lidar commited on
Commit
d16ce21
·
1 Parent(s): 2ada9b2

Upload PPO LunarLander-v2 trained agent

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 204.65 +/- 31.76
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fbb45a61b00>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fbb45a61b90>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fbb45a61c20>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fbb45a61cb0>", "_build": "<function ActorCriticPolicy._build at 0x7fbb45a61d40>", "forward": "<function ActorCriticPolicy.forward at 0x7fbb45a61dd0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fbb45a61e60>", "_predict": "<function ActorCriticPolicy._predict at 0x7fbb45a61ef0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fbb45a61f80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fbb45a66050>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fbb45a660e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fbb45a34630>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651676430.2336633, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV8wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxiL2hvbWUvbGlkYXIvcHJvamVjdHMvY291cnNlL2Jhc2UvZW52L2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGIvaG9tZS9saWRhci9wcm9qZWN0cy9jb3Vyc2UvYmFzZS9lbnYvbGliL3B5dGhvbjMuNy9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANo2zT00buM9uE2pPTdXOL6eDWg8MGEHPQAAAAAAAAAAoH6OvtcLRTwFuku71Y1NOWgeyL34i3E6AACAPwAAgD9yjIW+j50hvKyZNjsVgbw4loOSPbJBkLkAAIA/AACAP/M+ob0paFq6nYV/O7ZbujZ6OmE5xHGWugAAgD8AAIA/U6hVvtd/ajylqOA6sHMOuT4kA77MZw+6AACAPwAAgD8ALOW9jwZDukGOITt+cFI2SPaZuuZCO7oAAIA/AACAP5YyOr9O0Y2+YS8iOgfgjDcTtY0+qMaqtwAAgD8AAIA/mp8jPVIYxjiihSm83LQ9NC1VlLk2hsmzAACAPwAAgD+zXTk9KSgZulMKALpzrGe04m5mudmCFzkAAIA/AACAP9rDej74Me0+ARcSvsKhWr7A2LC81/Y5vQAAAAAAAAAASg3tvlQDMT93o5E8dj9TvtYwcr24Beo7AAAAAAAAAAAAHbu9w5l3uvbghDwjrI61izSPuWL/gLQAAIA/AACAP7qHPD6F4OK7Tj4lOh0Yqren8Fa960BJuQAAgD8AAIA/zUfgPYXz27m8Q7o7kGcAuaeYjTpKZX64AAAAAAAAgD9zqaQ9w6lSukLJgTuLUYc4WeqQOSOlG7oAAIA/AACAP0CiG75B2ZI/xTXsvuyqnb5kbFK9RcWgvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVchAