LinWeizheDragon commited on
Commit
bb30e3a
1 Parent(s): f6f337b

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +79 -0
README.md ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: mit
4
+ language:
5
+ - en
6
+ tags:
7
+ - retrieval
8
+ - multi-modal
9
+ - knowledge-based visual question answering
10
+ - FLMR
11
+ - PreFLMR
12
+ ---
13
+
14
+ # PreFLMR model card
15
+
16
+
17
+ ### Model Description
18
+
19
+ - **Model type:** PreFLMR is an open-source model for multimodal knowledge retrieval. It is a transformer-based model that uses a combination of text and image inputs to retrieve relevant documents from a large corpus.
20
+ - **Language(s) (NLP):** English
21
+ - **License:** MIT License
22
+
23
+ ### Paper and resources for more detail
24
+
25
+ - **Blog Post for quick overview:** https://www.jinghong-chen.net/preflmr-sota-open-sourced-multi/
26
+ - **Paper:** https://arxiv.org/abs/2402.08327
27
+ - **Gradio Demo:** https://u60544-b8d4-53eaa55d.westx.seetacloud.com:8443/
28
+ - **Repository:** https://github.com/LinWeizheDragon/FLMR
29
+ - **Project Page:** https://preflmr.github.io/
30
+
31
+ ## Uses
32
+
33
+ ### Direct Use
34
+
35
+
36
+ This model can be used directly to retrieve documents from a large corpus using a combination of text and image input queries. The retrieval useage can be found in the [official implementation](https://github.com/LinWeizheDragon/FLMR).
37
+
38
+ ### Downstream Use
39
+
40
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
41
+
42
+ This model can be used combined with language models to create a retrieval-augmented language model. The useage for Knowledge-based VQA can be found in [RAVQA](https://github.com/linweizhedragon/retrieval-augmented-visual-question-answering)
43
+
44
+ ## How to Get Started with the Model
45
+
46
+ For details of training, indexing, and performing retrieval, please refer to [here](https://github.com/LinWeizheDragon/FLMR).
47
+
48
+ ## Training datasets
49
+ The model is pre-trained on three types of tasks with a total of nine datasets:
50
+ 1. Image to Text retrieval: WIT, KVQA, and CC3M
51
+ 2. Question to Text retrieval: MSMARCO
52
+ 3. Image & Question to Text retrieval: LLaVA, OVEN, OKVQA, Infoseek and E-VQA
53
+
54
+ These datasets were converted to retrieval format. For details on the dataset split and conversion process, please refer to the paper [PreFLMR: Scaling Up Fine-Grained Late-Interaction Multi-modal Retrievers](https://arxiv.org/abs/2402.08327). We will release the proprocessed datasets soon.
55
+
56
+
57
+ ## Evaluation datasets
58
+ We evaluate our models on WIT, LLaVA, OVEN, KVQA, IGLUE (subset of WIT), Infoseek, E-VQA, OKVQA and MSMARCO.
59
+ | Model | Vision Encoder | Text Encoder | Checkpoint Name | No. Param. | WIT | LLaVA | OVEN | KVQA | IGLUE | Infoseek | E-VQA | OKVQA | MSMARCO |
60
+ |---------|----------------|--------------|-------------------------------------------------------------|-------|-------|--------|-------|-------|-------|----------|-------|--------|-------|
61
+ | PreFLMR | ViT-B | Base-v2 | [LinWeizheDragon/PreFLMR_ViT-B](https://huggingface.co/LinWeizheDragon/PreFLMR_ViT-B) | 327M | 41.7 | 67.2 | 46.3 | 28.6 | 57.3 | 48.8 | 67.9 | 66.1 | 79.5 |
62
+ | PreFLMR | ViT-L | Base-v2 | [LinWeizheDragon/PreFLMR_ViT-L](https://huggingface.co/LinWeizheDragon/PreFLMR_ViT-L) | 543M | 60.5 | 71.8 | 59.8 | 43.6 | 69.2 | 57.9 | 70.8 | 68.5 | 78.7 |
63
+ | PreFLMR | ViT-G | Base-v2 | [LinWeizheDragon/PreFLMR_ViT-G](https://huggingface.co/LinWeizheDragon/PreFLMR_ViT-G) | 2.1B | 61.5 | 72.4 | 63.4 | 42.1 |71.5 | 59.6 | 73.1 | 68.6 | 78.6 |
64
+
65
+ For the evaluation metrics, WIT uses Recall@10, IGLUE uses Recall@1, and all the rest datasets use Recall@5.
66
+
67
+
68
+ ## Citation
69
+
70
+ **BibTeX:**
71
+ ```
72
+ @article{Lin_Mei_Chen_Byrne_2024,
73
+ title={PreFLMR: Scaling Up Fine-Grained Late-Interaction Multi-modal Retrievers},
74
+ url={http://arxiv.org/abs/2402.08327},
75
+ number={arXiv:2402.08327},
76
+ publisher={arXiv},
77
+ author={Lin, Weizhe and Mei, Jingbiao and Chen, Jinghong and Byrne, Bill},
78
+ year={2024}}
79
+ ```