|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" FLMR model configuration""" |
|
|
|
import os |
|
from typing import Union |
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.utils import logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
FLMR_PRETRAINED_CONFIG_ARCHIVE_MAP = { |
|
"LinWeizheDragon/PreFLMR_ViT-L": "https://huggingface.co/LinWeizheDragon/PreFLMR_ViT-L/resolve/main/config.json", |
|
"LinWeizheDragon/FLMR": "https://huggingface.co/LinWeizheDragon/FLMR/resolve/main/config.json", |
|
} |
|
|
|
|
|
|
|
class FLMRVisionConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`FLMRVisionModel`]. It is used to instantiate a |
|
FLMR vision encoder according to the specified arguments, defining the model architecture. Instantiating a |
|
configuration with the defaults will yield a similar configuration to that of the vision encoder of the FLMR |
|
[openai/flmr-vit-base-patch32](https://huggingface.co/openai/flmr-vit-base-patch32) architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
Args: |
|
hidden_size (`int`, *optional*, defaults to 768): |
|
Dimensionality of the encoder layers and the pooler layer. |
|
intermediate_size (`int`, *optional*, defaults to 3072): |
|
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. |
|
projection_dim (`int`, *optional*, defaults to 512): |
|
Dimentionality of text and vision projection layers. |
|
num_hidden_layers (`int`, *optional*, defaults to 12): |
|
Number of hidden layers in the Transformer encoder. |
|
num_attention_heads (`int`, *optional*, defaults to 12): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
num_channels (`int`, *optional*, defaults to 3): |
|
The number of input channels. |
|
image_size (`int`, *optional*, defaults to 224): |
|
The size (resolution) of each image. |
|
patch_size (`int`, *optional*, defaults to 32): |
|
The size (resolution) of each patch. |
|
hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`): |
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, |
|
`"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported. |
|
layer_norm_eps (`float`, *optional*, defaults to 1e-05): |
|
The epsilon used by the layer normalization layers. |
|
attention_dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout ratio for the attention probabilities. |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
initializer_factor (`float`, *optional*, defaults to 1.0): |
|
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization |
|
testing). |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import FLMRVisionConfig, FLMRVisionModel |
|
|
|
>>> # Initializing a FLMRVisionConfig with LinWeizheDragon/FLMR style configuration |
|
>>> configuration = FLMRVisionConfig() |
|
|
|
>>> # Initializing a FLMRVisionModel (with random weights) from the LinWeizheDragon/FLMR style configuration |
|
>>> model = FLMRVisionModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
|
|
model_type = "flmr_vision_model" |
|
|
|
def __init__( |
|
self, |
|
hidden_size=768, |
|
intermediate_size=3072, |
|
projection_dim=512, |
|
num_hidden_layers=12, |
|
num_attention_heads=12, |
|
num_channels=3, |
|
image_size=224, |
|
patch_size=32, |
|
hidden_act="quick_gelu", |
|
layer_norm_eps=1e-5, |
|
attention_dropout=0.0, |
|
initializer_range=0.02, |
|
initializer_factor=1.0, |
|
**kwargs, |
|
): |
|
super().__init__(**kwargs) |
|
|
|
self.hidden_size = hidden_size |
|
self.intermediate_size = intermediate_size |
|
self.projection_dim = projection_dim |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.num_channels = num_channels |
|
self.patch_size = patch_size |
|
self.image_size = image_size |
|
self.initializer_range = initializer_range |
|
self.initializer_factor = initializer_factor |
|
self.attention_dropout = attention_dropout |
|
self.layer_norm_eps = layer_norm_eps |
|
self.hidden_act = hidden_act |
|
|
|
@classmethod |
|
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": |
|
cls._set_token_in_kwargs(kwargs) |
|
|
|
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) |
|
|
|
|
|
if config_dict.get("model_type") == "clip": |
|
config_dict = config_dict["vision_config"] |
|
|
|
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: |
|
logger.warning( |
|
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " |
|
