LizardAPN commited on
Commit
1c6b301
·
verified ·
1 Parent(s): e5b435c

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 295.04 +/- 15.45
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 271.30 +/- 18.32
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7843b3877240>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7843b38772e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7843b3877380>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7843b3877420>", "_build": "<function ActorCriticPolicy._build at 0x7843b38774c0>", "forward": "<function ActorCriticPolicy.forward at 0x7843b3877560>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7843b3877600>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7843b38776a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7843b3877740>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7843b38777e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7843b3877880>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7843b3877920>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7843b39f9dc0>"}, "verbose": 1, "policy_kwargs": {"net_arch": {"pi": [256, 256, 256], "vf": [256, 256, 256]}}, "num_timesteps": 3014656, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1754572684030907663, "learning_rate": 0.00037830493437036866, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdgIAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAAIAAAAAAAAzNwC8pGZNu/J9crwDxoy+tWBxO1ahu70AAAAAAACAPz0HYb6oCOc+SqbrPhrxFL+3cRq+XvrDPgAAAAAAAAAAAODBur0jcD9yo6g7OzBgv6cdt7yjhb29AAAAAAAAAADmbAm9z64PvOs9/T2D6aa9Y8z2vKfrGL8AAIA/AACAP81yjjwUDJW6P/89vFAK+7x8DsW7iDHbvQAAAAAAAIA/ZgB7vB81g7kk4i07yZSLuRYaLbu+tEa6AACAPwAAgD8Aj+c8w818uq+uTDn3Fe8zN8ylu5pqcbgAAIA/AACAP2ZWmLrXEjC7AGuqPWStiL7ndDs86+rGvgAAAAAAAIA/AKSGPCn8ZzlVDwQ4e40mM5PQALyuvx63AACAPwAAgD/aloA9I8bxPnLsbrxb3y6/A0nUPRDt2r0AAAAAAAAAAEDKFD5JBC494PPevqyBmb5O3u29xzmgvQAAAAAAAAAAzQymPK6xp7rwO1s7QavvNCM2Grqgl+EzAACAPwAAgD8AbtI8j74/urVz5rSa2nivytkhOhmRQTQAAIA/AACAP+o+kT5GL4Q/O9itPlUWG7+VnBs/EdQcPgAAAAAAAAAATUW+PbrWxj5Fef08WnsXvwKhRj4MNEu9AAAAAAAAAABmzMM87PGyub2ITjccUzgy63srO4WYbrYAAIA/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsIhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVhAAAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksQhZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVEQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGAwBtDUmWMAWyUTSYBjAF0lEdAs+PtoM8YAXV9lChoBkdAcPOW8h9srWgHS+doCEdAs+Q9rdnCf3V9lChoBkdAcBZAJb+tKmgHTQUBaAhHQLPkZX9zfaZ1fZQoaAZHQHJ9cFUyYXxoB0uxaAhHQLPkctjCpFV1fZQoaAZHQHEnMzZYgaFoB01GAWgIR0Cz5JiprDZUdX2UKGgGR0BvuE8TzundaAdLnmgIR0Cz5S85bQkYdX2UKGgGR0BweMJ2MbWFaAdNVwJoCEdAs+WA2bXpW3V9lChoBkdAcU9eVs1sL2gHTQcBaAhHQLPl0RujynV1fZQoaAZHQHEOg2qDK5loB00NAWgIR0Cz5eOh9LHudX2UKGgGR0Bw9MXDWK/EaAdNpQFoCEdAs+XmKziS73V9lChoBkdAcO1JEH+qBGgHS5poCEdAs+XwR+SbIHV9lChoBkdAcGAgzP8htGgHS/1oCEdAs+bCPdVNpXV9lChoBkdAc5eASWZ7X2gHS9hoCEdAs+bOCUX533V9lChoBkdAcc59HMEA52gHS/BoCEdAs+bOPzWf9XV9lChoBkdAc6/9Jz1bq2gHTVQBaAhHQLPnSldkauR1fZQoaAZHQHAdcB2fTThoB03pAWgIR0Cz55HktEofdX2UKGgGR0Bx2Mh9srNGaAdLomgIR0Cz56ZXdTHbdX2UKGgGR0ByJ3R4QjD9aAdNmgFoCEdAs+e5/8VHnXV9lChoBkdAccIP0I1LrWgHTYEBaAhHQLPnvFYdQwd1fZQoaAZHQHEL0xM36yloB0vRaAhHQLPnvNZeRgZ1fZQoaAZHQHGAYcebNKRoB02+AWgIR0Cz59qeK8+SdX2UKGgGR0BvO2zfJmulaAdLu2gIR0Cz59z37DVIdX2UKGgGR0BwnPFOwgTzaAdLzGgIR0Cz6AidOIqLdX2UKGgGR0BySGYx+KCQaAdL32gIR0Cz6BhaTwDvdX2UKGgGR0By4dgSeyzHaAdNBQJoCEdAs+gctNBWxXV9lChoBkdAcgfD/EOy3WgHTZUCaAhHQLPoNctGus91fZQoaAZHQHRH7YbsF+xoB004AWgIR0Cz6E690zTGdX2UKGgGR0BxVprRBu4xaAdLoGgIR0Cz6P5azNUwdX2UKGgGR0Bx0zI/7iyZaAdLzGgIR0Cz6QNpEhJRdX2UKGgGR0BzCQ+Sr5qNaAdNCwFoCEdAs+kvKYAsCnV9lChoBkdAciwbW3BpH2gHS8toCEdAs+ljst03fnV9lChoBkdAcclfGdZq22gHS+NoCEdAs+l4oqkM1HV9lChoBkdAcoQ/8VHnU2gHTT8BaAhHQLPppyd4FA51fZQoaAZHQHC17mZE2HdoB0vWaAhHQLPpp1Nxlxx1fZQoaAZHQHPZDKPn0TVoB0vNaAhHQLPp2VENOM51fZQoaAZHQHJbJOafBepoB01lAWgIR0Cz6gVIuoP1dX2UKGgGR0BxbFWCEpRXaAdL82gIR0Cz6hu5BkZrdX2UKGgGR0BzP/5hz/6waAdL/WgIR0Cz6j92C/XYdX2UKGgGR0ByG9Esrd30aAdL8GgIR0Cz6kVfeDWcdX2UKGgGR0Byy3+hoM8YaAdNLwFoCEdAs+pLh86V+3V9lChoBkdAcjOpEhJRO2gHS7JoCEdAs+rB4u9OAXV9lChoBkdAcIFf8uSOimgHS6doCEdAs+racd5prXV9lChoBkdAcdzagVXV9WgHS5RoCEdAs+rqMQ2/BXV9lChoBkdATR1NnGsFMmgHS4ZoCEdAs+r9rgwXZXV9lChoBkdAc7cRgqmTDGgHTZABaAhHQLPrCz/ZM+N1fZQoaAZHQHJ+qQ7tAs1oB0u5aAhHQLPrOZK3/gl1fZQoaAZHQHH43KOktVdoB00SAWgIR0Cz62cQmNR4dX2UKGgGR0ByWRorWiDeaAdL5GgIR0Cz63F9fCyhdX2UKGgGR0BzXeR3eN1haAdN0QFoCEdAs+vRLrX18XV9lChoBkdAcjDtTUAks2gHS7doCEdAs+vYAsCkoHV9lChoBkdAcjzD3/Pw/mgHS5poCEdAs+wkcCHRC3V9lChoBkdAcb99sabWmWgHTb8BaAhHQLPsRdS2php1fZQoaAZHQHFoMK5TZQJoB00BAWgIR0Cz7L16Z6UrdX2UKGgGR0Bwno7QswtbaAdLsmgIR0Cz7MdehPCVdX2UKGgGR0Bxt+PXCj1xaAdNHQFoCEdAs+0DKOktVnV9lChoBkdAUKsdlum78WgHS19oCEdAs+1vG6wt8XV9lChoBkdAcy2/YraufWgHTWABaAhHQLPtn8lXzUZ1fZQoaAZHQHJqhBRhttRoB0v1aAhHQLPtrEkjX4F1fZQoaAZHQHGfT3mFJxxoB0vxaAhHQLPuOUW2w3Z1fZQoaAZHQHJ15nUUfxNoB00tAWgIR0Cz7kFJpWWAdX2UKGgGR0BwqG5rgwXZaAdLxGgIR0Cz7kjRD1GtdX2UKGgGR0Bxv3DTBqKxaAdLwGgIR0Cz7p0ETxoadX2UKGgGR0BxzNzltCRfaAdNWgFoCEdAs+6/gtOEd3V9lChoBkdAcNbz1K5CnmgHS+1oCEdAs+7EIF/x2HV9lChoBkdAcI2JWeYlY2gHS6VoCEdAs+7dUfgaWHV9lChoBkdAcWYhNM495mgHTWMBaAhHQLPvdJuEVWV1fZQoaAZHQHDj4RRMvh9oB01+AWgIR0Cz73ls1sLwdX2UKGgGR0BxZX67/XGwaAdL+WgIR0Cz75dQ0oBrdX2UKGgGR0BxTnnwG4ZuaAdLs2gIR0Cz75vWcz68dX2UKGgGR0BwppqL0jC6aAdLmGgIR0Cz77wzDXOGdX2UKGgGR0ByMVOpKjBVaAdNmgJoCEdAs+++f8MuvnV9lChoBkdAcdVkCmuTzWgHS/5oCEdAs+/N1p0wJ3V9lChoBkdAcjnzhP0qY2gHS8RoCEdAs/AX1BdD6XV9lChoBkdAb/px2B8QZmgHTW0CaAhHQLPwPVT72td1fZQoaAZHQHKYbtiQT25oB0vlaAhHQLPwsRIBikR1fZQoaAZHQHOSmp++dsloB0vbaAhHQLPwt7nPmgd1fZQoaAZHQHHyrQLNOdpoB00+AWgIR0Cz8MbROUMYdX2UKGgGR0Bzh7pu/DceaAdNGAFoCEdAs/DREnb7CXV9lChoBkdAc7NUHpr1umgHTXkBaAhHQLPxHdUKiPB1fZQoaAZHwCupSFXaJyhoB0tJaAhHQLPxU6ZH/cZ1fZQoaAZHQHMf3Tuv2XdoB00/AWgIR0Cz8YRHkLhKdX2UKGgGR0BxkyxgRbr1aAdNAQFoCEdAs/GljFyaNXV9lChoBkdAc1vTEzfrKWgHS7ZoCEdAs/Hcq+ajOHV9lChoBkdAcGPJ8OTaCmgHTTQBaAhHQLPyK18b70p1fZQoaAZHQHDU8OwxFiNoB000AWgIR0Cz8oLzshPkdX2UKGgGR0BwnDHeaa1DaAdNDQFoCEdAs/KSlBQem3V9lChoBkdAcKQ+PzWf9WgHS79oCEdAs/MBeAuqWHV9lChoBkdAcphl8w5/9mgHTWwBaAhHQLPzFYzzmOl1fZQoaAZHQHLHhNRFZxJoB01nAWgIR0Cz8yBAB1cMdX2UKGgGR0BzUuFPBSDRaAdLwmgIR0Cz80XY150KdX2UKGgGR0BzNxUQ04zaaAdNIwFoCEdAs/Oh3W4EwHV9lChoBkdAcuZn7Hhjv2gHTVsBaAhHQLP0J4yXUpd1fZQoaAZHQHMhyCvovBdoB00JAWgIR0Cz9CgE6kqMdX2UKGgGR0BxLdyIYWLxaAdN9QFoCEdAs/RCsDGLk3V9lChoBkdAcoVDjzZpSWgHS9hoCEdAs/RTGkvboXV9lChoBkdAcC1v+OwPiGgHTSUBaAhHQLP0i7mMfih1fZQoaAZHQHFdTjWCmMxoB02XAmgIR0Cz9MM5CF9KdX2UKGgGR0Bw+JjOLR8daAdLwmgIR0Cz9N5HAh0RdX2UKGgGR0BwpB0o0ALiaAdNNwFoCEdAs/Tpl8PWhHV9lChoBkdAcb1q8UVSGmgHS81oCEdAs/UDwe/5+HVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 920, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolggAAAAAAAAAAQEBAQEBAQGUaBVLCIWUaBl0lFKUjAZfc2hhcGWUSwiFlIwDbG93lGgRKJYgAAAAAAAAAAAAtMIAALTCAACgwAAAoMDbD0nAAACgwAAAAIAAAACAlGgLSwiFlGgZdJRSlIwEaGlnaJRoESiWIAAAAAAAAAAAALRCAAC0QgAAoEAAAKBA2w9JQAAAoEAAAIA/AACAP5RoC0sIhZRoGXSUUpSMCGxvd19yZXBylIxbWy05MC4gICAgICAgIC05MC4gICAgICAgICAtNS4gICAgICAgICAtNS4gICAgICAgICAtMy4xNDE1OTI3ICAtNS4KICAtMC4gICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMU1s5MC4gICAgICAgIDkwLiAgICAgICAgIDUuICAgICAgICAgNS4gICAgICAgICAzLjE0MTU5MjcgIDUuCiAgMS4gICAgICAgICAxLiAgICAgICBdlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV3AAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFm51bXB5Ll9jb3JlLm11bHRpYXJyYXmUjAZzY2FsYXKUk5SMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJDCAQAAAAAAAAAlIaUUpSMBXN0YXJ0lGgIaA5DCAAAAAAAAAAAlIaUUpSMBl9zaGFwZZQpjAVkdHlwZZRoDowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.9977975535775637, "gae_lambda": 0.9734048904107168, "ent_coef": 0.00016063807673489475, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8Ri0AAG92KFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzjK51IvbP+FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.123+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Mar 30 16:01:29 UTC 2025", "Python": "3.11.13", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.6.0+cu124", "GPU Enabled": "False", "Numpy": "2.0.2", "Cloudpickle": "3.1.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e4274313240>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e42743132e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e4274313380>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e4274313420>", "_build": "<function ActorCriticPolicy._build at 0x7e42743134c0>", "forward": "<function ActorCriticPolicy.forward at 0x7e4274313560>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e4274313600>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e42743136a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7e4274313740>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e42743137e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e4274313880>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e4274313920>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e427448b980>"}, "verbose": 1, "policy_kwargs": {"net_arch": {"pi": [256, 256, 256], "vf": [256, 256, 256]}}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1754604897131216298, "learning_rate": 0.00019383199835819534, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdgIAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAAIAAAAAAACaC9W8SKeaus3JVTwGuGc88/E/OzNOS70AAIA/AACAP+aKmj04yZs/D/CtPoFdFr9GRhk+q/WyPQAAAAAAAAAAyhBwvh6bPD92dRq+KZgav5LHrL6a7pA9AAAAAAAAAABmFBC9eziMuqbPBjyJjIM4eE7vOtb1eTcAAIA/AACAPwA+abyxM6c/PfAFvvGYDr/EVpQ89eUBPQAAAAAAAAAADWaRPYq6KTyyJwu+HLhEvjB4BL3iIiq9AAAAAAAAAACzhL69H0uyu0nLjj2ZN4G9FMIJPf/Yu70AAAAAAACAP82Ztr0UPLm6Qy5os9+DTLARNHa4nrjHMwAAgD8AAIA/M60/vcO5DLp+AkU2SZT5sM7XurrLe2a1AACAPwAAgD/NzJy5BFfHPeUHJL69FHS+/6GRvUK8E70AAAAAAAAAADOiY75yHQs/8/7PvSbYDr8cbIK+5mtBPQAAAAAAAAAAwEPpvdxQgT6Wytw9kEe9vlkZhjxy2xk8AAAAAAAAAAAAC5c9TAnLPrT5jb3ZI/a+TdnBPNI+UL0AAAAAAAAAAABgKzvCHbQ/UZuHPlE2K75CI0a7Jrx1vQAAAAAAAAAAJuQfvikDO7xjQZW7ctgHumPgoD1uz986AACAPwAAgD+aKS28s6+vP5pksL51WBi/qIfEO7NhmDgAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsIhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVhAAAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksQhZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV6QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHMxSxu89OiMAWyUS/eMAXSUR0CUNbLyc0+DdX2UKGgGR0Byqqt0V8CxaAdL7GgIR0CUNbLcsUZfdX2UKGgGR0B0DEIw/PgOaAdL1WgIR0CUNhFev6j4dX2UKGgGR0BxKL08NhE0aAdL/2gIR0CUNiAsCkoGdX2UKGgGR0BzlWH446wMaAdNDgFoCEdAlDYy+QEIPnV9lChoBkdAclPAQQL/j2gHS95oCEdAlDZXfMwDeXV9lChoBkdAcccqj8DSxGgHS8poCEdAlDZsawUxmHV9lChoBkdAciaxfv4M4WgHS+RoCEdAlDaQZKnNxHV9lChoBkdAc9nI6bONYWgHS8poCEdAlDcTjFQ2uXV9lChoBkdAcOKDTjNpumgHS+VoCEdAlDch5s0pE3V9lChoBkdAcvhSydFvymgHS/poCEdAlDdIVARkE3V9lChoBkdAcwj6TGHYYmgHS/FoCEdAlDeI9xIatXV9lChoBkdAckQtRNyo42gHS7RoCEdAlDgkFr2xp3V9lChoBkdAcqqxaPjn3mgHS91oCEdAlDg3Ip6QeXV9lChoBkdAcA40xubZvmgHS9toCEdAlDhWDHwPRXV9lChoBkdAcI02c8TzumgHS8FoCEdAlDmo5HVf/nV9lChoBkdAc9lWepXIVGgHS8hoCEdAlDmpM+NcW3V9lChoBkdAculKzAvcrWgHS+9oCEdAlDmvYraufXV9lChoBkdAcbLKhtcfNmgHS+FoCEdAlDnEZ75VO3V9lChoBkdAc6MqMm4RVmgHS/FoCEdAlDoQJswcpHV9lChoBkdAc2xVQhwEQ2gHS89oCEdAlDoaJ/G2kXV9lChoBkdAcoWF3pwCKmgHS9ZoCEdAlDp+tKZlWnV9lChoBkdAdBVU/wAlwGgHS7VoCEdAlDqOYD1XeXV9lChoBkdAcFMh9LHuJGgHS+hoCEdAlDqkuYhManV9lChoBkdAcR8eYlY2bWgHS8poCEdAlDrZbhWHUXV9lChoBkdAcgEfsNUfgmgHTRIBaAhHQJQ7Ble4Tbp1fZQoaAZHQHL2xHPNVzZoB0vhaAhHQJQ7d3C9AX51fZQoaAZHQHDDXEZR8+loB0vfaAhHQJQ7spVjqfR1fZQoaAZHQHAMdh3JPqNoB0u+aAhHQJQ7wr4Fia11fZQoaAZHQHHN0XgtOEdoB0u8aAhHQJQ72GfwqiJ1fZQoaAZHQHD0D6nBLwpoB0vIaAhHQJQ73OJLuhN1fZQoaAZHQHBmz5ftx+9oB0uwaAhHQJQ8nR3NcGF1fZQoaAZHQG70YcFQl8hoB0vEaAhHQJQ8/2YfGMp1fZQoaAZHQG7GxceKba1oB0vJaAhHQJQ9EL/jsD51fZQoaAZHQG7/oRIz3ytoB0vjaAhHQJQ9o56t1ZF1fZQoaAZHQG/HVpKzzEtoB0vCaAhHQJQ90NG3F1l1fZQoaAZHQHHv3J9y925oB0veaAhHQJQ91Grjo6l1fZQoaAZHQHGxzh5xBE9oB0vPaAhHQJQ+HkeZG8V1fZQoaAZHQHCuNB0IToNoB0vCaAhHQJQ+HeWOZLJ1fZQoaAZHQHA1Az+FUQ1oB0vIaAhHQJQ+ZkkKNQ11fZQoaAZHQHE5hb8m8dxoB0vqaAhHQJQ+bkELYwt1fZQoaAZHQHNNB3Roh6loB00TAWgIR0CUPrvB7/n4dX2UKGgGR0Bw0008/2TQaAdLymgIR0CUPxvKEFnqdX2UKGgGR0Bygh+MIeHSaAdLzmgIR0CUP0gl4TsZdX2UKGgGR0BzdE6ij+JhaAdL3WgIR0CUP13dsSCfdX2UKGgGR0BzyG/zreImaAdL/WgIR0CUP7OLiuMddX2UKGgGR0BvHsNDtw71aAdLu2gIR0CUQEU7Sy+pdX2UKGgGR0Byhky31BdEaAdL0mgIR0CUQKJeVs1sdX2UKGgGR0BzLQfeUILPaAdL+2gIR0CUQP6+FlCkdX2UKGgGR0BzaMSM98qnaAdLyGgIR0CUQRe8f3evdX2UKGgGR0Bxhx4MWoFWaAdLxmgIR0CUQT4593KTdX2UKGgGR0Bx9V7ngYP5aAdLzGgIR0CUQbFxn3+NdX2UKGgGR0BwOES7GvOhaAdL12gIR0CUQejWkJrtdX2UKGgGR0BxaFmdy1eCaAdLxGgIR0CUQeg8KXv6dX2UKGgGR0BxR1FQVKwqaAdL7mgIR0CUQgCSRr8BdX2UKGgGR0BwWpuBMBZIaAdLxmgIR0CUQjtMfzSUdX2UKGgGR0BylHsByS3caAdL0WgIR0CUQvQVKwpwdX2UKGgGR0ByEDijtXxOaAdNDAFoCEdAlEMLo8p1BHV9lChoBkdAcM4DJlrdnGgHS+JoCEdAlEMUdV/+bXV9lChoBkdAcGXsnRb8nGgHS6hoCEdAlEM7Q1JlKHV9lChoBkdAb5yQfZElV2gHS8xoCEdAlENIuwosqnV9lChoBkdAclEffoA4oGgHTQUBaAhHQJRD830f5k91fZQoaAZHQG9+2Q4jrzJoB0vWaAhHQJREcvnKW9l1fZQoaAZHQHDtsGxD9floB0u+aAhHQJREpF8XvYx1fZQoaAZHQHI786zVtoBoB0vQaAhHQJRE1wEQoTh1fZQoaAZHQHMc3J5mh/RoB0vtaAhHQJRFVLdvbXZ1fZQoaAZHQHSOUZNwiq1oB0vQaAhHQJRFi9XcQAd1fZQoaAZHQHI1D0163RZoB0veaAhHQJRGf+glF+d1fZQoaAZHQHLnAbhm5DtoB0v4aAhHQJRGnYdyT6l1fZQoaAZHQHGOZ2U0Nz9oB0v5aAhHQJRGvboKUml1fZQoaAZHQHKC//NqxkdoB0vYaAhHQJRHQGjbi6x1fZQoaAZHQHDwVabF0gdoB0vSaAhHQJRHRWGRFJB1fZQoaAZHQEvocMEzO5doB0uKaAhHQJRHUCwKSgZ1fZQoaAZHQHCK6p1ie/ZoB0vVaAhHQJRHivC/Gl11fZQoaAZHQHMrdXgccVBoB0vcaAhHQJRHnO8kD6p1fZQoaAZHQHNEHWOIZZVoB00EAWgIR0CUSCF3pwCKdX2UKGgGR0ByGcdeY2KmaAdLxGgIR0CUSIVKwpvxdX2UKGgGR0BzHCwcHWz4aAdLzmgIR0CUSRcebNKRdX2UKGgGR0BxyrQw9JSSaAdL+WgIR0CUSRekpI+XdX2UKGgGR0Bww2RA8jiXaAdLt2gIR