|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
from transformers.models.clip.modeling_clip import CLIPVisionModelWithProjection |
|
from transformers.models.clip.configuration_clip import CLIPVisionConfig |
|
from transformers import PretrainedConfig |
|
|
|
VISION_CONFIG_DICT = { |
|
"hidden_size": 1024, |
|
"intermediate_size": 4096, |
|
"num_attention_heads": 16, |
|
"num_hidden_layers": 24, |
|
"patch_size": 14, |
|
"projection_dim": 768 |
|
} |
|
|
|
class MLP(nn.Module): |
|
def __init__(self, in_dim, out_dim, hidden_dim, use_residual=True): |
|
super().__init__() |
|
if use_residual: |
|
assert in_dim == out_dim |
|
self.layernorm = nn.LayerNorm(in_dim) |
|
self.fc1 = nn.Linear(in_dim, hidden_dim) |
|
self.fc2 = nn.Linear(hidden_dim, out_dim) |
|
self.use_residual = use_residual |
|
self.act_fn = nn.GELU() |
|
|
|
def forward(self, x): |
|
residual = x |
|
x = self.layernorm(x) |
|
x = self.fc1(x) |
|
x = self.act_fn(x) |
|
x = self.fc2(x) |
|
if self.use_residual: |
|
x = x + residual |
|
return x |
|
|
|
|
|
class FuseModule(nn.Module): |
|
def __init__(self, embed_dim): |
|
super().__init__() |
|
self.mlp1 = MLP(embed_dim * 2, embed_dim, embed_dim, use_residual=False) |
|
self.mlp2 = MLP(embed_dim, embed_dim, embed_dim, use_residual=True) |
|
self.layer_norm = nn.LayerNorm(embed_dim) |
|
|
|
def fuse_fn(self, prompt_embeds, id_embeds): |
|
print(prompt_embeds.shape, id_embeds.shape) |
|
stacked_id_embeds = torch.cat([prompt_embeds, id_embeds], dim=-1) |
|
stacked_id_embeds = self.mlp1(stacked_id_embeds) + prompt_embeds |
|
stacked_id_embeds = self.mlp2(stacked_id_embeds) |
|
stacked_id_embeds = self.layer_norm(stacked_id_embeds) |
|
return stacked_id_embeds |
|
|
|
def forward( |
|
self, |
|
prompt_embeds, |
|
id_embeds, |
|
class_tokens_mask, |
|
) -> torch.Tensor: |
|
|
|
id_embeds = id_embeds.to(prompt_embeds.dtype) |
|
num_inputs = class_tokens_mask.sum().unsqueeze(0) |
|
batch_size, max_num_inputs = id_embeds.shape[:2] |
|
|
|
seq_length = prompt_embeds.shape[1] |
|
|
|
flat_id_embeds = id_embeds.view( |
|
-1, id_embeds.shape[-2], id_embeds.shape[-1] |
|
) |
|
|
|
valid_id_mask = ( |
|
torch.arange(max_num_inputs, device=flat_id_embeds.device)[None, :] |
|
< num_inputs[:, None] |
|
) |
|
valid_id_embeds = flat_id_embeds[valid_id_mask.flatten()] |
|
|
|
prompt_embeds = prompt_embeds.view(-1, prompt_embeds.shape[-1]) |
|
class_tokens_mask = class_tokens_mask.view(-1) |
|
valid_id_embeds = valid_id_embeds.view(-1, valid_id_embeds.shape[-1]) |
|
|
|
image_token_embeds = prompt_embeds[class_tokens_mask] |
|
stacked_id_embeds = self.fuse_fn(image_token_embeds, valid_id_embeds) |
|
assert class_tokens_mask.sum() == stacked_id_embeds.shape[0], f"{class_tokens_mask.sum()} != {stacked_id_embeds.shape[0]}" |
|
prompt_embeds.masked_scatter_(class_tokens_mask[:, None], stacked_id_embeds.to(prompt_embeds.dtype)) |
|
updated_prompt_embeds = prompt_embeds.view(batch_size, seq_length, -1) |
|
return updated_prompt_embeds |
|
|
|
class PhotoMakerIDEncoder(CLIPVisionModelWithProjection): |
|
def __init__(self): |
|
super().__init__(CLIPVisionConfig(**VISION_CONFIG_DICT)) |
|
self.visual_projection_2 = nn.Linear(1024, 1280, bias=False) |
|
self.fuse_module = FuseModule(2048) |
|
|
|
def forward(self, id_pixel_values, prompt_embeds, class_tokens_mask): |
|
b, num_inputs, c, h, w = id_pixel_values.shape |
|
id_pixel_values = id_pixel_values.view(b * num_inputs, c, h, w) |
|
|
|
shared_id_embeds = self.vision_model(id_pixel_values)[1] |
|
id_embeds = self.visual_projection(shared_id_embeds) |
|
id_embeds_2 = self.visual_projection_2(shared_id_embeds) |
|
|
|
id_embeds = id_embeds.view(b, num_inputs, 1, -1) |
|
id_embeds_2 = id_embeds_2.view(b, num_inputs, 1, -1) |
|
|
|
id_embeds = torch.cat((id_embeds, id_embeds_2), dim=-1) |
|
updated_prompt_embeds = self.fuse_module(prompt_embeds, id_embeds, class_tokens_mask) |
|
|
|
return updated_prompt_embeds |
|
|
|
|
|
if __name__ == "__main__": |
|
PhotoMakerIDEncoder() |