mergekit
Merge
Mistral_Star
Mistral_Quiet
Mistral
Mixtral
Question-Answer
Token-Classification
Sequence-Classification
SpydazWeb-AI
chemistry
biology
legal
code
climate
medical
LCARS_AI_StarTrek_Computer
text-generation-inference
chain-of-thought
tree-of-knowledge
forest-of-thoughts
visual-spacial-sketchpad
alpha-mind
knowledge-graph
entity-detection
encyclopedia
wikipedia
stack-exchange
Reddit
Cyber-series
MegaMind
Cybertron
SpydazWeb
Spydaz
LCARS
star-trek
mega-transformers
Mulit-Mega-Merge
Multi-Lingual
Afro-Centric
African-Model
Ancient-One
# coding=utf-8 | |
# Copyright 2023 Mistral AI and the HuggingFace Inc. team. All rights reserved. | |
# | |
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX | |
# and OPT implementations in this library. It has been modified from its | |
# original forms to accommodate minor architectural differences compared | |
# to GPT-NeoX and OPT used by the Meta AI team that trained the model. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" PyTorch Mistral model.""" | |
from termcolor import colored | |
from tqdm import tqdm | |
import pandas as pd | |
import seaborn as sns | |
import matplotlib.pyplot as plt | |
import inspect | |
import math | |
import copy | |
import time | |
import warnings | |
from typing import List, Optional, Tuple, Union | |
import gc | |
import os | |
import tempfile | |
import random | |
import numpy as np | |
import warnings | |
import torch | |
import torch.nn.functional as F | |
import torch.utils.checkpoint | |
from matplotlib.colors import LinearSegmentedColormap, LogNorm | |
from torch import nn | |
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss | |
from configuration_mistral_advanced import VisionEncoderDecoderConfig | |
from configuration_mistral_advanced import EncoderDecoderConfig | |
from transformers.auto.configuration_auto import AutoConfig | |
from transformers.auto.modeling_auto import AutoModel, AutoModelForCausalLM | |
from collections import defaultdict | |
from transformers.activations import ACT2FN | |
from transformers.cache_utils import Cache, DynamicCache | |
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask, _prepare_4d_causal_attention_mask_for_sdpa | |
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast | |
from transformers.modeling_utils import PreTrainedModel | |
from transformers.utils import ( | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
is_flash_attn_2_available, | |
is_flash_attn_greater_or_equal_2_10, | |
logging, | |
replace_return_docstrings, | |
) | |
from configuration_mistral_advanced import MistralConfig | |
if is_flash_attn_2_available(): | |
from flash_attn import flash_attn_func, flash_attn_varlen_func | |
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa | |
_flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters) | |
logger = logging.get_logger(__name__) | |
_CONFIG_FOR_DOC = "MistralConfig" | |
# Copied from transformers.models.llama.modeling_llama._get_unpad_data | |
def _get_unpad_data(attention_mask): | |
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) | |
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() | |
max_seqlen_in_batch = seqlens_in_batch.max().item() | |
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) | |
return ( | |
indices, | |
cu_seqlens, | |
max_seqlen_in_batch, | |
) | |
# Copied from transformers.models.bart.modeling_bart._make_causal_mask | |
def _make_causal_mask( | |
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0 | |
): | |
""" | |
Make causal mask used for bi-directional self-attention. | |
""" | |
bsz, tgt_len = input_ids_shape | |
mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device) | |
mask_cond = torch.arange(mask.size(-1), device=device) | |
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0) | |
mask = mask.to(dtype) | |
if past_key_values_length > 0: | |
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1) | |
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length) | |
def _make_sliding_window_causal_mask( | |
input_ids_shape: torch.Size, | |
dtype: torch.dtype, | |
device: torch.device, | |
past_key_values_length: int = 0, | |
sliding_window: int = 4096, | |
): | |
""" | |
Make causal mask used for sliding window attention | |
""" | |
bsz, tgt_len = input_ids_shape | |
tensor = torch.full( | |
(tgt_len, tgt_len), | |
fill_value=1, | |
device=device, | |
) | |
mask = torch.tril(tensor, diagonal=0) | |
