.63
|
54 |
+
- **Manhattan Distance:** 96.52
|
55 |
+
- **Euclidean Distance:** 96.57
|
56 |
+
|
57 |
+
|
58 |
+
|
59 |
+
|
60 |
+
## Usage
|
61 |
+
|
62 |
+
```python
|
63 |
+
from transformers import AutoTokenizer, AutoModel
|
64 |
+
import torch
|
65 |
+
|
66 |
+
# Mean Pooling - Take attention mask into account for correct averaging
|
67 |
+
def mean_pooling(model_output, attention_mask):
|
68 |
+
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
69 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
70 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
71 |
+
|
72 |
+
# Function to normalize embeddings
|
73 |
+
def normalize_embeddings(embeddings):
|
74 |
+
return embeddings / embeddings.norm(dim=1, keepdim=True)
|
75 |
+
|
76 |
+
# Sentences we want embeddings for
|
77 |
+
sentences = [
|
78 |
+
"Bu xoşbəxt bir insandır",
|
79 |
+
"Bu çox xoşbəxt bir insandır",
|
80 |
+
"Bu gün günəşli bir gündür"
|
81 |
+
]
|
82 |
+
|
83 |
+
# Load model from HuggingFace Hub
|
84 |
+
tokenizer = AutoTokenizer.from_pretrained('LocalDoc/TEmA-small')
|
85 |
+
model = AutoModel.from_pretrained('LocalDoc/TEmA-small')
|
86 |
+
|
87 |
+
# Tokenize sentences
|
88 |
+
encoded_input = tokenizer(sentences, padding=True, truncation=True, max_length=128, return_tensors='pt')
|
89 |
+
|
90 |
+
# Compute token embeddings
|
91 |
+
with torch.no_grad():
|
92 |
+
model_output = model(**encoded_input)
|
93 |
+
|
94 |
+
# Perform pooling
|
95 |
+
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
96 |
+
|
97 |
+
# Normalize embeddings
|
98 |
+
sentence_embeddings = normalize_embeddings(sentence_embeddings)
|
99 |
+
|
100 |
+
# Calculate cosine similarities
|
101 |
+
cosine_similarities = torch.nn.functional.cosine_similarity(
|
102 |
+
sentence_embeddings[0].unsqueeze(0),
|
103 |
+
sentence_embeddings[1:],
|
104 |
+
dim=1
|
105 |
+
)
|
106 |
+
|
107 |
+
print("Cosine Similarities:")
|
108 |
+
for i, score in enumerate(cosine_similarities):
|
109 |
+
print(f"Sentence 1 <-> Sentence {i+2}: {score:.4f}")
|
110 |
+
```
|
111 |
+
|
config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/root/.cache/torch/sentence_transformers/LocalDoc_LaBSE-small-AZ",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"directionality": "bidi",
|
9 |
+
"gradient_checkpointing": false,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 768,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 3072,
|
15 |
+
"layer_norm_eps": 1e-12,
|
16 |
+
"max_position_embeddings": 512,
|
17 |
+
"model_type": "bert",
|
18 |
+
"num_attention_heads": 12,
|
19 |
+
"num_hidden_layers": 12,
|
20 |
+
"pad_token_id": 0,
|
21 |
+
"pooler_fc_size": 768,
|
22 |
+
"pooler_num_attention_heads": 12,
|
23 |
+
"pooler_num_fc_layers": 3,
|
24 |
+
"pooler_size_per_head": 128,
|
25 |
+
"pooler_type": "first_token_transform",
|
26 |
+
"position_embedding_type": "absolute",
|
27 |
+
"torch_dtype": "float32",
|
28 |
+
"transformers_version": "4.30.2",
|
29 |
+
"type_vocab_size": 2,
|
30 |
+
"use_cache": true,
|
31 |
+
"vocab_size": 72164
|
32 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.2.2",
|
4 |
+
"transformers": "4.30.2",
|
5 |
+
"pytorch": "2.5.1+cu124"
|
6 |
+
}
|
7 |
+
}
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e5a2034a34ddddc9b978c4d32a8b5d422f944f3486c9aa4c03711074cfc3ea2
|
3 |
+
size 565924842
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 128,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": false,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": false,
|
48 |
+
"full_tokenizer_file": null,
|
49 |
+
"mask_token": "[MASK]",
|
50 |
+
"model_max_length": 512,
|
51 |
+
"never_split": null,
|
52 |
+
"pad_token": "[PAD]",
|
53 |
+
"sep_token": "[SEP]",
|
54 |
+
"strip_accents": null,
|
55 |
+
"tokenize_chinese_chars": true,
|
56 |
+
"tokenizer_class": "BertTokenizer",
|
57 |
+
"unk_token": "[UNK]"
|
58 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|