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI3e16aYr1YECUhpRSlIwBbJRN6AOMAXSUR0BujqThYNiIdX2UKGgGaAloD0MI/MIrSZ5DX0CUhpRSlGgVTegDaBZHQG6P1/+bVjJ1fZQoaAZoCWgPQwgPf03WqJFYQJSGlFKUaBVN6ANoFkdAbxy0elsP8XV9lChoBmgJaA9DCPfMkgA1GV5AlIaUUpRoFU3oA2gWR0BvKSBClabGdX2UKGgGaAloD0MIhsjp63m3YECUhpRSlGgVTegDaBZHQG9DDHwPRRd1fZQoaAZoCWgPQwjkhAmjWVU9QJSGlFKUaBVN6ANoFkdAb0mW0JF9a3V9lChoBmgJaA9DCLXBiejXUVVAlIaUUpRoFU3oA2gWR0BvdJ13dKukdX2UKGgGaAloD0MIOltAaD0qXUCUhpRSlGgVTegDaBZHQG+PxASnLq51fZQoaAZoCWgPQwgdHsL46VFoQJSGlFKUaBVNDwNoFkdAb5SWw/xDs3V9lChoBmgJaA9DCIvfFFaqeGNAlIaUUpRoFU3oA2gWR0BvnYLRa5f/dX2UKGgGaAloD0MI9+RhodbBXkCUhpRSlGgVTegDaBZHQG+ecjqv/zd1fZQoaAZoCWgPQwiXVG03wS1iQJSGlFKUaBVN6ANoFkdAb6edNnGsFXV9lChoBmgJaA9DCEChnj4CVlxAlIaUUpRoFU3oA2gWR0Bvsa2a2F37dX2UKGgGaAloD0MIrvIEwk4PYECUhpRSlGgVTegDaBZHQG+996cAiml1fZQoaAZoCWgPQwiqKF5lbX8xwJSGlFKUaBVLwmgWR0Bvw+aKDTScdX2UKGgGaAloD0MIcjEG1nGkYECUhpRSlGgVTegDaBZHQG/IdKNAC4l1fZQoaAZoCWgPQwiBBMWPMVlEQJSGlFKUaBVL9WgWR0Bvy10gbIcSdX2UKGgGaAloD0MI1IIXfQVZJECUhpRSlGgVS9JoFkdAb86tFrl/6XV9lChoBmgJaA9DCOjewyXH90lAlIaUUpRoFU3oA2gWR0Bv1E8DB/I9dX2UKGgGaAloD0MItrqcEhC3QcCUhpRSlGgVS+VoFkdAb9m+9rXUY3V9lChoBmgJaA9DCMwKRbqfYFFAlIaUUpRoFU3oA2gWR0Bv5qh11W8zdX2UKGgGaAloD0MI+dfyyvVVVUCUhpRSlGgVTegDaBZHQG/nscABDG91fZQoaAZoCWgPQwjOiqiJPn9FQJSGlFKUaBVNGAFoFkdAb+yMoc7yQXV9lChoBmgJaA9DCHOh8q/llbs/lIaUUpRoFUu7aBZHQG/0YVZcLSh1fZQoaAZoCWgPQwh8KxITVGNhQJSGlFKUaBVN6ANoFkdAcDZ/CZWq+HV9lChoBmgJaA9DCKw5QDBHw0ZAlIaUUpRoFU3oA2gWR0BwPAN/e+EidX2UKGgGaAloD0MIUU60q5DfXECUhpRSlGgVTegDaBZHQHBHqoQ4CIV1fZQoaAZoCWgPQwj6DRMNUvRZQJSGlFKUaBVN6ANoFkdAcEqfOlfqo3V9lChoBmgJaA9DCIXRrGwf8so/lIaUUpRoFU0rAWgWR0BwXMu5BkZrdX2UKGgGaAloD0MI26Z4XNRrY0CUhpRSlGgVTegDaBZHQHBdbkn1Fph1fZQoaAZoCWgPQwjpRe1+FWwzwJSGlFKUaBVLxGgWR0BwY1nezlcRdX2UKGgGaAloD0MIcXZrmQyEYUCUhpRSlGgVTegDaBZHQHBvWN3np0R1fZQoaAZoCWgPQwjW4egq3Q1WQJSGlFKUaBVN6ANoFkdAcIHcdYGMXXV9lChoBmgJaA9DCI3uIHamQV5AlIaUUpRoFU3oA2gWR0BwhbK0UoKEdX2UKGgGaAloD0MIAma+g584BsCUhpRSlGgVTQ8BaBZHQHCIP4mCyyF1fZQoaAZoCWgPQwikpl1MM2deQJSGlFKUaBVN6ANoFkdAcIiHTI/7i3V9lChoBmgJaA9DCKfpswOuG19AlIaUUpRoFU3oA2gWR0BwilBrvb48dX2UKGgGaAloD0MIJR+7CxS4Y0CUhpRSlGgVTegDaBZHQHCPtaQmu1Z1fZQoaAZoCWgPQwiLprOTwZtWQJSGlFKUaBVN6ANoFkdAcJL8RL9MsnV9lChoBmgJaA9DCNAM4gM7lmFAlIaUUpRoFU3oA2gWR0Bwml7CzkZKdX2UKGgGaAloD0MIeVc9YB7BYECUhpRSlGgVTegDaBZHQHCa7x7RfF91fZQoaAZoCWgPQwhnt5bJcD5YQJSGlFKUaBVN6ANoFkdAcJ1/2kBS1nV9lChoBmgJaA9DCDHtm/urQzBAlIaUUpRoFUu0aBZHQHCfI8uBczJ1fZQoaAZoCWgPQwg6PlqcMSg5QJSGlFKUaBVL3mgWR0Bwn9KaoddWdX2UKGgGaAloD0MIRrOyfci7EECUhpRSlGgVS9RoFkdAcKDetCAtnXV9lChoBmgJaA9DCHzzGyYah1xAlIaUUpRoFU3oA2gWR0BwoV++dsi0dX2UKGgGaAloD0MIx9rf2R5NPsCUhpRSlGgVTQQBaBZHQHDUawpvxYt1fZQoaAZoCWgPQwitE5fjFdBQQJSGlFKUaBVL2WgWR0Bw3useXAuadX2UKGgGaAloD0MI3NeBc0YoX0CUhpRSlGgVTegDaBZHQHDf9Ba9sad1fZQoaAZoCWgPQwiRt1z92GQXQJSGlFKUaBVL1GgWR0Bw4RUzbeuWdX2UKGgGaAloD0MI3T8WokOgHMCUhpRSlGgVS/JoFkdAcOP4pMHryHV9lChoBmgJaA9DCEBOmDCaQ1tAlIaUUpRoFU3oA2gWR0Bw6nS9du50dX2UKGgGaAloD0MISN+kaVASYUCUhpRSlGgVTegDaBZHQHD/Zc1O0sx1fZQoaAZoCWgPQwhXBtUGJ6FeQJSGlFKUaBVN6ANoFkdAcQAQ9ic5KnV9lChoBmgJaA9DCOaw+47hK2NAlIaUUpRoFU3oA2gWR0BxEmBtk4FSdX2UKGgGaAloD0MIehowSHo3YECUhpRSlGgVTegDaBZHQHEmErGza9N1fZQoaAZoCWgPQwgbL90kBpdcQJSGlFKUaBVN6ANoFkdAcS0U0vXbunV9lChoBmgJaA9DCBe7fVaZEl9AlIaUUpRoFU3oA2gWR0BxOYRUWEbpdX2UKGgGaAloD0MIzjl4JjRWYUCUhpRSlGgVTegDaBZHQHFCGqHXVb11fZQoaAZoCWgPQwhaEqCmlgdfQJSGlFKUaBVN6ANoFkdAcULG9YfW+XV9lChoBmgJaA9DCAd7E0NyMlxAlIaUUpRoFU3oA2gWR0BxRfWhAWzodX2UKGgGaAloD0MI2ekHdZG6TECUhpRSlGgVTegDaBZHQHFIwSnLq2V1fZQoaAZoCWgPQwg7qS9LO409QJSGlFKUaBVL1GgWR0BxfTlq8DjjdX2UKGgGaAloD0MIAOSECSMPYUCUhpRSlGgVTegDaBZHQHF/q3qiXY11fZQoaAZoCWgPQwgiwVQzazErwJSGlFKUaBVLx2gWR0Bxg3uF6AvtdX2UKGgGaAloD0MIF9NM9zqSXkCUhpRSlGgVTegDaBZHQHGLYSg5BC51fZQoaAZoCWgPQwgr3V1nQ7JUQJSGlFKUaBVN6ANoFkdAcYxZ7HAAQ3V9lChoBmgJaA9DCIlDNpAuVFxAlIaUUpRoFU3oA2gWR0BxjXJaJQ+EdX2UKGgGaAloD0MIkKM5snK5YECUhpRSlGgVTegDaBZHQHGQAOavzOJ1fZQoaAZoCWgPQwhzvALREw5gQJSGlFKUaBVN6ANoFkdAcZWXpnpSrHV9lChoBmgJaA9DCCLFAIkmcGhAlIaUUpRoFU1fA2gWR0BxmNFmWdEtdX2UKGgGaAloD0MIJuSDns2AVECUhpRSlGgVTegDaBZHQHGpF3Qla8p1fZQoaAZoCWgPQwgkmdU73CxTQJSGlFKUaBVN6ANoFkdAcbyURWcSXnV9lChoBmgJaA9DCD3UtmEUUWdAlIaUUpRoFU0RAmgWR0BxwOH446wMdX2UKGgGaAloD0MIWOTXD7HxYUCUhpRSlGgVTegDaBZHQHHP+IRAbAF1fZQoaAZoCWgPQwjWVYFaDF1XQJSGlFKUaBVN6ANoFkdAcdZ3Roh6jXV9lChoBmgJaA9DCJks7j8y8lNAlIaUUpRoFU3oA2gWR0Bx7MelsP8RdX