# make the mask banded to account for sliding window | |
mask = torch.triu(mask, diagonal=-sliding_window) | |
mask = torch.log(mask).to(dtype) | |
if past_key_values_length > 0: | |
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1) | |
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length) | |
# Copied from transformers.models.bart.modeling_bart._expand_mask | |
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): | |
""" | |
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. | |
""" | |
bsz, src_len = mask.size() | |
tgt_len = tgt_len if tgt_len is not None else src_len | |
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) | |
inverted_mask = 1.0 - expanded_mask | |
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min) | |
# Inverse dim formula to find dim based on number of rotations | |
def _yarn_find_correction_dim(num_rotations, dim, base=10000, max_position_embeddings=2048): | |
return (dim * math.log(max_position_embeddings/(num_rotations * 2 * math.pi)))/(2 * math.log(base)) | |
# Find dim range bounds based on rotations | |
def _yarn_find_correction_range(low_rot, high_rot, dim, base=10000, max_position_embeddings=2048): | |
low = math.floor(_yarn_find_correction_dim( | |
low_rot, dim, base, max_position_embeddings)) | |
high = math.ceil(_yarn_find_correction_dim( | |
high_rot, dim, base, max_position_embeddings)) | |
return max(low, 0), min(high, dim-1) # Clamp values just in case | |
def _yarn_linear_ramp_mask(min, max, dim): | |
if min == max: | |
max += 0.001 # Prevent singularity | |
linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min) | |
ramp_func = torch.clamp(linear_func, 0, 1) | |
return ramp_func | |
def _yarn_get_mscale(scale=1): | |
if scale <= 1: | |
return 1.0 | |
return 0.07 * math.log(scale) + 1.0 | |
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Mistral | |
class MistralRMSNorm(nn.Module): | |
def __init__(self, hidden_size, eps=1e-6): | |
""" | |
MistralRMSNorm is equivalent to T5LayerNorm | |
""" | |
super().__init__() | |
self.weight = nn.Parameter(torch.ones(hidden_size)) | |
self.variance_epsilon = eps | |
def forward(self, hidden_states): | |
input_dtype = hidden_states.dtype | |
hidden_states = hidden_states.to(torch.float32) | |
variance = hidden_states.pow(2).mean(-1, keepdim=True) | |
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) | |
return self.weight * hidden_states.to(input_dtype) | |
# copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->Mistral | |
# TODO @Arthur no longer copied from LLama after static cache | |
class MistralRotaryEmbedding(nn.Module): | |
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): | |
super().__init__() | |
self.dim = dim | |
self.max_position_embeddings = max_position_embeddings | |
self.base = base | |
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim)) | |
self.register_buffer("inv_freq", inv_freq, persistent=False) | |
# Build here to make `torch.jit.trace` work. | |
self._set_cos_sin_cache( | |
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype() | |
) | |
def _set_cos_sin_cache(self, seq_len, device, dtype): | |
self.max_seq_len_cached = seq_len | |
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq) | |
freqs = torch.outer(t, self.inv_freq) | |
# Different from paper, but it uses a different permutation in order to obtain the same calculation | |
emb = torch.cat((freqs, freqs), dim=-1) | |
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) | |
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) | |
def forward(self, x, seq_len=None): | |
# x: [bs, num_attention_heads, seq_len, head_size] | |
if seq_len > self.max_seq_len_cached: | |
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) | |
return ( | |
self.cos_cached[:seq_len].to(dtype=x.dtype), | |
self.sin_cached[:seq_len].to(dtype=x.dtype), | |
) | |
### YARN ADDITIONS | |
class MistralDynamicNTKScalingRotaryEmbedding(MistralRotaryEmbedding): | |
"""MistralRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla""" | |
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0): | |
self.scaling_factor = scaling_factor | |
super().__init__(dim, max_position_embeddings, base, device) | |
def _set_cos_sin_cache(self, seq_len, device, dtype): | |
self.max_seq_len_cached = seq_len | |
if seq_len > self.max_position_embeddings: | |
base = self.base * ( | |
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1) | |
) ** (self.dim / (self.dim - 2)) | |