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." |
|
) |
|
|
|
return cls.from_dict(config_dict, **kwargs) |
|
|
|
|
|
|
|
class FLMRTextConfig(PretrainedConfig): |
|
r""" |
|
[`FLMRTextConfig`] is the configuration class to store the configuration of a *FLMRTextModel*. |
|
|
|
This is the configuration class to store the configuration of a [`FLMRTextModel`]. It is used to instantiate the components of the FLMR model according to the specified arguments, |
|
defining the model component architectures. Instantiating a configuration with the defaults will yield a similar |
|
configuration to that of the DPRContextEncoder |
|
[facebook/dpr-ctx_encoder-single-nq-base](https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base) |
|
architecture. |
|
|
|
This class is a subclass of [`BertConfig`]. Please check the superclass for the documentation of all kwargs. |
|
|
|
Args: |
|
vocab_size (`int`, *optional*, defaults to 30522): |
|
Vocabulary size of the FLMR model. Defines the different tokens that can be represented by the *inputs_ids* |
|
passed to the forward method of [`BertModel`]. |
|
hidden_size (`int`, *optional*, defaults to 768): |
|
Dimensionality of the encoder layers and the pooler layer. |
|
num_hidden_layers (`int`, *optional*, defaults to 12): |
|
Number of hidden layers in the Transformer encoder. |
|
num_attention_heads (`int`, *optional*, defaults to 12): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
intermediate_size (`int`, *optional*, defaults to 3072): |
|
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. |
|
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): |
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, |
|
`"relu"`, `"silu"` and `"gelu_new"` are supported. |
|
hidden_dropout_prob (`float`, *optional*, defaults to 0.1): |
|
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. |
|
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): |
|
The dropout ratio for the attention probabilities. |
|
max_position_embeddings (`int`, *optional*, defaults to 512): |
|
The maximum sequence length that this model might ever be used with. Typically set this to something large |
|
just in case (e.g., 512 or 1024 or 2048). |
|
type_vocab_size (`int`, *optional*, defaults to 2): |
|
The vocabulary size of the *token_type_ids* passed into [`BertModel`]. |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
layer_norm_eps (`float`, *optional*, defaults to 1e-12): |
|
The epsilon used by the layer normalization layers. |
|
pad_token_id (`int`, *optional*, defaults to 0): |
|
Padding token id. |
|
position_embedding_type (`str`, *optional*, defaults to `"absolute"`): |
|
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For |
|
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to |
|
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). |
|
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models |
|
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). |
|
projection_dim (`int`, *optional*, defaults to 0): |
|
Dimension of the projection for the context and question encoders. If it is set to zero (default), then no |
|
projection is done. |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import FLMRTextConfig, FLMRTextModel |
|
|
|
>>> # Initializing a FLMR LinWeizheDragon/FLMR style configuration |
|
>>> configuration = FLMRTextConfig() |
|
|
|
>>> # Initializing a model (with random weights) from the LinWeizheDragon/FLMR style configuration |
|
>>> model = FLMRTextModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
|
|
model_type = "flmr_text_model" |
|
|
|
def __init__( |
|
self, |
|
vocab_size=30522, |
|
hidden_size=768, |
|
num_hidden_layers=12, |
|
num_attention_heads=12, |
|
intermediate_size=3072, |
|
hidden_act="gelu", |
|
hidden_dropout_prob=0.1, |
|
attention_probs_dropout_prob=0.1, |
|
max_position_embeddings=512, |
|
type_vocab_size=2, |
|
initializer_range=0.02, |
|
layer_norm_eps=1e-12, |
|
pad_token_id=0, |
|
position_embedding_type="absolute", |
|
projection_dim: int = 0, |
|
**kwargs, |
|
): |
|
super().__init__(pad_token_id=pad_token_id, **kwargs) |
|
|
|
self.vocab_size = vocab_size |
|
self.hidden_size = hidden_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.hidden_act = hidden_act |
|
self.intermediate_size = intermediate_size |
