Lewdiculous
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,102 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- gemma
|
5 |
+
- gguf
|
6 |
+
- quantized
|
7 |
+
inference: false
|
8 |
---
|
9 |
+
|
10 |
+
GGUF-IQ-Imatrix quants for [YeungNLP/firefly-gemma-7b](https://huggingface.co/YeungNLP/firefly-gemma-7b):
|
11 |
+
|
12 |
+
```python
|
13 |
+
quantization_options = [
|
14 |
+
"IQ2_XXS", "IQ2_XS", "IQ2_S", "IQ2_M", "Q3_K_M",
|
15 |
+
"Q4_K_M", "Q4_K_S", "IQ4_XS", "Q5_K_M", "Q5_K_S",
|
16 |
+
"Q6_K", "Q8_0", "IQ3_M", "IQ3_S", "IQ3_XXS"
|
17 |
+
]
|
18 |
+
```
|
19 |
+
|
20 |
+
[Requested by Cran-May.](https://huggingface.co/Lewdiculous/Model-Requests/discussions/8)
|
21 |
+
|
22 |
+
**Model card image:**
|
23 |
+
|
24 |
+
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/65d4cf2693a0a3744a27536c/SrOekTxdpnxHyWWmMiAvc.jpeg)
|
25 |
+
|
26 |
+
## Model Card for Firefly-Gemma:
|
27 |
+
|
28 |
+
[firefly-gemma-7b](https://huggingface.co/YeungNLP/firefly-gemma-7b) is trained based on [gemma-7b](https://huggingface.co/google/gemma-7b) to act as a helpful and harmless AI assistant.
|
29 |
+
We use [Firefly](https://github.com/yangjianxin1/Firefly) to train the model on **a single V100 GPU** with QLoRA.
|
30 |
+
|
31 |
+
Our model outperforms the official [gemma-7b-it](https://huggingface.co/google/gemma-7b-it), [zephyr-7b-gemma-v0.1](https://huggingface.co/HuggingFaceH4/zephyr-7b-gemma-v0.1), [Qwen1.5-7B-Chat](https://huggingface.co/Qwen/Qwen1.5-7B-Chat) and [Zephyr-7B-Beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) on [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
|
32 |
+
|
33 |
+
<img src="open_llm_leaderboard.png" width="800">
|
34 |
+
|
35 |
+
We advise you to install transformers>=4.38.1.
|
36 |
+
|
37 |
+
## Performance
|
38 |
+
We evaluate our models on [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard), they achieve good performance.
|
39 |
+
|
40 |
+
| Model | Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K |
|
41 |
+
|--------------------------------|--------|--------|-----------|--------|------------|-----------|--------|
|
42 |
+
| **firefly-gemma-7b** | 62.93 | 62.12 | 79.77 | 61.57 | 49.41 | 75.45 | 49.28 |
|
43 |
+
| zephyr-7b-gemma-v0.1 |62.41|58.45|83.48|60.68|52.07| 74.19| 45.56|
|
44 |
+
| firefly-qwen1.5-en-7b-dpo-v0.1 | 62.36 | 54.35 | 76.04 | 61.21 | 56.4 | 72.06 | 54.13 |
|
45 |
+
| zephyr-7b-beta | 61.95 | 62.03 | 84.36 | 61.07 | 57.45 | 77.74 | 29.04 |
|
46 |
+
| firefly-qwen1.5-en-7b | 61.44 | 53.41 | 75.51 | 61.67 |51.96 |70.72 | 55.34 |
|
47 |
+
| vicuna-13b-v1.5 | 55.41 | 57.08 | 81.24 | 56.67 | 51.51 | 74.66 | 11.3 |
|
48 |
+
| Xwin-LM-13B-V0.1 | 55.29 | 62.54 | 82.8 | 56.53 | 45.96 | 74.27 | 9.63 |
|
49 |
+
| Qwen1.5-7B-Chat | 55.15 | 55.89 | 78.56 | 61.65 | 53.54 | 67.72 | 13.57 |
|
50 |
+
| gemma-7b-it | 53.56 | 51.45 | 71.96 | 53.52 | 47.29 | 67.96 | 29.19 |
|
51 |
+
|
52 |
+
|
53 |
+
|
54 |
+
## Usage
|
55 |
+
The chat template of our chat models is similar as Official gemma-7b-it:
|
56 |
+
```text
|
57 |
+
<bos><start_of_turn>user
|
58 |
+
hello, who are you?<end_of_turn>
|
59 |
+
<start_of_turn>model
|
60 |
+
I am a AI program developed by Firefly<eos>
|
61 |
+
```
|
62 |
+
|
63 |
+
You can use script to inference in [Firefly](https://github.com/yangjianxin1/Firefly/blob/master/script/chat/chat.py).
|
64 |
+
|
65 |
+
You can also use the following code:
|
66 |
+
```python
|
67 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
68 |
+
import torch
|
69 |
+
|
70 |
+
model_name_or_path = "YeungNLP/firefly-gemma-7b"
|
71 |
+
model = AutoModelForCausalLM.from_pretrained(
|
72 |
+
model_name_or_path,
|
73 |
+
trust_remote_code=True,
|
74 |
+
low_cpu_mem_usage=True,
|
75 |
+
torch_dtype=torch.float16,
|
76 |
+
device_map='auto',
|
77 |
+
)
|
78 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
|
79 |
+
|
80 |
+
prompt = "Compose an engaging travel blog post about a recent trip to Hawaii, highlighting cultural experiences and must-see attractions. "
|
81 |
+
text = f"""
|
82 |
+
<bos><start_of_turn>user
|
83 |
+
{prompt}<end_of_turn>
|
84 |
+
<start_of_turn>model
|
85 |
+
""".strip()
|
86 |
+
model_inputs = tokenizer([text], return_tensors="pt").to('cuda')
|
87 |
+
|
88 |
+
generated_ids = model.generate(
|
89 |
+
model_inputs.input_ids,
|
90 |
+
max_new_tokens=1500,
|
91 |
+
top_p = 0.9,
|
92 |
+
temperature = 0.35,
|
93 |
+
repetition_penalty = 1.0,
|
94 |
+
eos_token_id=tokenizer.encode('<eos>', add_special_tokens=False)
|
95 |
+
)
|
96 |
+
generated_ids = [
|
97 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
98 |
+
]
|
99 |
+
|
100 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
101 |
+
print(response)
|
102 |
+
```
|