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)) | |
self.register_buffer("inv_freq", inv_freq, persistent=False) | |
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) | |
freqs = torch.einsum("i,j->ij", t, self.inv_freq) | |
# Different from paper, but it uses a different permutation in order to obtain the same calculation | |
emb = torch.cat((freqs, freqs), dim=-1) | |
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) | |
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) | |
class MistralLinearScalingRotaryEmbedding(MistralRotaryEmbedding): | |
"""MistralRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev""" | |
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0): | |
self.scaling_factor = scaling_factor | |
super().__init__(dim, max_position_embeddings, base, device) | |
def _set_cos_sin_cache(self, seq_len, device, dtype): | |
self.max_seq_len_cached = seq_len | |
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) | |
t = t / self.scaling_factor | |
freqs = torch.einsum("i,j->ij", t, self.inv_freq) | |
# Different from paper, but it uses a different permutation in order to obtain the same calculation | |
emb = torch.cat((freqs, freqs), dim=-1) | |
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) | |
self.register_buffer("sin_cached", emb.cos().to(dtype), persistent=False) | |
class MistralYaRNScaledRotaryEmbedding(torch.nn.Module): | |
"""MistralRotaryEmbedding extended with YaRN. See: https://arxiv.org/abs/2309.00071""" | |
def __init__(self, dim, max_position_embeddings=2048, base=10000, scale=1, original_max_position_embeddings=2048, | |
extrapolation_factor=1, attn_factor=1, beta_fast=128, beta_slow=2, finetuned=False, device=None): | |
super().__init__() | |
self.dim = dim | |
self.max_position_embeddings = max_position_embeddings | |
self.base = base | |
self.scale = scale | |
self.original_max_position_embeddings = original_max_position_embeddings | |
self.extrapolation_factor = extrapolation_factor | |
self.attn_factor = attn_factor | |
self.beta_fast = beta_fast | |
self.beta_slow = beta_slow | |
self.yarn(device) | |
# Build here to make `torch.jit.trace` work. | |
self.max_seq_len_cached = max_position_embeddings | |
t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype) | |
freqs = torch.einsum("i,j->ij", t, self.inv_freq) | |
# Different from paper, but it uses a different permutation in order to obtain the same calculation | |
emb = torch.cat((freqs, freqs), dim=-1) | |
dtype = torch.get_default_dtype() | |
self.register_buffer("cos_cached", (emb.cos() * self.mscale).to(dtype), persistent=False) | |
self.register_buffer("sin_cached", (emb.sin() * self.mscale).to(dtype), persistent=False) | |
def forward(self, x, seq_len=None): | |
# x: [bs, num_attention_heads, seq_len, head_size] | |
# This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case. | |
if seq_len > self.max_seq_len_cached: | |
self.max_seq_len_cached = seq_len | |
t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype) | |
freqs = torch.einsum("i,j->ij", t, self.inv_freq) | |
# Different from paper, but it uses a different permutation in order to obtain the same calculation | |
emb = torch.cat((freqs, freqs), dim=-1).to(x.device) | |
self.register_buffer("cos_cached", (emb.cos() * self.mscale).to(x.dtype), persistent=False) | |
self.register_buffer("sin_cached", (emb.sin() * self.mscale).to(x.dtype), persistent=False) | |
return ( | |
self.cos_cached[:seq_len].to(dtype=x.dtype), | |
self.sin_cached[:seq_len].to(dtype=x.dtype), | |
) | |
def yarn(self, device): | |
pos_freqs = self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim) | |
inv_freq_extrapolation = 1.0 / pos_freqs | |
inv_freq_interpolation = 1.0 / (self.scale * pos_freqs) | |
low, high = _yarn_find_correction_range(self.beta_fast, self.beta_slow, self.dim, self.base, self.original_max_position_embeddings) | |
inv_freq_mask = (1 - _yarn_linear_ramp_mask(low, high, self.dim // 2).float().to(device)) * self.extrapolation_factor # Get n-d rotational scaling corrected for extrapolation | |
inv_freq = inv_freq_interpolation * (1 - inv_freq_mask) + inv_freq_extrapolation * inv_freq_mask | |
self.register_buffer("inv_freq", inv_freq, persistent=False) | |
self.mscale = float(_yarn_get_mscale(self.scale) * self.attn_factor) # Get n-d magnitude scaling corrected for interpolation | |
class MistralDynamicYaRNScaledRotaryEmbedding(torch.nn.Module): | |
