|
from functools import partial |
|
from typing import Any, Callable, List, Optional, Type, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
from torch import Tensor |
|
|
|
def conv3x3(in_planes: int, out_planes: int, stride: int = 1, groups: int = 1, dilation: int = 1) -> nn.Conv2d: |
|
"""3x3 convolution with padding""" |
|
return nn.Conv2d( |
|
in_planes, |
|
out_planes, |
|
kernel_size=3, |
|
stride=stride, |
|
padding=dilation, |
|
groups=groups, |
|
bias=False, |
|
dilation=dilation, |
|
) |
|
|
|
|
|
def conv1x1(in_planes: int, out_planes: int, stride: int = 1) -> nn.Conv2d: |
|
"""1x1 convolution""" |
|
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) |
|
|
|
|
|
class BasicBlock(nn.Module): |
|
expansion: int = 1 |
|
|
|
def __init__( |
|
self, |
|
inplanes: int, |
|
planes: int, |
|
stride: int = 1, |
|
downsample: Optional[nn.Module] = None, |
|
groups: int = 1, |
|
base_width: int = 64, |
|
dilation: int = 1, |
|
norm_layer: Optional[Callable[..., nn.Module]] = None, |
|
) -> None: |
|
super().__init__() |
|
if norm_layer is None: |
|
norm_layer = nn.BatchNorm2d |
|
if groups != 1 or base_width != 64: |
|
raise ValueError("BasicBlock only supports groups=1 and base_width=64") |
|
if dilation > 1: |
|
raise NotImplementedError("Dilation > 1 not supported in BasicBlock") |
|
|
|
self.conv1 = conv3x3(inplanes, planes, stride) |
|
self.bn1 = norm_layer(planes) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.conv2 = conv3x3(planes, planes) |
|
self.bn2 = norm_layer(planes) |
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
identity = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
|
|
if self.downsample is not None: |
|
identity = self.downsample(x) |
|
|
|
out += identity |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
class Bottleneck(nn.Module): |
|
|
|
|
|
|
|
|
|
|
|
|
|
expansion: int = 4 |
|
|
|
def __init__( |
|
self, |
|
inplanes: int, |
|
planes: int, |
|
stride: int = 1, |
|
downsample: Optional[nn.Module] = None, |
|
groups: int = 1, |
|
base_width: int = 64, |
|
dilation: int = 1, |
|
norm_layer: Optional[Callable[..., nn.Module]] = None, |
|
) -> None: |
|
super().__init__() |
|
if norm_layer is None: |
|
norm_layer = nn.BatchNorm2d |
|
width = int(planes * (base_width / 64.0)) * groups |
|
|
|
self.conv1 = conv1x1(inplanes, width) |
|
self.bn1 = norm_layer(width) |
|
self.conv2 = conv3x3(width, width, stride, groups, dilation) |
|
self.bn2 = norm_layer(width) |
|
self.conv3 = conv1x1(width, planes * self.expansion) |
|
self.bn3 = norm_layer(planes * self.expansion) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
identity = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv3(out) |
|
out = self.bn3(out) |
|
|
|
if self.downsample is not None: |
|
identity = self.downsample(x) |
|
|
|
out += identity |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
class ResNet(nn.Module): |
|
def __init__( |
|
self, |
|
block: Type[Union[BasicBlock, Bottleneck]], |
|
layers: List[int], |
|
num_classes: int = 1000, |
|
zero_init_residual: bool = False, |
|
groups: int = 1, |
|
width_per_group: int = 64, |
|
replace_stride_with_dilation: Optional[List[bool]] = None, |
|
norm_layer: Optional[Callable[..., nn.Module]] = None, |
|
) -> None: |
|
super().__init__() |
|
|
|
if norm_layer is None: |
|
norm_layer = nn.BatchNorm2d |
|
self._norm_layer = norm_layer |
|
|
|
self.inplanes = 64 |
|
self.dilation = 1 |
|
if replace_stride_with_dilation is None: |
|
|
|
|
|
replace_stride_with_dilation = [False, False, False] |
|
if len(replace_stride_with_dilation) != 3: |
|
raise ValueError( |
|
"replace_stride_with_dilation should be None " |
|
f"or a 3-element tuple, got {replace_stride_with_dilation}" |
|
) |
|
self.groups = groups |
|
self.base_width = width_per_group |
|
self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False) |
|
self.bn1 = norm_layer(self.inplanes) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) |
|
self.layer1 = self._make_layer(block, 64, layers[0]) |
|
self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0]) |
|
self.layer3 = self._make_layer(block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1]) |
|
self.layer4 = self._make_layer(block, 512, layers[3], stride=2, dilate=replace_stride_with_dilation[2]) |
|
self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) |
|
self.fc = nn.Linear(512 * block.expansion, num_classes) |
|
|
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu") |
|
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): |
|
nn.init.constant_(m.weight, 1) |
|
nn.init.constant_(m.bias, 0) |
|
|
|
|
|
|
|
|
|
if zero_init_residual: |
|
for m in self.modules(): |
|
if isinstance(m, Bottleneck) and m.bn3.weight is not None: |
|
nn.init.constant_(m.bn3.weight, 0) |
|
elif isinstance(m, BasicBlock) and m.bn2.weight is not None: |
|
nn.init.constant_(m.bn2.weight, 0) |
|
|
|
def _make_layer( |
|
self, |
|
block: Type[Union[BasicBlock, Bottleneck]], |
|
planes: int, |
|
blocks: int, |
|
stride: int = 1, |
|
dilate: bool = False, |
|
) -> nn.Sequential: |
|
norm_layer = self._norm_layer |
|
downsample = None |
|
previous_dilation = self.dilation |
|
if dilate: |
|
self.dilation *= stride |
|
stride = 1 |
|
if stride != 1 or self.inplanes != planes * block.expansion: |
|
downsample = nn.Sequential( |
|
conv1x1(self.inplanes, planes * block.expansion, stride), |
|
norm_layer(planes * block.expansion), |
|
) |
|
|
|
layers = [] |
|
layers.append( |
|
block( |
|
self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer |
|
) |
|
) |
|
self.inplanes = planes * block.expansion |
|
for _ in range(1, blocks): |
|
layers.append( |
|
block( |
|
self.inplanes, |
|
planes, |
|
groups=self.groups, |
|
base_width=self.base_width, |
|
dilation=self.dilation, |
|
norm_layer=norm_layer, |
|
) |
|
) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def _forward_impl(self, x: Tensor) -> Tensor: |
|
|
|
x = self.conv1(x) |
|
x = self.bn1(x) |
|
x = self.relu(x) |
|
x = self.maxpool(x) |
|
|
|
x = self.layer1(x) |
|
x = self.layer2(x) |
|
x = self.layer3(x) |
|
x = self.layer4(x) |
|
|
|
x = self.avgpool(x) |
|
x = torch.flatten(x, 1) |
|
x = self.fc(x) |
|
|
|
return x |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
return self._forward_impl(x) |
|
|
|
def resnet18(weights=None): |
|
|
|
model = ResNet(BasicBlock, [2, 2, 2, 2], num_classes=4) |
|
if weights is not None: |
|
model.load_state_dict(torch.load(weights)) |
|
return model |
|
|
|
def resnet10(): |
|
return ResNet(BasicBlock, [1, 1, 1, 1], num_classes=4) |
|
|