2UKGgGaAloD0MICw4viEiiY0CUhpRSlGgVTegDaBZHQHHxVYEGJN11fZQoaAZoCWgPQwj9LQH4p5dfQJSGlFKUaBVN6ANoFkdAcfTNfPX05HV9lChoBmgJaA9DCBw/VBoxH2JAlIaUUpRoFU3oA2gWR0ByAq08eS0TdX2UKGgGaAloD0MIog4r3PIpPECUhpRSlGgVTTsBaBZHQHIwxMSK3ux1fZQoaAZoCWgPQwiC4VzDDMdbQJSGlFKUaBVN6ANoFkdAcjYY0VJti3V9lChoBmgJaA9DCBueXinL0l5AlIaUUpRoFU3oA2gWR0ByPk150KZ2dX2UKGgGaAloD0MIopqSrMP/WkCUhpRSlGgVTegDaBZHQHI/YRmK64F1fZQoaAZoCWgPQwiYTBWMStlcQJSGlFKUaBVN6ANoFkdAckCV8Ti84HV9lChoBmgJaA9DCGJmn8coDl5AlIaUUpRoFU3oA2gWR0ByQ1lmOEM9dX2UKGgGaAloD0MI8gcDz70haECUhpRSlGgVTUkBaBZHQHJFrPldTpB1fZQoaAZoCWgPQwi6vg8HiRFgQJSGlFKUaBVN6ANoFkdAckj+iJwbVHV9lChoBmgJaA9DCJyLv+2JoGBAlIaUUpRoFU3oA2gWR0ByS9vZRKpUdX2UKGgGaAloD0MIjX+fceHgEsCUhpRSlGgVTQEBaBZHQHJO2apgkTp1fZQoaAZoCWgPQwgp0CfyJAU9QJSGlFKUaBVNEgFoFkdAclQ4ubqhUXV9lChoBmgJaA9DCL+1EyUhTVdAlIaUUpRoFU3oA2gWR0ByWhy3kPtldX2UKGgGaAloD0MIhPHTuDdvYECUhpRSlGgVTegDaBZHQHJq1gc94eN1fZQoaAZoCWgPQwh1HaopyWJgQJSGlFKUaBVN6ANoFkdAcm65vtMPBnV9lChoBmgJaA9DCGXiVkGM2WhAlIaUUpRoFU14AWgWR0Byc5I3BHkMdX2UKGgGaAloD0MId2aC4VwiYECUhpRSlGgVTegDaBZHQHJ9q42CNCJ1fZQoaAZoCWgPQwj1oKAUrawiQJSGlFKUaBVL6GgWR0Byk3nB+F10dX2UKGgGaAloD0MI56vkY3chXECUhpRSlGgVTegDaBZHQHKjYFV1fVt1fZQoaAZoCWgPQwhPCB10if1iQJSGlFKUaBVN6ANoFkdAcqd/etSydHV9lChoBmgJaA9DCD49tmXAOVhAlIaUUpRoFU3oA2gWR0BytvsrupjudWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV8wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxiL2hvbWUvbGlkYXIvcHJvamVjdHMvY291cnNlL2Jhc2UvZW52L2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGIvaG9tZS9saWRhci9wcm9qZWN0cy9jb3Vyc2UvYmFzZS9lbnYvbGliL3B5dGhvbjMuNy9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.13.0-40-generic-x86_64-with-Ubuntu-20.04-focal #45~20.04.1-Ubuntu SMP Mon Apr 4 09:38:31 UTC 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.1a5", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1a4cd2c1b15b794a80a7b7f34a00c7559f26778094bcd813863b39166f6a63fd
3
+ size 144259