"""MistralRotaryEmbedding extended with Dynamic YaRN. See: https://arxiv.org/abs/2309.00071""" | |
def __init__(self, dim, max_position_embeddings=2048, base=10000, original_max_position_embeddings=2048, | |
extrapolation_factor=1, attn_factor=1, beta_fast=128, beta_slow=2, finetuned=False, device=None): | |
super().__init__() | |
self.dim = dim | |
self.max_position_embeddings = max_position_embeddings | |
self.base = base | |
self.original_max_position_embeddings = original_max_position_embeddings | |
self.extrapolation_factor = extrapolation_factor | |
self.attn_factor = attn_factor | |
self.beta_fast = beta_fast | |
self.beta_slow = beta_slow | |
if finetuned: | |
self.yarn(self.max_position_embeddings / self.original_max_position_embeddings, device) | |
else: | |
inv_freq = 1.0 / \ | |
(base ** (torch.arange(0, dim, 2).float().to(device) / dim)) | |
self.register_buffer("inv_freq", inv_freq, persistent=False) | |
self.mscale = 1 | |
# Build here to make `torch.jit.trace` work. | |
self.max_seq_len_cached = max_position_embeddings | |
t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=torch.float32) | |
freqs = torch.einsum("i,j->ij", t, self.inv_freq) | |
# Different from paper, but it uses a different permutation in order to obtain the same calculation | |
emb = torch.cat((freqs, freqs), dim=-1) | |
dtype = torch.get_default_dtype() | |
self.register_buffer("cos_cached", (emb.cos() * self.mscale).to(dtype), persistent=False) | |
self.register_buffer("sin_cached", (emb.sin() * self.mscale).to(dtype), persistent=False) | |
def forward(self, x, seq_len=None): | |
# x: [bs, num_attention_heads, seq_len, head_size] | |
# This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case. | |
if seq_len > self.max_seq_len_cached: | |
self.max_seq_len_cached = seq_len | |
self.yarn(seq_len / self.max_position_embeddings, x.device) | |
t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype) | |
freqs = torch.einsum("i,j->ij", t, self.inv_freq) | |
# Different from paper, but it uses a different permutation in order to obtain the same calculation | |
emb = torch.cat((freqs, freqs), dim=-1).to(x.device) | |
self.register_buffer("cos_cached", (emb.cos() * self.mscale).to(x.dtype), persistent=False) | |
self.register_buffer("sin_cached", (emb.sin() * self.mscale).to(x.dtype), persistent=False) | |
return ( | |
self.cos_cached[:seq_len].to(dtype=x.dtype), | |
self.sin_cached[:seq_len].to(dtype=x.dtype), | |
) | |
def yarn(self, scale, device): | |
pos_freqs = self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim) | |
inv_freq_extrapolation = 1.0 / pos_freqs | |
inv_freq_interpolation = 1.0 / (scale * pos_freqs) | |
low, high = _yarn_find_correction_range(self.beta_fast, self.beta_slow, self.dim, self.base, self.original_max_position_embeddings) | |
inv_freq_mask = (1 - _yarn_linear_ramp_mask(low, high, self.dim // 2).float().to(device)) * self.extrapolation_factor # Get n-d rotational scaling corrected for extrapolation | |
inv_freq = inv_freq_interpolation * (1 - inv_freq_mask) + inv_freq_extrapolation * inv_freq_mask | |
self.register_buffer("inv_freq", inv_freq, persistent=False) | |
self.mscale = float(_yarn_get_mscale(scale) * self.attn_factor) # Get n-d magnitude scaling corrected for interpolation | |
################### | |
# Copied from transformers.models.llama.modeling_llama.rotate_half | |
def rotate_half(x): | |
"""Rotates half the hidden dims of the input.""" | |
x1 = x[..., : x.shape[-1] // 2] | |
x2 = x[..., x.shape[-1] // 2 :] | |
return torch.cat((-x2, x1), dim=-1) | |
# copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb | |
# TODO @Arthur no longer copied from LLama after static cache | |
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1): | |
"""Applies Rotary Position Embedding to the query and key tensors. | |
Args: | |
q (`torch.Tensor`): The query tensor. | |
k (`torch.Tensor`): The key tensor. | |
cos (`torch.Tensor`): The cosine part of the rotary embedding. | |
sin (`torch.Tensor`): The sine part of the rotary embedding. | |
position_ids (`torch.Tensor`): | |
The position indices of the tokens corresponding to the query and key tensors. For example, this can be | |
used to pass offsetted position ids when working with a KV-cache. | |
unsqueeze_dim (`int`, *optional*, defaults to 1): | |
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and | |
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note | |
