andrijdavid commited on
Commit
74846e7
1 Parent(s): a10d2d5

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +439 -0
README.md ADDED
@@ -0,0 +1,439 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+
3
+ ---
4
+ language:
5
+ - en
6
+ license: apache-2.0
7
+ library_name: transformers
8
+ tags:
9
+ - GGUF
10
+ model-index:
11
+ - name: Rhea-72b-v0.5
12
+ results:
13
+ - task:
14
+ type: text-generation
15
+ name: Text Generation
16
+ dataset:
17
+ name: AI2 Reasoning Challenge (25-Shot)
18
+ type: ai2_arc
19
+ config: ARC-Challenge
20
+ split: test
21
+ args:
22
+ num_few_shot: 25
23
+ metrics:
24
+ - type: acc_norm
25
+ value: 79.78
26
+ name: normalized accuracy
27
+ verified: false
28
+ source:
29
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=davidkim205/Rhea-72b-v0.5
30
+ name: Open LLM Leaderboard
31
+ - task:
32
+ type: text-generation
33
+ name: Text Generation
34
+ dataset:
35
+ name: HellaSwag (10-Shot)
36
+ type: hellaswag
37
+ split: validation
38
+ args:
39
+ num_few_shot: 10
40
+ metrics:
41
+ - type: acc_norm
42
+ value: 91.15
43
+ name: normalized accuracy
44
+ verified: false
45
+ source:
46
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=davidkim205/Rhea-72b-v0.5
47
+ name: Open LLM Leaderboard
48
+ - task:
49
+ type: text-generation
50
+ name: Text Generation
51
+ dataset:
52
+ name: MMLU (5-Shot)
53
+ type: cais/mmlu
54
+ config: all
55
+ split: test
56
+ args:
57
+ num_few_shot: 5
58
+ metrics:
59
+ - type: acc
60
+ value: 77.95
61
+ name: accuracy
62
+ verified: false
63
+ source:
64
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=davidkim205/Rhea-72b-v0.5
65
+ name: Open LLM Leaderboard
66
+ - task:
67
+ type: text-generation
68
+ name: Text Generation
69
+ dataset:
70
+ name: TruthfulQA (0-shot)
71
+ type: truthful_qa
72
+ config: multiple_choice
73
+ split: validation
74
+ args:
75
+ num_few_shot: 0
76
+ metrics:
77
+ - type: mc2
78
+ value: 74.5
79
+ verified: false
80
+ source:
81
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=davidkim205/Rhea-72b-v0.5
82
+ name: Open LLM Leaderboard
83
+ - task:
84
+ type: text-generation
85
+ name: Text Generation
86
+ dataset:
87
+ name: Winogrande (5-shot)
88
+ type: winogrande
89
+ config: winogrande_xl
90
+ split: validation
91
+ args:
92
+ num_few_shot: 5
93
+ metrics:
94
+ - type: acc
95
+ value: 87.85
96
+ name: accuracy
97
+ verified: false
98
+ source:
99
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=davidkim205/Rhea-72b-v0.5
100
+ name: Open LLM Leaderboard
101
+ - task:
102
+ type: text-generation
103
+ name: Text Generation
104
+ dataset:
105
+ name: GSM8k (5-shot)
106
+ type: gsm8k
107
+ config: main
108
+ split: test
109
+ args:
110
+ num_few_shot: 5
111
+ metrics:
112
+ - type: acc
113
+ value: 76.12
114
+ name: accuracy
115
+ verified: false
116
+ source:
117
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=davidkim205/Rhea-72b-v0.5
118
+ name: Open LLM Leaderboard
119
+ quantized_by: andrijdavid
120
+ ---
121
+ # Rhea-72b-v0.5-GGUF
122
+ - Original model: [Rhea-72b-v0.5](https://huggingface.co/davidkim205/Rhea-72b-v0.5)
123
+
124
+ <!-- description start -->
125
+ ## Description
126
+
127
+ This repo contains GGUF format model files for [Rhea-72b-v0.5](https://huggingface.co/davidkim205/Rhea-72b-v0.5).
128
+
129
+ <!-- description end -->
130
+ <!-- README_GGUF.md-about-gguf start -->
131
+ ### About GGUF
132
+ GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
133
+ Here is an incomplete list of clients and libraries that are known to support GGUF:
134
+ * [llama.cpp](https://github.com/ggerganov/llama.cpp). This is the source project for GGUF, providing both a Command Line Interface (CLI) and a server option.