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.1a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fbb45a61b00>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fbb45a61b90>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fbb45a61c20>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fbb45a61cb0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fbb45a61d40>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fbb45a61dd0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fbb45a61e60>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fbb45a61ef0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fbb45a61f80>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fbb45a66050>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fbb45a660e0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fbb45a34630>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 507904,
46
+ "_total_timesteps": 500000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1651676430.2336633,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWV8wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxiL2hvbWUvbGlkYXIvcHJvamVjdHMvY291cnNlL2Jhc2UvZW52L2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGIvaG9tZS9saWRhci9wcm9qZWN0cy9jb3Vyc2UvYmFzZS9lbnYvbGliL3B5dGhvbjMuNy9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANo2zT00buM9uE2pPTdXOL6eDWg8MGEHPQAAAAAAAAAAoH6OvtcLRTwFuku71Y1NOWgeyL34i3E6AACAPwAAgD9yjIW+j50hvKyZNjsVgbw4loOSPbJBkLkAAIA/AACAP/M+ob0paFq6nYV/O7ZbujZ6OmE5xHGWugAAgD8AAIA/U6hVvtd/ajylqOA6sHMOuT4kA77MZw+6AACAPwAAgD8ALOW9jwZDukGOITt+cFI2SPaZuuZCO7oAAIA/AACAP5YyOr9O0Y2+YS8iOgfgjDcTtY0+qMaqtwAAgD8AAIA/mp8jPVIYxjiihSm83LQ9NC1VlLk2hsmzAACAPwAAgD+zXTk9KSgZulMKALpzrGe04m5mudmCFzkAAIA/AACAP9rDej74Me0+ARcSvsKhWr7A2LC81/Y5vQAAAAAAAAAASg3tvlQDMT93o5E8dj9TvtYwcr24Beo7AAAAAAAAAAAAHbu9w5l3uvbghDwjrI61izSPuWL/gLQAAIA/AACAP7qHPD6F4OK7Tj4lOh0Yqren8Fa960BJuQAAgD8AAIA/zUfgPYXz27m8Q7o7kGcAuaeYjTpKZX64AAAAAAAAgD9zqaQ9w6lSukLJgTuLUYc4WeqQOSOlG7oAAIA/AACAP0CiG75B2ZI/xTXsvuyqnb5kbFK9RcWgvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVchAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI3e16aYr1YECUhpRSlIwBbJRN6AOMAXSUR0BujqThYNiIdX2UKGgGaAloD0MI/MIrSZ5DX0CUhpRSlGgVTegDaBZHQG6P1/+bVjJ1fZQoaAZoCWgPQwgPf03WqJFYQJSGlFKUaBVN6ANoFkdAbxy0elsP8XV9lChoBmgJaA9DCPfMkgA1GV5AlIaUUpRoFU3oA2gWR0BvKSBClabGdX2UKGgGaAloD0MIhsjp63m3YECUhpRSlGgVTegDaBZHQG9DDHwPRRd1fZQoaAZoCWgPQwjkhAmjWVU9QJSGlFKUaBVN6ANoFkdAb0mW0JF9a3V9lChoBmgJaA9DCLXBiejXUVVAlIaUUpRoFU3oA2gWR0BvdJ13dKukdX2UKGgGaAloD0MIOltAaD0qXUCUhpRSlGgVTegDaBZHQG+PxASnLq51fZQoaAZoCWgPQwgdHsL46VFoQJSGlFKUaBVNDwNoFkdAb5SWw/xDs3V9lChoBmgJaA9DCIvfFFaqeGNAlIaUUpRoFU3oA2gWR0BvnYLRa5f/dX2UKGgGaAloD0MI9+RhodbBXkCUhpRSlGgVTegDaBZHQG+ecjqv/zd1fZQoaAZoCWgPQwiXVG03wS1iQJSGlFKUaBVN6ANoFkdAb6edNnGsFXV9lChoBmgJaA9DCEChnj4CVlxAlIaUUpRoFU3oA2gWR0Bvsa2a2F37dX2UKGgGaAloD0MIrvIEwk4PYECUhpRSlGgVTegDaBZHQG+996cAiml1fZQoaAZoCWgPQwiqKF5lbX8xwJSGlFKUaBVLwmgWR0Bvw+aKDTScdX2UKGgGaAloD0MIcjEG1nGkYECUhpRSlGgVTegDaBZHQG/IdKNAC4l1fZQoaAZoCWgPQwiBBMWPMVlEQJSGlFKUaBVL9WgWR0Bvy10gbIcSdX2UKGgGaAloD0MI1IIXfQVZJECUhpRSlGgVS9JoFkdAb86tFrl/6XV9lChoBmgJaA9DCOjewyXH90lAlIaUUpRoFU3oA2gWR0Bv1E8DB/I9dX2UKGgGaAloD0MItrqcEhC3QcCUhpRSlGgVS+VoFkdAb9m+9rXUY3V9lChoBmgJaA9DCMwKRbqfYFFAlIaUUpRoFU3oA2gWR0Bv5qh11W8zdX2UKGgGaAloD0MI+dfyyvVVVUCUhpRSlGgVTegDaBZHQG/nscABDG91fZQoaAZoCWgPQwjOiqiJPn9FQJSGlFKUaBVNGAFoFkdAb+yMoc7yQXV9lChoBmgJaA9DCHOh8q/llbs/lIaUUpRoFUu7aBZHQG/0YVZcLSh1fZQoaAZoCWgPQwh8KxITVGNhQJSGlFKUaBVN6ANoFkdAcDZ/CZWq+HV9lChoBmgJaA9DCKw5QDBHw0ZAlIaUUpRoFU3oA2gWR0BwPAN/e+EidX2UKGgGaAloD0MIUU60q5DfXECUhpRSlGgVTegDaBZHQHBHqoQ4CIV1fZQoaAZoCWgPQwj6DRMNUvRZQJSGlFKUaBVN6ANoFkdAcEqfOlfqo3V9lChoBmgJaA9DCIXRrGwf8so/lIaUUpRoFU0rAWgWR0BwXMu5BkZrdX2UKGgGaAloD0MI26Z4XNRrY0CUhpRSlGgVTegDaBZHQHBdbkn1Fph1fZQoaAZoCWgPQwjpRe1+FWwzwJSGlFKUaBVLxGgWR0BwY1nezlcRdX2UKGgGaAloD0MIcXZrmQyEYUCUhpRSlGgVTegDaBZHQHBvWN3np0R1fZQoaAZoCWgPQwjW4egq3Q1WQJSGlFKUaBVN6ANoFkdAcIHcdYGMXXV9lChoBmgJaA9DCI3uIHamQV5AlIaUUpRoFU3oA2gWR0BwhbK0UoKEdX2UKGgGaAloD0MIAma+g584BsCUhpRSlGgVTQ8BaBZHQHCIP4mCyyF1fZQoaAZoCWgPQwikpl1MM2deQJSGlFKUaBVN6ANoFkdAcIiHTI/7i3V9lChoBmgJaA9DCKfpswOuG19AlIaUUpRoFU3oA2gWR0BwilBrvb48dX2UKGgGaAloD0MIJR+7CxS4Y0CUhpRSlGgVTegDaBZHQHCPtaQmu1Z1fZQoaAZoCWgPQwiLprOTwZtWQJSGlFKUaBVN6ANoFkdAcJL8RL9MsnV9lChoBmgJaA9DCNAM4gM7lmFAlIaUUpRoFU3oA2gWR0Bwml7CzkZKdX2UKGgGaAloD0MIeVc9YB7BYECUhpRSlGgVTegDaBZHQHCa7x7RfF91fZQoaAZoCWgPQwhnt5bJcD5YQJSGlFKUaBVN6ANoFkdAcJ1/2kBS1nV9lChoBmgJaA9DCDHtm/urQzBAlIaUUpRoFUu0aBZHQHCfI8uBczJ1fZQoaAZoCWgPQwg6PlqcMSg5QJSGlFKUaBVL3mgWR0Bwn9KaoddWdX2UKGgGaAloD0MIRrOyfci7EECUhpRSlGgVS9RoFkdAcKDetCAtnXV9lChoBmgJaA9DCHzzGyYah1xAlIaUUpRoFU3oA2gWR0BwoV++dsi0dX2UKGgGaAloD0MIx9rf2R5NPsCUhpRSlGgVTQQBaBZHQHDUawpvxYt1fZQoaAZoCWgPQwitE5fjFdBQQJSGlFKUaBVL2WgWR0Bw3useXAuadX2UKGgGaAloD0MI3NeBc0YoX0CUhpRSlGgVTegDaBZHQHDf9Ba9sad1fZQoaAZoCWgPQwiRt1z92GQXQJSGlFKUaBVL1GgWR0Bw4RUzbeuWdX2UKGgGaAloD0MI3T8WokOgHMCUhpRSlGgVS/JoFkdAcOP4pMHryHV9lChoBmgJaA9DCEBOmDCaQ1tAlIaUUpRoFU3oA2gWR0Bw6nS9du50dX2UKGgGaAloD0MISN+kaVASYUCUhpRSlGgVTegDaBZHQHD/Zc1O0sx1fZQoaAZoCWgPQwhXBtUGJ6FeQJSGlFKUaBVN6ANoFkdAcQAQ9ic5KnV9lChoBmgJaA9DCOaw+47hK2NAlIaUUpRoFU3oA2gWR0BxEmBtk4FSdX2UKGgGaAloD0MIehowSHo3YECUhpRSlGgVTegDaBZHQHEmErGza9N1fZQoaAZoCWgPQwgbL90kBpdcQJSGlFKUaBVN6ANoFkdAcS0U0vXbunV9lChoBmgJaA9DCBe7fVaZEl9AlIaUUpRoFU3oA2gWR0BxOYRUWEbpdX2UKGgGaAloD0MIzjl4JjRWYUCUhpRSlGgVTegDaBZHQHFCGqHXVb11fZQoaAZoCWgPQwhaEqCmlgdfQJSGlFKUaBVN6ANoFkdAcULG9YfW+XV9lChoBmgJaA9DCAd7E0NyMlxAlIaUUpRoFU3oA2gWR0BxRfWhAWzodX2UKGgGaAloD0MI2ekHdZG6TECUhpRSlGgVTegDaBZHQHFIwSnLq2V1fZQoaAZoCWgPQwg7qS9LO409QJSGlFKUaBVL1GgWR0BxfTlq8DjjdX2UKGgGaAloD0MIAOSECSMPYUCUhpRSlGgVTegDaBZHQHF/q3qiXY11fZQoaAZoCWgPQwgiwVQzazErwJSGlFKUaBVLx2gWR0Bxg3uF6AvtdX2UKGgGaAloD0MIF9NM9zqSXkCUhpRSlGgVTegDaBZHQHGLYSg5BC51fZQoaAZoCWgPQwgr3V1nQ7JUQJSGlFKUaBVN6ANoFkdAcYxZ7HAAQ3V9lChoBmgJaA9DCIlDNpAuVFxAlIaUUpRoFU3oA2gWR0BxjXJaJQ+EdX2UKGgGaAloD0MIkKM5snK5YECUhpRSlGgVTegDaBZHQHGQAOavzOJ1fZQoaAZoCWgPQwhzvALREw5gQJSGlFKUaBVN6ANoFkdAcZWXpnpSrHV9lChoBmgJaA9DCCLFAIkmcGhAlIaUUpRoFU1fA2gWR0BxmNFmWdEtdX2UKGgGaAloD0MIJuSDns2AVECUhpRSlGgVTegDaBZHQHGpF3Qla8p1fZQoaAZoCWgPQwgkmdU73CxTQJSGlFKUaBVN6ANoFkdAcbyURWcSXnV9lChoBmgJaA9DCD3UtmEUUWdAlIaUUpRoFU0RAmgWR0BxwOH446wMdX2UKGgGaAloD0MIWOTXD7HxYUCUhpRSlGgVTegDaBZHQHHP+IRAbAF1fZQoaAZoCWgPQwjWVYFaDF1XQJSGlFKUaBVN6ANoFkdAcdZ3Roh6jXV9lChoBmgJaA9DCJks7j8y8lNAlIaUUpRoFU3oA2gWR0Bx7MelsP8RdX2UKGgGaAloD0MICw4viEiiY0CUhpRSlGgVTegDaBZHQHHxVYEGJN11fZQoaAZoCWgPQwj9LQH4p5dfQJSGlFKUaBVN6ANoFkdAcfTNfPX05HV9lChoBmgJaA9DCBw/VBoxH2JAlIaUUpRoFU3oA2gWR0ByAq08eS0TdX2UKGgGaAloD0MIog4r3PIpPECUhpRSlGgVTTsBaBZHQHIwxMSK3ux1fZQoaAZoCWgPQwiC4VzDDMdbQJSGlFKUaBVN6ANoFkdAcjYY0VJti3V9lChoBmgJaA9DCBueXinL0l5AlIaUUpRoFU3oA2gWR0ByPk150KZ2dX2UKGgGaAloD0MIopqSrMP/WkCUhpRSlGgVTegDaBZHQHI/YRmK64F1fZQoaAZoCWgPQwiYTBWMStlcQJSGlFKUaBVN6ANoFkdAckCV8Ti84HV9lChoBmgJaA9DCGJmn8coDl5AlIaUUpRoFU3oA2gWR0ByQ1lmOEM9dX2UKGgGaAloD0MI8gcDz70haECUhpRSlGgVTUkBaBZHQHJFrPldTpB1fZQoaAZoCWgPQwi6vg8HiRFgQJSGlFKUaBVN6ANoFkdAckj+iJwbVHV9lChoBmgJaA9DCJyLv+2JoGBAlIaUUpRoFU3oA2gWR0ByS9vZRKpUdX2UKGgGaAloD0MIjX+fceHgEsCUhpRSlGgVTQEBaBZHQHJO2apgkTp1fZQoaAZoCWgPQwgp0CfyJAU9QJSGlFKUaBVNEgFoFkdAclQ4ubqhUXV9lChoBmgJaA9DCL+1EyUhTVdAlIaUUpRoFU3oA2gWR0ByWhy3kPtldX2UKGgGaAloD0MIhPHTuDdvYECUhpRSlGgVTegDaBZHQHJq1gc94eN1fZQoaAZoCWgPQwh1HaopyWJgQJSGlFKUaBVN6ANoFkdAcm65vtMPBnV9lChoBmgJaA9DCGXiVkGM2WhAlIaUUpRoFU14AWgWR0Byc5I3BHkMdX2UKGgGaAloD0MId2aC4VwiYECUhpRSlGgVTegDaBZHQHJ9q42CNCJ1fZQoaAZoCWgPQwj1oKAUrawiQJSGlFKUaBVL6GgWR0Byk3nB+F10dX2UKGgGaAloD0MI56vkY3chXECUhpRSlGgVTegDaBZHQHKjYFV1fVt1fZQoaAZoCWgPQwhPCB10if1iQJSGlFKUaBVN6ANoFkdAcqd/etSydHV9lChoBmgJaA9DCD49tmXAOVhAlIaUUpRoFU3oA2gWR0BytvsrupjudWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 124,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWV8wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxiL2hvbWUvbGlkYXIvcHJvamVjdHMvY291cnNlL2Jhc2UvZW52L2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGIvaG9tZS9saWRhci9wcm9qZWN0cy9jb3Vyc2UvYmFzZS9lbnYvbGliL3B5dGhvbjMuNy9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2a409d4ce1eb33e150b404503620671d8f5a49018485c6bee76e09bd9c7397f1
3
+ size 84829
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:079def7563cbb18a1784497d7bf85c2cbdba21c4221c93c5c4d2165a3692a3f0
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.13.0-40-generic-x86_64-with-Ubuntu-20.04-focal #45~20.04.1-Ubuntu SMP Mon Apr 4 09:38:31 UTC 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.1a5
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8807b231e665894f7731389a0d21f99af1daf54d56399d1107775ae3d6de231f
3
+ size 246851
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 204.650167259325, "std_reward": 31.75673304367788, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-04T18:10:18.216638"}