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and | |
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes | |
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have | |
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. | |
Returns: | |
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. | |
""" | |
cos = cos[position_ids].unsqueeze(unsqueeze_dim) | |
sin = sin[position_ids].unsqueeze(unsqueeze_dim) | |
q_embed = (q * cos) + (rotate_half(q) * sin) | |
k_embed = (k * cos) + (rotate_half(k) * sin) | |
return q_embed, k_embed | |
class MistralMLP(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.hidden_size = config.hidden_size | |
self.intermediate_size = config.intermediate_size | |
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) | |
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) | |
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) | |
self.act_fn = ACT2FN[config.hidden_act] | |
def forward(self, x): | |
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) | |
# Copied from transformers.models.llama.modeling_llama.repeat_kv | |
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: | |
""" | |
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, | |
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) | |
""" | |
batch, num_key_value_heads, slen, head_dim = hidden_states.shape | |
if n_rep == 1: | |
return hidden_states | |
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) | |
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) | |
class MistralAttention(nn.Module): | |
""" | |
Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer | |
and "Generating Long Sequences with Sparse Transformers". | |
""" | |
def __init__(self, config: MistralConfig, layer_idx: Optional[int] = None): | |
super().__init__() | |
self.config = config | |
self.layer_idx = layer_idx | |
if layer_idx is None: | |
logger.warning_once( | |
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will " | |
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` " | |
"when creating this class." | |
) | |
self.hidden_size = config.hidden_size | |
self.num_heads = config.num_attention_heads | |
self.head_dim = self.hidden_size // self.num_heads | |
self.num_key_value_heads = config.num_key_value_heads | |
self.num_key_value_groups = self.num_heads // self.num_key_value_heads | |
self.max_position_embeddings = config.max_position_embeddings | |
self.rope_theta = config.rope_theta | |
self.is_causal = True | |
self.attention_dropout = config.attention_dropout | |
if (self.head_dim * self.num_heads) != self.hidden_size: | |
raise ValueError( | |
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" | |
f" and `num_heads`: {self.num_heads})." | |
) | |
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) | |
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) | |
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) | |
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) | |
self.rotary_emb = MistralRotaryEmbedding( | |
self.head_dim, | |
max_position_embeddings=self.max_position_embeddings, | |
base=self.rope_theta, | |
) | |
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): | |
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_value: Optional[Cache] = None, | |
output_attentions: bool = False, | |
use_cache: bool = False, | |
**kwargs, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
if "padding_mask" in kwargs: | |
warnings.warn( | |
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" | |
) | |
bsz, q_len, _ = hidden_states.size() | |
query_states = self.q_proj(hidden_states) | |
key_states = self.k_proj(hidden_states) | |
value_states = self.v_proj(hidden_states) | |
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
kv_seq_len = key_states.shape[-2] | |
if past_key_value is not None: | |
if self.layer_idx is None: | |
raise ValueError( | |
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " | |
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " | |
"with a layer index." | |
) | |
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) | |
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) | |
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) | |
if past_key_value is not None: | |
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models | |
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | |
# repeat k/v heads if n_kv_heads < n_heads | |
key_states = repeat_kv(key_states, self.num_key_value_groups) | |