135
+ * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), Known as the most widely used web UI, this project boasts numerous features and powerful extensions, and supports GPU acceleration.
136
+ * [Ollama](https://github.com/jmorganca/ollama) Ollama is a lightweight and extensible framework designed for building and running language models locally. It features a simple API for creating, managing, and executing models, along with a library of pre-built models for use in various applications​
137
+ * [KoboldCpp](https://github.com/LostRuins/koboldcpp), A comprehensive web UI offering GPU acceleration across all platforms and architectures, particularly renowned for storytelling.
138
+ * [GPT4All](https://gpt4all.io), This is a free and open source GUI that runs locally, supporting Windows, Linux, and macOS with full GPU acceleration.
139
+ * [LM Studio](https://lmstudio.ai/) An intuitive and powerful local GUI for Windows and macOS (Silicon), featuring GPU acceleration.
140
+ * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui). A notable web UI with a variety of unique features, including a comprehensive model library for easy model selection.
141
+ * [Faraday.dev](https://faraday.dev/), An attractive, user-friendly character-based chat GUI for Windows and macOS (both Silicon and Intel), also offering GPU acceleration.
142
+ * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), A Python library equipped with GPU acceleration, LangChain support, and an OpenAI-compatible API server.
143
+ * [candle](https://github.com/huggingface/candle), A Rust-based ML framework focusing on performance, including GPU support, and designed for ease of use.
144
+ * [ctransformers](https://github.com/marella/ctransformers), A Python library featuring GPU acceleration, LangChain support, and an OpenAI-compatible AI server.
145
+ * [localGPT](https://github.com/PromtEngineer/localGPT) An open-source initiative enabling private conversations with documents.
146
+ <!-- README_GGUF.md-about-gguf end -->
147
+
148
+ <!-- compatibility_gguf start -->
149
+ ## Explanation of quantisation methods
150
+ <details>
151
+ <summary>Click to see details</summary>
152
+ The new methods available are:
153
+
154
+ * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
155
+ * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
156
+ * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
157
+ * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
158
+ * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw.
159
+ </details>
160
+ <!-- compatibility_gguf end -->
161
+
162
+ <!-- README_GGUF.md-how-to-download start -->
163
+ ## How to download GGUF files
164
+
165
+ **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single folder.
166
+
167
+ The following clients/libraries will automatically download models for you, providing a list of available models to choose from:
168
+
169
+ * LM Studio
170
+ * LoLLMS Web UI
171
+ * Faraday.dev
172
+
173
+ ### In `text-generation-webui`
174
+
175
+ Under Download Model, you can enter the model repo: LiteLLMs/Rhea-72b-v0.5-GGUF and below it, a specific filename to download, such as: Q4_0/Q4_0-00001-of-00009.gguf.
176
+
177
+ Then click Download.
178
+
179
+ ### On the command line, including multiple files at once
180
+
181
+ I recommend using the `huggingface-hub` Python library:
182
+
183
+ ```shell
184
+ pip3 install huggingface-hub
185
+ ```
186
+
187
+ Then you can download any individual model file to the current directory, at high speed, with a command like this:
188
+
189
+ ```shell
190
+ huggingface-cli download LiteLLMs/Rhea-72b-v0.5-GGUF Q4_0/Q4_0-00001-of-00009.gguf --local-dir . --local-dir-use-symlinks False
191
+ ```
192
+
193
+ <details>
194
+ <summary>More advanced huggingface-cli download usage (click to read)</summary>
195
+
196
+ You can also download multiple files at once with a pattern:
197
+
198
+ ```shell
199
+ huggingface-cli download LiteLLMs/Rhea-72b-v0.5-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'
200
+ ```
201
+
202
+ For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
203
+
204
+ To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
205
+
206
+ ```shell
207
+ pip3 install huggingface_hub[hf_transfer]
208
+ ```
209
+
210
+ And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
211
+
212
+ ```shell
213
+ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download LiteLLMs/Rhea-72b-v0.5-GGUF Q4_0/Q4_0-00001-of-00009.gguf --local-dir . --local-dir-use-symlinks False
214
+ ```
215
+
216
+ Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
217
+ </details>
218
+ <!-- README_GGUF.md-how-to-download end -->
219
+ <!-- README_GGUF.md-how-to-run start -->
220
+ ## Example `llama.cpp` command
221
+
222
+ Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
223
+
224
+ ```shell
225
+ ./main -ngl 35 -m Q4_0/Q4_0-00001-of-00009.gguf --color -c 8192 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "<PROMPT>"
226
+ ```
227
+
228
+ Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
229
+
230
+ Change `-c 8192` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. Note that longer sequence lengths require much more resources, so you may need to reduce this value.
