LinWeizheDragon
commited on
Commit
•
bb30e3a
1
Parent(s):
f6f337b
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: mit
|
4 |
+
language:
|
5 |
+
- en
|
6 |
+
tags:
|
7 |
+
- retrieval
|
8 |
+
- multi-modal
|
9 |
+
- knowledge-based visual question answering
|
10 |
+
- FLMR
|
11 |
+
- PreFLMR
|
12 |
+
---
|
13 |
+
|
14 |
+
# PreFLMR model card
|
15 |
+
|
16 |
+
|
17 |
+
### Model Description
|
18 |
+
|
19 |
+
- **Model type:** PreFLMR is an open-source model for multimodal knowledge retrieval. It is a transformer-based model that uses a combination of text and image inputs to retrieve relevant documents from a large corpus.
|
20 |
+
- **Language(s) (NLP):** English
|
21 |
+
- **License:** MIT License
|
22 |
+
|
23 |
+
### Paper and resources for more detail
|
24 |
+
|
25 |
+
- **Blog Post for quick overview:** https://www.jinghong-chen.net/preflmr-sota-open-sourced-multi/
|
26 |
+
- **Paper:** https://arxiv.org/abs/2402.08327
|
27 |
+
- **Gradio Demo:** https://u60544-b8d4-53eaa55d.westx.seetacloud.com:8443/
|
28 |
+
- **Repository:** https://github.com/LinWeizheDragon/FLMR
|
29 |
+
- **Project Page:** https://preflmr.github.io/
|
30 |
+
|
31 |
+
## Uses
|
32 |
+
|
33 |
+
### Direct Use
|
34 |
+
|
35 |
+
|
36 |
+
This model can be used directly to retrieve documents from a large corpus using a combination of text and image input queries. The retrieval useage can be found in the [official implementation](https://github.com/LinWeizheDragon/FLMR).
|
37 |
+
|
38 |
+
### Downstream Use
|
39 |
+
|
40 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
41 |
+
|
42 |
+
This model can be used combined with language models to create a retrieval-augmented language model. The useage for Knowledge-based VQA can be found in [RAVQA](https://github.com/linweizhedragon/retrieval-augmented-visual-question-answering)
|
43 |
+
|
44 |
+
## How to Get Started with the Model
|
45 |
+
|
46 |
+
For details of training, indexing, and performing retrieval, please refer to [here](https://github.com/LinWeizheDragon/FLMR).
|
47 |
+
|
48 |
+
## Training datasets
|
49 |
+
The model is pre-trained on three types of tasks with a total of nine datasets:
|
50 |
+
1. Image to Text retrieval: WIT, KVQA, and CC3M
|
51 |
+
2. Question to Text retrieval: MSMARCO
|
52 |
+
3. Image & Question to Text retrieval: LLaVA, OVEN, OKVQA, Infoseek and E-VQA
|
53 |
+
|
54 |
+
These datasets were converted to retrieval format. For details on the dataset split and conversion process, please refer to the paper [PreFLMR: Scaling Up Fine-Grained Late-Interaction Multi-modal Retrievers](https://arxiv.org/abs/2402.08327). We will release the proprocessed datasets soon.
|
55 |
+
|
56 |
+
|
57 |
+
## Evaluation datasets
|
58 |
+
We evaluate our models on WIT, LLaVA, OVEN, KVQA, IGLUE (subset of WIT), Infoseek, E-VQA, OKVQA and MSMARCO.
|
59 |
+
| Model | Vision Encoder | Text Encoder | Checkpoint Name | No. Param. | WIT | LLaVA | OVEN | KVQA | IGLUE | Infoseek | E-VQA | OKVQA | MSMARCO |
|
60 |
+
|---------|----------------|--------------|-------------------------------------------------------------|-------|-------|--------|-------|-------|-------|----------|-------|--------|-------|
|
61 |
+
| PreFLMR | ViT-B | Base-v2 | [LinWeizheDragon/PreFLMR_ViT-B](https://huggingface.co/LinWeizheDragon/PreFLMR_ViT-B) | 327M | 41.7 | 67.2 | 46.3 | 28.6 | 57.3 | 48.8 | 67.9 | 66.1 | 79.5 |
|
62 |
+
| PreFLMR | ViT-L | Base-v2 | [LinWeizheDragon/PreFLMR_ViT-L](https://huggingface.co/LinWeizheDragon/PreFLMR_ViT-L) | 543M | 60.5 | 71.8 | 59.8 | 43.6 | 69.2 | 57.9 | 70.8 | 68.5 | 78.7 |
|
63 |
+
| PreFLMR | ViT-G | Base-v2 | [LinWeizheDragon/PreFLMR_ViT-G](https://huggingface.co/LinWeizheDragon/PreFLMR_ViT-G) | 2.1B | 61.5 | 72.4 | 63.4 | 42.1 |71.5 | 59.6 | 73.1 | 68.6 | 78.6 |
|
64 |
+
|
65 |
+
For the evaluation metrics, WIT uses Recall@10, IGLUE uses Recall@1, and all the rest datasets use Recall@5.
|
66 |
+
|
67 |
+
|
68 |
+
## Citation
|
69 |
+
|
70 |
+
**BibTeX:**
|
71 |
+
```
|
72 |
+
@article{Lin_Mei_Chen_Byrne_2024,
|
73 |
+
title={PreFLMR: Scaling Up Fine-Grained Late-Interaction Multi-modal Retrievers},
|
74 |
+
url={http://arxiv.org/abs/2402.08327},
|
75 |
+
number={arXiv:2402.08327},
|
76 |
+
publisher={arXiv},
|
77 |
+
author={Lin, Weizhe and Mei, Jingbiao and Chen, Jinghong and Byrne, Bill},
|
78 |
+
year={2024}}
|
79 |
+
```
|