value_states = repeat_kv(value_states, self.num_key_value_groups) | |
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) | |
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): | |
raise ValueError( | |
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" | |
f" {attn_weights.size()}" | |
) | |
if attention_mask is not None: | |
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): | |
raise ValueError( | |
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" | |
) | |
attn_weights = attn_weights + attention_mask | |
# upcast attention to fp32 | |
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) | |
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) | |
attn_output = torch.matmul(attn_weights, value_states) | |
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): | |
raise ValueError( | |
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" | |
f" {attn_output.size()}" | |
) | |
attn_output = attn_output.transpose(1, 2).contiguous() | |
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) | |
attn_output = self.o_proj(attn_output) | |
if not output_attentions: | |
attn_weights = None | |
return attn_output, attn_weights, past_key_value | |
class MistralFlashAttention2(MistralAttention): | |
""" | |
Mistral flash attention module. This module inherits from `MistralAttention` as the weights of the module stays | |
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of | |
flash attention and deal with padding tokens in case the input contains any of them. | |
""" | |
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__ | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. | |
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. | |
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). | |
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_value: Optional[Cache] = None, | |
output_attentions: bool = False, | |
use_cache: bool = False, | |
**kwargs, | |
): | |
if "padding_mask" in kwargs: | |
warnings.warn( | |
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" | |
) | |
# overwrite attention_mask with padding_mask | |
attention_mask = kwargs.pop("padding_mask") | |
bsz, q_len, _ = hidden_states.size() | |
query_states = self.q_proj(hidden_states) | |
key_states = self.k_proj(hidden_states) | |
value_states = self.v_proj(hidden_states) | |
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
kv_seq_len = key_states.shape[-2] | |
if past_key_value is not None: | |
if self.layer_idx is None: | |
raise ValueError( | |
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " | |
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " | |
"with a layer index." | |
) | |
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) | |
# Because the input can be padded, the absolute sequence length depends on the max position id. | |
rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1 | |
cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len) | |
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) | |
use_sliding_windows = ( | |
_flash_supports_window_size | |
and getattr(self.config, "sliding_window", None) is not None | |
and kv_seq_len > self.config.sliding_window | |
) | |
if not _flash_supports_window_size: | |
logger.warning_once( | |
"The current flash attention version does not support sliding window attention, for a more memory efficient implementation" | |
" make sure to upgrade flash-attn library." | |
) | |
if past_key_value is not None: | |
# Activate slicing cache only if the config has a value `sliding_windows` attribute | |
cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0 | |
if ( | |
getattr(self.config, "sliding_window", None) is not None | |
and kv_seq_len > self.config.sliding_window | |
and cache_has_contents | |
): | |
slicing_tokens = 1 - self.config.sliding_window | |
past_key = past_key_value[self.layer_idx][0] | |
past_value = past_key_value[self.layer_idx][1] | |
past_key = past_key[:, :, slicing_tokens:, :].contiguous() | |
past_value = past_value[:, :, slicing_tokens:, :].contiguous() | |
if past_key.shape[-2] != self.config.sliding_window - 1: | |
raise ValueError( | |
f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got" | |
f" {past_key.shape}" | |
) | |
if attention_mask is not None: | |
attention_mask = attention_mask[:, slicing_tokens:] | |
attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1) | |
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models | |