231
+
232
+ If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
233
+
234
+ For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)
235
+
236
+ ## How to run in `text-generation-webui`
237
+
238
+ Further instructions can be found in the text-generation-webui documentation, here: [text-generation-webui/docs/04 ‐ Model Tab.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/04%20%E2%80%90%20Model%20Tab.md#llamacpp).
239
+
240
+ ## How to run from Python code
241
+
242
+ You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. Note that at the time of writing (Nov 27th 2023), ctransformers has not been updated for some time and is not compatible with some recent models. Therefore I recommend you use llama-cpp-python.
243
+
244
+ ### How to load this model in Python code, using llama-cpp-python
245
+
246
+ For full documentation, please see: [llama-cpp-python docs](https://abetlen.github.io/llama-cpp-python/).
247
+
248
+ #### First install the package
249
+
250
+ Run one of the following commands, according to your system:
251
+
252
+ ```shell
253
+ # Base ctransformers with no GPU acceleration
254
+ pip install llama-cpp-python
255
+ # With NVidia CUDA acceleration
256
+ CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python
257
+ # Or with OpenBLAS acceleration
258
+ CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python
259
+ # Or with CLBLast acceleration
260
+ CMAKE_ARGS="-DLLAMA_CLBLAST=on" pip install llama-cpp-python
261
+ # Or with AMD ROCm GPU acceleration (Linux only)
262
+ CMAKE_ARGS="-DLLAMA_HIPBLAS=on" pip install llama-cpp-python
263
+ # Or with Metal GPU acceleration for macOS systems only
264
+ CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python
265
+ # In windows, to set the variables CMAKE_ARGS in PowerShell, follow this format; eg for NVidia CUDA:
266
+ $env:CMAKE_ARGS = "-DLLAMA_OPENBLAS=on"
267
+ pip install llama-cpp-python
268
+ ```
269
+
270
+ #### Simple llama-cpp-python example code
271
+
272
+ ```python
273
+ from llama_cpp import Llama
274
+ # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
275
+ llm = Llama(
276
+ model_path="./Q4_0/Q4_0-00001-of-00009.gguf", # Download the model file first
277
+ n_ctx=32768, # The max sequence length to use - note that longer sequence lengths require much more resources
278
+ n_threads=8, # The number of CPU threads to use, tailor to your system and the resulting performance
279
+ n_gpu_layers=35 # The number of layers to offload to GPU, if you have GPU acceleration available
280
+ )
281
+ # Simple inference example
282
+ output = llm(
283
+ "<PROMPT>", # Prompt
284
+ max_tokens=512, # Generate up to 512 tokens
285
+ stop=["</s>"], # Example stop token - not necessarily correct for this specific model! Please check before using.
286
+ echo=True # Whether to echo the prompt
287
+ )
288
+ # Chat Completion API
289
+ llm = Llama(model_path="./Q4_0/Q4_0-00001-of-00009.gguf", chat_format="llama-2") # Set chat_format according to the model you are using
290
+ llm.create_chat_completion(
291
+ messages = [
292
+ {"role": "system", "content": "You are a story writing assistant."},
293
+ {
294
+ "role": "user",
295
+ "content": "Write a story about llamas."
296
+ }
297
+ ]
298
+ )
299
+ ```
300
+
301
+ ## How to use with LangChain
302
+
303
+ Here are guides on using llama-cpp-python and ctransformers with LangChain:
304
+
305
+ * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
306
+ * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)
307
+
308
+ <!-- README_GGUF.md-how-to-run end -->
309
+
310
+ <!-- footer end -->
311
+
312
+ <!-- original-model-card start -->
313
+ # Original model card: Rhea-72b-v0.5
314
+
315
+ # Rhea-72b-v0.5
316
+
317
+ ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/64241c3d774cc340797429fc/97nXDuEhQUom3vaVcEvV-.jpeg)
318
+
319
+ The Rhea project is a project that conducts research on various learning methods to improve llm model performance. We fine-tuned the existing model using the [nox](https://github.com/davidkim205/nox) framework. We built a dataset for SFT learning based on the currently open dataset, and created a dataset using SGD (Self-Generated Dataset Creation Method for DPO Learning) for DPO learning.