0CUSR2eQMhHdX2UKGgGR0Bw23slb/wRaAdLwWgIR0CUSZKO1fE5dX2UKGgGR0ByZfSa3I+4aAdL0mgIR0CUS0CXhOxjdX2UKGgGR0ByoMovzvqkaAdLxmgIR0CUS/r3TNMXdX2UKGgGR0BwceMHbAUMaAdLy2gIR0CUTA1ZkkKNdX2UKGgGR0By61OdoWYXaAdL+2gIR0CUTFynUDuCdX2UKGgGR0BygDi0fHPvaAdL2WgIR0CUTIcrAgxKdX2UKGgGR0ByIDWGyon8aAdNAAFoCEdAlEzrPQfIS3V9lChoBkdAcIeV+I/JNmgHS/JoCEdAlE3bH+6y0XV9lChoBkdAcdcx0+1SfmgHS+9oCEdAlE3iRB/qgXV9lChoBkdAcaibDMvAXWgHS8BoCEdAlE30m+j/MnV9lChoBkdAcu/F85S3s2gHS+hoCEdAlE5McU/OdHV9lChoBkdAcjcZUDMeOmgHS9hoCEdAlE7Ii9qUNnV9lChoBkdAcZyGJvYOD2gHS9hoCEdAlE8mQwK0D3V9lChoBkdAcgpCNCJGfGgHS/toCEdAlE91xbSql3V9lChoBkdAZ8LtrsSkCWgHTegDaAhHQJRP/ztkWh11fZQoaAZHQHNfVUlzEJloB00dAWgIR0CUUCNnGsFMdX2UKGgGR0ByKzVZs9B9aAdL4mgIR0CUUK+so2GZdX2UKGgGR0Bw01hhH9WIaAdL1mgIR0CUUOrZrYXgdX2UKGgGR0BwXw8V58jSaAdLzWgIR0CUURIeo1k2dX2UKGgGR0Bz5ASL61staAdLw2gIR0CUURujASFodWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 279, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolggAAAAAAAAAAQEBAQEBAQGUaBVLCIWUaBl0lFKUjAZfc2hhcGWUSwiFlIwDbG93lGgRKJYgAAAAAAAAAAAAtMIAALTCAACgwAAAoMDbD0nAAACgwAAAAIAAAACAlGgLSwiFlGgZdJRSlIwEaGlnaJRoESiWIAAAAAAAAAAAALRCAAC0QgAAoEAAAKBA2w9JQAAAoEAAAIA/AACAP5RoC0sIhZRoGXSUUpSMCGxvd19yZXBylIxbWy05MC4gICAgICAgIC05MC4gICAgICAgICAtNS4gICAgICAgICAtNS4gICAgICAgICAtMy4xNDE1OTI3ICAtNS4KICAtMC4gICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMU1s5MC4gICAgICAgIDkwLiAgICAgICAgIDUuICAgICAgICAgNS4gICAgICAgICAzLjE0MTU5MjcgIDUuCiAgMS4gICAgICAgICAxLiAgICAgICBdlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV3AAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFm51bXB5Ll9jb3JlLm11bHRpYXJyYXmUjAZzY2FsYXKUk5SMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJDCAQAAAAAAAAAlIaUUpSMBXN0YXJ0lGgIaA5DCAAAAAAAAAAAlIaUUpSMBl9zaGFwZZQpjAVkdHlwZZRoDowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.990287017222233, "gae_lambda": 0.9564617182602845, "ent_coef": 0.00010995461543944565, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 9, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8tC7Edo/r6FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPyln7DAPTk+FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.123+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Mar 30 16:01:29 UTC 2025", "Python": "3.11.13", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.6.0+cu124", "GPU Enabled": "False", "Numpy": "2.0.2", "Cloudpickle": "3.1.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo_lunar_optimized.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4bbeb336b88b7ae5b67b2b311a0eb8df392eb10b98f1f2ee2901111b6dbf49da
3
+ size 3263583
ppo_lunar_optimized/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo_lunar_optimized/data ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7e4274313240>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e42743132e0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e4274313380>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e4274313420>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7e42743134c0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7e4274313560>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e4274313600>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e42743136a0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7e4274313740>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e42743137e0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e4274313880>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e4274313920>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7e427448b980>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ "net_arch": {