|
self.hidden_dropout_prob = hidden_dropout_prob |
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob |
|
self.max_position_embeddings = max_position_embeddings |
|
self.type_vocab_size = type_vocab_size |
|
self.initializer_range = initializer_range |
|
self.layer_norm_eps = layer_norm_eps |
|
self.projection_dim = projection_dim |
|
self.position_embedding_type = position_embedding_type |
|
|
|
|
|
class FLMRConfig(PretrainedConfig): |
|
r""" |
|
[`FLMRConfig`] is the configuration class to store the configuration of a *FLMRModelForRetrieval*. |
|
This is the configuration class to store the configuration of a [`FLMRModelForRetrieval`]. It is used to instantiate the components of the FLMR model according to the specified arguments, |
|
defining the model component architectures. Instantiating a configuration with the defaults will yield a similar |
|
configuration to that of the FLMR |
|
[LinWeizheDragon/PreFLMR_ViT-G](https://huggingface.co/LinWeizheDragon/PreFLMR_ViT-G) |
|
architecture. |
|
|
|
Args: |
|
vision_config (`FLMRVisionConfig`, *optional*): |
|
Configuration for the vision encoder. |
|
text_config (`FLMRTextConfig`, *optional*): |
|
Configuration for the text encoder. |
|
mask_punctuation (`bool`, *optional*, defaults to `True`): |
|
Whether to mask punctuation tokens in the input. |
|
mapping_network_prefix_length (`int`, *optional*, defaults to 32): |
|
The output length of the linear mapping network. |
|
dim (`int`, *optional*, defaults to 128): |
|
The late-interaction dimension of the model. The output of the text encoder, vision encoder, transformer mapping network should all be projected to this dimension for late-interaction scoring. |
|
use_vision_encoder (`bool`, *optional*, defaults to `True`): |
|
Whether to load the vision encoder. When no vision encoder is loaded, `image_features` should be used in the forward pass rather than `pixel_values`. |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
separate_query_and_context_text_encoder (`bool`, *optional*, defaults to `False`): |
|
Whether to use separate text encoders for query and context. |
|
separate_query_and_context_vision_encoder (`bool`, *optional*, defaults to `False`): |
|
Whether to use separate vision encoders for query and context. |
|
query_concat_output_from_vision_encoder (`bool`, *optional*, defaults to `True`): |
|
Whether to concatenate the output from the vision encoder to the output from the text encoder for the query. |
|
query_concat_output_from_text_encoder (`bool`, *optional*, defaults to `True`): |
|
Whether to concatenate the output from the text encoder to the output from the vision encoder for the query. |
|
context_concat_output_from_vision_encoder (`bool`, *optional*, defaults to `False`): |
|
Whether to concatenate the output from the vision encoder to the output from the text encoder for the context. |
|
context_concat_output_from_text_encoder (`bool`, *optional*, defaults to `True`): |
|
Whether to concatenate the output from the text encoder to the output from the vision encoder for the context. |
|
use_transformer_mapping_network (`bool`, *optional*, defaults to `False`): |
|
Whether to add a transformer mapping network to map the features from the vision encoder to the embedding space. This option is used in PreFLMR. |
|
transformer_mapping_config_base (`str`, *optional*): |
|
The base configuration for the transformer mapping network. This option is used in PreFLMR. An example of this argument is `bert-base-uncased`. |
|
transformer_mapping_num_hidden_layers (`int`, *optional*): |
|
The number of hidden layers in the transformer mapping network. This option is used in PreFLMR. |
|
load_cpu_extension (`bool`, *optional*, defaults to `False`): |
|
Whether to load the CPU extension. Only set this to `True` if a CPU is used in training and inference. In any case, GPU is recommended for training and inference. |
|
mask_instruction_token (`str`, *optional*): |
|
The token that indicates the end of the input instruction. All tokens before this token (the first one in a sequence) will be masked. This option is used in PreFLMR. |
|
transformer_mapping_cross_attention_length (`int`, *optional*, defaults to 32): |
|
The length of the cross attention in the transformer mapping network. This option is used in PreFLMR. |
|
vision_model_version (`str`, *optional*, defaults to `"openai/clip-vit-base-patch32"`): |
|
The version of the vision model being used in this FLMR model. |
|
This option is used in performing retrieval only. Though it does not affect the model architecture, it is highly recommended to set this argument so that it properly reflects the version of the vision model being used in the FLMR model. This arugment will be saved in the model configuration, and it can be read by the indexing engine. The indexing engine will use this argument to initialize an image processor, which can process the input image files. Find more details under `examples/research_projects/flmr-retrieval`. |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import FLMRConfig, FLMRModelForRetrieval |
|
|
|
>>> # Initializing a FLMR LinWeizheDragon/FLMR style configuration |
|
>>> configuration = FLMRConfig() |
|
|
|
>>> # Initializing a model (with random weights) from the FLMR style configuration |
|
>>> model = FLMRModelForRetrieval(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
|
|
model_type = "flmr" |
|
|
|
def __init__( |
|
self, |
|
vision_config: FLMRVisionConfig = None, |
|
text_config: FLMRTextConfig = None, |
|
mask_punctuation: bool = True, |
|
mapping_network_prefix_length: int = 32, |
|
dim: int = 128, |
|
use_vision_encoder: bool = True, |
|
initializer_range: float = 0.02, |
|
separate_query_and_context_text_encoder: bool = False, |
|
separate_query_and_context_vision_encoder: bool = False, |
|
query_concat_output_from_vision_encoder: bool = True, |
|
query_concat_output_from_text_encoder: bool = True, |
|
context_concat_output_from_vision_encoder: bool = False, |
|
context_concat_output_from_text_encoder: bool = True, |
|
use_transformer_mapping_network: bool = False, |
|
transformer_mapping_config_base: str = None, |
|
transformer_mapping_num_hidden_layers: int = None, |
|
load_cpu_extension: bool = False, |
|
mask_instruction_token: str = None, |
|
transformer_mapping_cross_attention_length: int = 32, |
|
vision_model_version: str = "openai/clip-vit-base-patch32", |
|
**kwargs, |
|
): |
|
super().__init__(**kwargs) |
|
|
|
if vision_config is None: |
|
vision_config = {} |
|
if text_config is None: |
|
text_config = {} |
|
|
|
if not isinstance(vision_config, FLMRVisionConfig): |
|
vision_config = FLMRVisionConfig(**vision_config) |
|
if not isinstance(text_config, FLMRTextConfig): |
|
text_config = FLMRTextConfig(**text_config) |
|
|
|
self.vision_config = vision_config |
|
self.text_config = text_config |
|
self.dim = dim |
|
self.initializer_range = initializer_range |
|
self.mask_punctuation = mask_punctuation |
|
self.mapping_network_prefix_length = mapping_network_prefix_length |
|
self.use_vision_encoder = use_vision_encoder |
|
self.separate_query_and_context_text_encoder = separate_query_and_context_text_encoder |
|
self.separate_query_and_context_vision_encoder = separate_query_and_context_vision_encoder |
|
self.query_concat_output_from_vision_encoder = query_concat_output_from_vision_encoder |
|
self.query_concat_output_from_text_encoder = query_concat_output_from_text_encoder |
|
self.context_concat_output_from_vision_encoder = context_concat_output_from_vision_encoder |
|
self.context_concat_output_from_text_encoder = context_concat_output_from_text_encoder |
|
self.use_transformer_mapping_network = use_transformer_mapping_network |
|
self.transformer_mapping_config_base = transformer_mapping_config_base |
|
self.transformer_mapping_num_hidden_layers = transformer_mapping_num_hidden_layers |
|
self.load_cpu_extension = load_cpu_extension |
|
self.mask_instruction_token = mask_instruction_token |
|
self.transformer_mapping_cross_attention_length = transformer_mapping_cross_attention_length |
|
self.vision_model_version = vision_model_version |
|
|
|
@classmethod |
|
def from_text_vision_configs(cls, text_config: FLMRTextConfig, vision_config: FLMRVisionConfig, **kwargs): |
|
r""" |
|
Instantiate a [`FLMRConfig`] (or a derived class) from FLMR text model configuration and FLMR vision model |
|
configuration. |
|
|
|
Returns: |
|
[`FLMRConfig`]: An instance of a configuration object |
|
""" |
|
|
|
return cls(text_config=text_config, vision_config=vision_config, **kwargs) |
|
|