Upload sribd_cellseg_models.py
Browse files- sribd_cellseg_models.py +100 -0
sribd_cellseg_models.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import os
|
3 |
+
join = os.path.join
|
4 |
+
import argparse
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
from collections import OrderedDict
|
9 |
+
from torchvision import datasets, models, transforms
|
10 |
+
from classifiers import resnet10, resnet18
|
11 |
+
|
12 |
+
from utils_modify import sliding_window_inference,sliding_window_inference_large,__proc_np_hv
|
13 |
+
from PIL import Image
|
14 |
+
import torch.nn.functional as F
|
15 |
+
from skimage import io, segmentation, morphology, measure, exposure
|
16 |
+
import tifffile as tif
|
17 |
+
from models.flexible_unet_convnext import FlexibleUNet_star,FlexibleUNet_hv
|
18 |
+
from transformers import PretrainedConfig
|
19 |
+
from typing import List
|
20 |
+
from transformers import PreTrainedModel
|
21 |
+
from huggingface_hub import PyTorchModelHubMixin
|
22 |
+
from torch import nn
|
23 |
+
class ModelConfig(PretrainedConfig):
|
24 |
+
model_type = "cell_sribd"
|
25 |
+
def __init__(
|
26 |
+
self,
|
27 |
+
version = 1,
|
28 |
+
input_channels: int = 3,
|
29 |
+
roi_size: int = 512,
|
30 |
+
overlap: float = 0.5,
|
31 |
+
device: str = 'cpu',
|
32 |
+
**kwargs,
|
33 |
+
):
|
34 |
+
|
35 |
+
self.device = device
|
36 |
+
self.roi_size = (roi_size, roi_size)
|
37 |
+
self.input_channels = input_channels
|
38 |
+
self.overlap = overlap
|
39 |
+
self.np_thres, self.ksize, self.overall_thres, self.obj_size_thres = 0.6, 15, 0.4, 100
|
40 |
+
self.n_rays = 32
|
41 |
+
self.sw_batch_size = 4
|
42 |
+
self.num_classes= 4
|
43 |
+
self.block_size = 2048
|
44 |
+
self.min_overlap = 128
|
45 |
+
self.context = 128
|
46 |
+
super().__init__(**kwargs)
|
47 |
+
|
48 |
+
|
49 |
+
class MultiStreamCellSegModel(PreTrainedModel):
|
50 |
+
config_class = ModelConfig
|
51 |
+
#print(config.input_channels)
|
52 |
+
def __init__(self, config):
|
53 |
+
super().__init__(config)
|
54 |
+
#print(config.input_channels)
|
55 |
+
self.config = config
|
56 |
+
self.cls_model = resnet18()
|
57 |
+
self.model0 = FlexibleUNet_star(in_channels=config.input_channels,out_channels=config.n_rays+1,backbone='convnext_small',pretrained=False,n_rays=config.n_rays,prob_out_channels=1,)
|
58 |
+
self.model1 = FlexibleUNet_star(in_channels=config.input_channels,out_channels=config.n_rays+1,backbone='convnext_small',pretrained=False,n_rays=config.n_rays,prob_out_channels=1,)
|
59 |
+
self.model2 = FlexibleUNet_star(in_channels=config.input_channels,out_channels=config.n_rays+1,backbone='convnext_small',pretrained=False,n_rays=config.n_rays,prob_out_channels=1,)
|
60 |
+
self.model3 = FlexibleUNet_hv(in_channels=config.input_channels,out_channels=2+2,backbone='convnext_small',pretrained=False,n_rays=2,prob_out_channels=2,)
|
61 |
+
self.preprocess=transforms.Compose([
|
62 |
+
transforms.Resize(size=256),
|
63 |
+
transforms.CenterCrop(size=224),
|
64 |
+
transforms.ToTensor(),
|
65 |
+
transforms.Normalize([0.485, 0.456, 0.406],[0.229, 0.224, 0.225])])
|
66 |
+
def load_checkpoints(self,checkpoints):
|
67 |
+
self.cls_model.load_state_dict(checkpoints['cls_model'])
|
68 |
+
self.model0.load_state_dict(checkpoints['class1_model']['model_state_dict'])
|
69 |
+
self.model1.load_state_dict(checkpoints['class2_model']['model_state_dict'])
|
70 |
+
self.model2.load_state_dict(checkpoints['class3_model']['model_state_dict'])
|
71 |
+
self.model3.load_state_dict(checkpoints['class4_model'])
|
72 |
+
|
73 |
+
def forward(self, pre_img_data):
|
74 |
+
inputs=self.preprocess(Image.fromarray(pre_img_data)).unsqueeze(0)
|
75 |
+
outputs = self.cls_model(inputs)
|
76 |
+
_, preds = torch.max(outputs, 1)
|
77 |
+
label=preds[0].cpu().numpy()
|
78 |
+
test_npy01 = pre_img_data
|
79 |
+
if label in [0,1,2]:
|
80 |
+
if label == 0:
|
81 |
+
output_label = sliding_window_inference_large(test_npy01,self.config.block_size,self.config.min_overlap,self.config.context, self.config.roi_size,self.config.sw_batch_size,predictor=self.model0,device=self.config.device)
|
82 |
+
elif label == 1:
|
83 |
+
output_label = sliding_window_inference_large(test_npy01,self.config.block_size,self.config.min_overlap,self.config.context, self.config.roi_size,self.config.sw_batch_size,predictor=self.model1,device=self.config.device)
|
84 |
+
elif label == 2:
|
85 |
+
output_label = sliding_window_inference_large(test_npy01,self.config.block_size,self.config.min_overlap,self.config.context, self.config.roi_size,self.config.sw_batch_size,predictor=self.model2,device=self.config.device)
|
86 |
+
else:
|
87 |
+
test_tensor = torch.from_numpy(np.expand_dims(test_npy01, 0)).permute(0, 3, 1, 2).type(torch.FloatTensor)
|
88 |
+
|
89 |
+
output_hv, output_np = sliding_window_inference(test_tensor, self.config.roi, self.config.sw_batch_size, self.model3, overlap=self.config.overlap,device=self.config.device)
|
90 |
+
pred_dict = {'np': output_np, 'hv': output_hv}
|
91 |
+
pred_dict = OrderedDict(
|
92 |
+
[[k, v.permute(0, 2, 3, 1).contiguous()] for k, v in pred_dict.items()] # NHWC
|
93 |
+
)
|
94 |
+
pred_dict["np"] = F.softmax(pred_dict["np"], dim=-1)[..., 1:]
|
95 |
+
pred_output = torch.cat(list(pred_dict.values()), -1).cpu().numpy() # NHW3
|
96 |
+
pred_map = np.squeeze(pred_output) # HW3
|
97 |
+
pred_inst = __proc_np_hv(pred_map, self.config.np_thres, self.config.ksize, self.config.overall_thres, self.config.obj_size_thres)
|
98 |
+
raw_pred_shape = pred_inst.shape[:2]
|
99 |
+
output_label = pred_inst
|
100 |
+
return output_label
|