25
+ "pi": [
26
+ 256,
27
+ 256,
28
+ 256
29
+ ],
30
+ "vf": [
31
+ 256,
32
+ 256,
33
+ 256
34
+ ]
35
+ }
36
+ },
37
+ "num_timesteps": 1015808,
38
+ "_total_timesteps": 1000000,
39
+ "_num_timesteps_at_start": 0,
40
+ "seed": null,
41
+ "action_noise": null,
42
+ "start_time": 1754604897131216298,
43
+ "learning_rate": 0.00019383199835819534,
44
+ "tensorboard_log": null,
45
+ "_last_obs": {
46
+ ":type:": "<class 'numpy.ndarray'>",
47
+ ":serialized:": "gAWVdgIAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAAIAAAAAAACaC9W8SKeaus3JVTwGuGc88/E/OzNOS70AAIA/AACAP+aKmj04yZs/D/CtPoFdFr9GRhk+q/WyPQAAAAAAAAAAyhBwvh6bPD92dRq+KZgav5LHrL6a7pA9AAAAAAAAAABmFBC9eziMuqbPBjyJjIM4eE7vOtb1eTcAAIA/AACAPwA+abyxM6c/PfAFvvGYDr/EVpQ89eUBPQAAAAAAAAAADWaRPYq6KTyyJwu+HLhEvjB4BL3iIiq9AAAAAAAAAACzhL69H0uyu0nLjj2ZN4G9FMIJPf/Yu70AAAAAAACAP82Ztr0UPLm6Qy5os9+DTLARNHa4nrjHMwAAgD8AAIA/M60/vcO5DLp+AkU2SZT5sM7XurrLe2a1AACAPwAAgD/NzJy5BFfHPeUHJL69FHS+/6GRvUK8E70AAAAAAAAAADOiY75yHQs/8/7PvSbYDr8cbIK+5mtBPQAAAAAAAAAAwEPpvdxQgT6Wytw9kEe9vlkZhjxy2xk8AAAAAAAAAAAAC5c9TAnLPrT5jb3ZI/a+TdnBPNI+UL0AAAAAAAAAAABgKzvCHbQ/UZuHPlE2K75CI0a7Jrx1vQAAAAAAAAAAJuQfvikDO7xjQZW7ctgHumPgoD1uz986AACAPwAAgD+aKS28s6+vP5pksL51WBi/qIfEO7NhmDgAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsIhpSMAUOUdJRSlC4="
48
+ },
49
+ "_last_episode_starts": {
50
+ ":type:": "<class 'numpy.ndarray'>",
51
+ ":serialized:": "gAWVhAAAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksQhZSMAUOUdJRSlC4="
52
+ },
53
+ "_last_original_obs": null,
54
+ "_episode_num": 0,
55
+ "use_sde": false,
56
+ "sde_sample_freq": -1,
57
+ "_current_progress_remaining": -0.015808000000000044,
58
+ "_stats_window_size": 100,
59
+ "ep_info_buffer": {
60
+ ":type:": "<class 'collections.deque'>",
61
+ ":serialized:": "gAWV6QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHMxSxu89OiMAWyUS/eMAXSUR0CUNbLyc0+DdX2UKGgGR0Byqqt0V8CxaAdL7GgIR0CUNbLcsUZfdX2UKGgGR0B0DEIw/PgOaAdL1WgIR0CUNhFev6j4dX2UKGgGR0BxKL08NhE0aAdL/2gIR0CUNiAsCkoGdX2UKGgGR0BzlWH446wMaAdNDgFoCEdAlDYy+QEIPnV9lChoBkdAclPAQQL/j2gHS95oCEdAlDZXfMwDeXV9lChoBkdAcccqj8DSxGgHS8poCEdAlDZsawUxmHV9lChoBkdAciaxfv4M4WgHS+RoCEdAlDaQZKnNxHV9lChoBkdAc9nI6bONYWgHS8poCEdAlDcTjFQ2uXV9lChoBkdAcOKDTjNpumgHS+VoCEdAlDch5s0pE3V9lChoBkdAcvhSydFvymgHS/poCEdAlDdIVARkE3V9lChoBkdAcwj6TGHYYmgHS/FoCEdAlDeI9xIatXV9lChoBkdAckQtRNyo42gHS7RoCEdAlDgkFr2xp3V9lChoBkdAcqqxaPjn3mgHS91oCEdAlDg3Ip6QeXV9lChoBkdAcA40xubZvmgHS9toCEdAlDhWDHwPRXV9lChoBkdAcI02c8TzumgHS8FoCEdAlDmo5HVf/nV9lChoBkdAc9lWepXIVGgHS8hoCEdAlDmpM+NcW3V9lChoBkdAculKzAvcrWgHS+9oCEdAlDmvYraufXV9lChoBkdAcbLKhtcfNmgHS+FoCEdAlDnEZ75VO3V9lChoBkdAc6MqMm4RVmgHS/FoCEdAlDoQJswcpHV9lChoBkdAc2xVQhwEQ2gHS89oCEdAlDoaJ/G2kXV9lChoBkdAcoWF3pwCKmgHS9ZoCEdAlDp+tKZlWnV9lChoBkdAdBVU/wAlwGgHS7VoCEdAlDqOYD1XeXV9lChoBkdAcFMh9LHuJGgHS+hoCEdAlDqkuYhManV9lChoBkdAcR8eYlY2bWgHS8poCEdAlDrZbhWHUXV9lChoBkdAcgEfsNUfgmgHTRIBaAhHQJQ7Ble4Tbp1fZQoaAZHQHL2xHPNVzZoB0vhaAhHQJQ7d3C9AX51fZQoaAZHQHDDXEZR8+loB0vfaAhHQJQ7spVjqfR1fZQoaAZHQHAMdh3JPqNoB0u+aAhHQJQ7wr4Fia11fZQoaAZHQHHN0XgtOEdoB0u8aAhHQJQ72GfwqiJ1fZQoaAZHQHD0D6nBLwpoB0vIaAhHQJQ73OJLuhN1fZQoaAZHQHBmz5ftx+9oB0uwaAhHQJQ8nR3NcGF1fZQoaAZHQG70YcFQl8hoB0vEaAhHQJQ8/2YfGMp1fZQoaAZHQG7GxceKba1oB0vJaAhHQJQ9EL/jsD51fZQoaAZHQG7/oRIz3ytoB0vjaAhHQJQ9o56t1ZF1fZQoaAZHQG/HVpKzzEtoB0vCaAhHQJQ90NG3F1l1fZQoaAZHQHHv3J9y925oB0veaAhHQJQ91Grjo6l1fZQoaAZHQHGxzh5xBE9oB0vPaAhHQJQ+HkeZG8V1fZQoaAZHQHCuNB0IToNoB0vCaAhHQJQ+HeWOZLJ1fZQoaAZHQHA1Az+FUQ1oB0vIaAhHQJQ+ZkkKNQ11fZQoaAZHQHE5hb8m8dxoB0vqaAhHQJQ+bkELYwt1fZQoaAZHQHNNB3Roh6loB00TAWgIR0CUPrvB7/n4dX2UKGgGR0Bw0008/2TQaAdLymgIR0CUPxvKEFnqdX2UKGgGR0Bygh+MIeHSaAdLzmgIR0CUP0gl4TsZdX2UKGgGR0BzdE6ij+JhaAdL3WgIR0CUP13dsSCfdX2UKGgGR0BzyG/zreImaAdL/WgIR0CUP7OLiuMddX2UKGgGR0BvHsNDtw71aAdLu2gIR0CUQEU7Sy+pdX2UKGgGR0Byhky31BdEaAdL0mgIR0CUQKJeVs1sdX2UKGgGR0BzLQfeUILPaAdL+2gIR0CUQP6+FlCkdX2UKGgGR0BzaMSM98qnaAdLyGgIR0CUQRe8f3evdX2UKGgGR0Bxhx4MWoFWaAdLxmgIR0CUQT4593KTdX2UKGgGR0Bx9V7ngYP5aAdLzGgIR0CUQbFxn3+NdX2UKGgGR0BwOES7GvOhaAdL12gIR0CUQejWkJrtdX2UKGgGR0BxaFmdy1eCaAdLxGgIR0CUQeg8KXv6dX2UKGgGR0BxR1FQVKwqaAdL7mgIR0CUQgCSRr8BdX2UKGgGR0BwWpuBMBZIaAdLxmgIR0CUQjtMfzSUdX2UKGgGR0BylHsByS3caAdL0WgIR0CUQvQVKwpwdX2UKGgGR0ByEDijtXxOaAdNDAFoCEdAlEMLo8p1BHV9lChoBkdAcM4DJlrdnGgHS+JoCEdAlEMUdV/+bXV9lChoBkdAcGXsnRb8nGgHS6hoCEdAlEM7Q1JlKHV9lChoBkdAb5yQfZElV2gHS8xoCEdAlENIuwosqnV9lChoBkdAclEffoA4oGgHTQUBaAhHQJRD830f5k91fZQoaAZHQG9+2Q4jrzJoB0vWaAhHQJREcvnKW9l1fZQoaAZHQHDtsGxD9floB0u+aAhHQJREpF8XvYx1fZQoaAZHQHI786zVtoBoB0vQaAhHQJRE1wEQoTh1fZQoaAZHQHMc3J5mh/RoB0vtaAhHQJRFVLdvbXZ1fZQoaAZHQHSOUZNwiq1oB0vQaAhHQJRFi9XcQAd1fZQoaAZHQHI1D0163RZoB0veaAhHQJRGf+glF+d1fZQoaAZHQHLnAbhm5DtoB0v4aAhHQJRGnYdyT6l1fZQoaAZHQHGOZ2U0Nz9oB0v5aAhHQJRGvboKUml1fZQoaAZHQHKC//NqxkdoB0vYaAhHQJRHQGjbi6x1fZQoaAZHQHDwVabF0gdoB0vSaAhHQJRHRWGRFJB1fZQoaAZHQEvocMEzO5doB0uKaAhHQJRHUCwKSgZ1fZQoaAZHQHCK6p1ie/ZoB0vVaAhHQJRHivC/Gl11fZQoaAZHQHMrdXgccVBoB0vcaAhHQJRHnO8kD6p1fZQoaAZHQHNEHWOIZZVoB00EAWgIR0CUSCF3pwCKdX2UKGgGR0ByGcdeY2KmaAdLxGgIR0CUSIVKwpvxdX2UKGgGR0BzHCwcHWz4aAdLzmgIR0CUSRcebNKRdX2UKGgGR0BxyrQw9JSSaAdL+WgIR0CUSRekpI+XdX2UKGgGR0Bww2RA8jiXaAdLt2gIR0CUSR2eQMhHdX2UKGgGR0Bw23slb/wRaAdLwWgIR0CUSZKO1fE5dX2UKGgGR0ByZfSa3I+4aAdL0mgIR0CUS0CXhOxjdX2UKGgGR0ByoMovzvqkaAdLxmgIR0CUS/r3TNMXdX2UKGgGR0BwceMHbAUMaAdLy2gIR0CUTA1ZkkKNdX2UKGgGR0By61OdoWYXaAdL+2gIR0CUTFynUDuCdX2UKGgGR0BygDi0fHPvaAdL2WgIR0CUTIcrAgxKdX2UKGgGR0ByIDWGyon8aAdNAAFoCEdAlEzrPQfIS3V9lChoBkdAcIeV+I/JNmgHS/JoCEdAlE3bH+6y0XV9lChoBkdAcdcx0+1SfmgHS+9oCEdAlE3iRB/qgXV9lChoBkdAcaibDMvAXWgHS8BoCEdAlE30m+j/MnV9lChoBkdAcu/F85S3s2gHS+hoCEdAlE5McU/OdHV9lChoBkdAcjcZUDMeOmgHS9hoCEdAlE7Ii9qUNnV9lChoBkdAcZyGJvYOD2gHS9hoCEdAlE8mQwK0D3V9lChoBkdAcgpCNCJGfGgHS/toCEdAlE91xbSql3V9lChoBkdAZ8LtrsSkCWgHTegDaAhHQJRP/ztkWh11fZQoaAZHQHNfVUlzEJloB00dAWgIR0CUUCNnGsFMdX2UKGgGR0ByKzVZs9B9aAdL4mgIR0CUUK+so2GZdX2UKGgGR0Bw01hhH9WIaAdL1mgIR0CUUOrZrYXgdX2UKGgGR0BwXw8V58jSaAdLzWgIR0CUURIeo1k2dX2UKGgGR0Bz5ASL61staAdLw2gIR0CUURujASFodWUu"
62
+ },
63
+ "ep_success_buffer": {
64
+ ":type:": "<class 'collections.deque'>",
65
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
66
+ },
67
+ "_n_updates": 279,
68
+ "observation_space": {
69
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
70