320
+
321
+ Our model ranked first on HuggingFace's Open LLM leaderboard.
322
+
323
+
324
+ ## SGD : A Study on Self-Generated Dataset creation method for DPO Learning
325
+
326
+ This method proposes a novel method for generating datasets for DPO (Self-supervised Learning) models. We suggest a technique where sentences generated by the model are compared with the actual correct answers from an existing dataset, and sentences where the model's generated results do not match the correct answers are added. This enables the model to autonomously create training data, thereby enhancing the performance of DPO models.
327
+
328
+ ## Model Details
329
+
330
+ * **Model Developers** : davidkim(changyeon kim)
331
+ * **Repository** : [https://github.com/davidkim205/nox](https://github.com/davidkim205/nox)
332
+ * **base mode** : abacusai/Smaug-72B-v0.1
333
+ * **sft dataset** : datasets_enconv_4m
334
+ * **dpo dataset** : datasets_encomp_151k
335
+
336
+ ## sft dataset info : datasets_enconv_4m
337
+ ### 100k random shuffle datasets
338
+ - stack-exchange-preferences
339
+ - SlimOrca
340
+ - alpaca-gpt4
341
+ - SHP
342
+ - HC3
343
+ - databricks-dolly-15k
344
+ - orca-dpo-pairs
345
+ - us-stockname
346
+ - OpenHermes2.5-dpo-binarized-alpha
347
+ - distilabel-math-preference-dpo
348
+ - Neural-DPO
349
+ - truthy-dpo-v0.1
350
+ - distilabel-capybara-dpo-7k-binarized
351
+ - us-sentiment
352
+ - contextual-dpo-v0.1
353
+
354
+ ### 1k random shuffle datasets
355
+ - bigbench
356
+ - glue_mnli
357
+ - glue_qqp
358
+ - xnli
359
+ - codexglue_code2text_go
360
+ - trivia_qa
361
+ - medmcqa
362
+ - hendrycks_ethics
363
+ - super_glue_record
364
+ - glue_qnli
365
+ - anli_r3
366
+ - swag
367
+ - squad_v2
368
+ - nq_open
369
+ - drop
370
+ - glue_sst2
371
+ - blimp
372
+ - paws-x
373
+ - unscramble
374
+ - anli_r2
375
+ - babi
376
+ - math_qa
377
+ - social_i_qa
378
+ - piqa
379
+ - arithmetic
380
+ - anli_r1
381
+ - prost
382
+ - sciq
383
+ - mc_taco
384
+ - medqa
385
+ - super_glue_boolq
386
+ - hendrycks_math
387
+ - lambada
388
+ - toxigen-data
389
+ - glue_cola
390
+ - pubmed_qa
391
+ - logiqa
392
+ - mutual
393
+ - headqa
394
+ - bbh
395
+ - super_glue_wic
396
+ - openbookqa
397
+ - glue_mrpc
398
+ - web_questions
399
+ - qasper
400
+ - super_glue_multirc
401
+ - story_cloze
402
+ - super_glue_rte
403
+ - glue_rte
404
+ - race
405
+ - xwinograd
406
+ - asdiv
407
+ - xstory_cloze
408
+ - crows_pairs_multilingual
409
+ - belebele
410
+ - glue_wnli
411
+ - super_glue_wsc
412
+ - coqa
413
+ - super_glue_copa
414
+ - super_glue_cb
415
+ - winograd_wsc
416
+ - mgsm
417
+ - scrolls_contract_nli
418
+
419
+ * If the data set cannot be found, it is internal company data and cannot be made public.
420
+
421
+ ## dpo dataset info : datasets_encomp_151k
422
+ Randomly selecting data from each category within the training dataset, we constructed a DPO (Direct Preference Optimization) dataset using sentences with logits lower than the mean within the model-generated sentences.
423
+ * I'm sorry I can't reveal it.
424
+
425
+ # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
426
+ Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_davidkim205__Rhea-72b-v0.5)
427
+
428
+ | Metric | Value |
429
+ | -: |
430
+ | Avg. | 81.22 |
431
+ | AI2 Reasoning Challenge (25-Shot) | 79.78 |
432
+ | HellaSwag (10-Shot) | 91.15 |
433
+ | MMLU (5-Shot) | 77.95 |
434
+ | TruthfulQA (0-shot) | 74.50 |
435
+ | Winogrande (5-shot) | 87.85 |
436
+ | GSM8k (5-shot) | 76.12 |
437
+
438
+
439
+ <!-- original-model-card end -->