+ ":serialized:": "gAWVdwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolggAAAAAAAAAAQEBAQEBAQGUaBVLCIWUaBl0lFKUjAZfc2hhcGWUSwiFlIwDbG93lGgRKJYgAAAAAAAAAAAAtMIAALTCAACgwAAAoMDbD0nAAACgwAAAAIAAAACAlGgLSwiFlGgZdJRSlIwEaGlnaJRoESiWIAAAAAAAAAAAALRCAAC0QgAAoEAAAKBA2w9JQAAAoEAAAIA/AACAP5RoC0sIhZRoGXSUUpSMCGxvd19yZXBylIxbWy05MC4gICAgICAgIC05MC4gICAgICAgICAtNS4gICAgICAgICAtNS4gICAgICAgICAtMy4xNDE1OTI3ICAtNS4KICAtMC4gICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMU1s5MC4gICAgICAgIDkwLiAgICAgICAgIDUuICAgICAgICAgNS4gICAgICAgICAzLjE0MTU5MjcgIDUuCiAgMS4gICAgICAgICAxLiAgICAgICBdlIwKX25wX3JhbmRvbZROdWIu",
71
+ "dtype": "float32",
72
+ "bounded_below": "[ True True True True True True True True]",
73
+ "bounded_above": "[ True True True True True True True True]",
74
+ "_shape": [
75
+ 8
76
+ ],
77
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
78
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
79
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
80
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
81
+ "_np_random": null
82
+ },
83
+ "action_space": {
84
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
85
+ ":serialized:": "gAWV3AAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFm51bXB5Ll9jb3JlLm11bHRpYXJyYXmUjAZzY2FsYXKUk5SMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJDCAQAAAAAAAAAlIaUUpSMBXN0YXJ0lGgIaA5DCAAAAAAAAAAAlIaUUpSMBl9zaGFwZZQpjAVkdHlwZZRoDowKX25wX3JhbmRvbZROdWIu",
86
+ "n": "4",
87
+ "start": "0",
88
+ "_shape": [],
89
+ "dtype": "int64",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 16,
93
+ "n_steps": 2048,
94
+ "gamma": 0.990287017222233,
95
+ "gae_lambda": 0.9564617182602845,
96
+ "ent_coef": 0.00010995461543944565,
97
+ "vf_coef": 0.5,
98
+ "max_grad_norm": 0.5,
99
+ "batch_size": 64,
100
+ "n_epochs": 9,
101
+ "clip_range": {
102
+ ":type:": "<class 'function'>",
103
+ ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8tC7Edo/r6FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
104
+ },
105
+ "clip_range_vf": null,
106
+ "normalize_advantage": true,
107
+ "target_kl": null,
108
+ "lr_schedule": {
109
+ ":type:": "<class 'function'>",
110
+ ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPyln7DAPTk+FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
111
+ }
112
+ }
ppo_lunar_optimized/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3fa8df379d6586d48fa946bb206d3852ac1903f147906f7c90cb57d00707fb6b
3
+ size 2165382
ppo_lunar_optimized/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f2dec03300f2ba068a2e69c263da1de2a7466d431ec987ead9b5fdab9829b462
3
+ size 1082022
ppo_lunar_optimized/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo_lunar_optimized/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.123+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Mar 30 16:01:29 UTC 2025
2
+ - Python: 3.11.13
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.6.0+cu124
5
+ - GPU Enabled: False
6
+ - Numpy: 2.0.2
7
+ - Cloudpickle: 3.1.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:4dfcb5af84754f543050eee013c2f85c70068a2a7e95e359bce8ab662611ebbf
3
- size 158630
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b4d20ee251e73a154ddb890b4568a78549619eb55f4e7f562f74c49df704cfb7
3
+ size 150307
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 295.0448889324124, "std_reward": 15.4525636299908, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2025-08-07T14:45:53.271959"}
 
1
+ {"mean_reward": 271.30081932434257, "std_reward": 18.315624423257916, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2025-08-07T22:45:37.818082"}