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | |
# repeat k/v heads if n_kv_heads < n_heads | |
key_states = repeat_kv(key_states, self.num_key_value_groups) | |
value_states = repeat_kv(value_states, self.num_key_value_groups) | |
dropout_rate = 0.0 if not self.training else self.attention_dropout | |
# In PEFT, usually we cast the layer norms in float32 for training stability reasons | |
# therefore the input hidden states gets silently casted in float32. Hence, we need | |
# cast them back in float16 just to be sure everything works as expected. | |
input_dtype = query_states.dtype | |
if input_dtype == torch.float32: | |
if torch.is_autocast_enabled(): | |
target_dtype = torch.get_autocast_gpu_dtype() | |
# Handle the case where the model is quantized | |
elif hasattr(self.config, "_pre_quantization_dtype"): | |
target_dtype = self.config._pre_quantization_dtype | |
else: | |
target_dtype = self.q_proj.weight.dtype | |
logger.warning_once( | |
f"The input hidden states seems to be silently casted in float32, this might be related to" | |
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" | |
f" {target_dtype}." | |
) | |
query_states = query_states.to(target_dtype) | |
key_states = key_states.to(target_dtype) | |
value_states = value_states.to(target_dtype) | |
# Reashape to the expected shape for Flash Attention | |
query_states = query_states.transpose(1, 2) | |
key_states = key_states.transpose(1, 2) | |
value_states = value_states.transpose(1, 2) | |
attn_output = self._flash_attention_forward( | |
query_states, | |
key_states, | |
value_states, | |
attention_mask, | |
q_len, | |
dropout=dropout_rate, | |
use_sliding_windows=use_sliding_windows, | |
) | |
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() | |
attn_output = self.o_proj(attn_output) | |
if not output_attentions: | |
attn_weights = None | |
return attn_output, attn_weights, past_key_value | |
def _flash_attention_forward( | |
self, | |
query_states, | |
key_states, | |
value_states, | |
attention_mask, | |
query_length, | |
dropout=0.0, | |
softmax_scale=None, | |
use_sliding_windows=False, | |
): | |
""" | |
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token | |
first unpad the input, then computes the attention scores and pad the final attention scores. | |
Args: | |
query_states (`torch.Tensor`): | |
Input query states to be passed to Flash Attention API | |
key_states (`torch.Tensor`): | |
Input key states to be passed to Flash Attention API | |
value_states (`torch.Tensor`): | |
Input value states to be passed to Flash Attention API | |
attention_mask (`torch.Tensor`): | |
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the | |
position of padding tokens and 1 for the position of non-padding tokens. | |
dropout (`float`): | |
Attention dropout | |
softmax_scale (`float`, *optional*): | |
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) | |
use_sliding_windows (`bool`, *optional*): | |
Whether to activate sliding window attention. | |
""" | |
if not self._flash_attn_uses_top_left_mask: | |
causal = self.is_causal | |
else: | |
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__. | |
causal = self.is_causal and query_length != 1 | |
# Contains at least one padding token in the sequence | |
if attention_mask is not None: | |
batch_size = query_states.shape[0] | |
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( | |
query_states, key_states, value_states, attention_mask, query_length | |
) | |
cu_seqlens_q, cu_seqlens_k = cu_seq_lens | |
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens | |
if not use_sliding_windows: | |
attn_output_unpad = flash_attn_varlen_func( | |
query_states, | |
key_states, | |
value_states, | |
cu_seqlens_q=cu_seqlens_q, | |
cu_seqlens_k=cu_seqlens_k, | |
max_seqlen_q=max_seqlen_in_batch_q, | |
max_seqlen_k=max_seqlen_in_batch_k, | |
dropout_p=dropout, | |
softmax_scale=softmax_scale, | |
causal=causal, | |
) | |
else: | |
attn_output_unpad = flash_attn_varlen_func( | |
query_states, | |
key_states, | |
value_states, | |
cu_seqlens_q=cu_seqlens_q, | |
cu_seqlens_k=cu_seqlens_k, | |
max_seqlen_q=max_seqlen_in_batch_q, | |
max_seqlen_k=max_seqlen_in_batch_k, | |
dropout_p=dropout, | |
softmax_scale=softmax_scale, | |
causal=causal, | |
window_size=(self.config.sliding_window, self.config.sliding_window), | |
) | |
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) | |
else: | |
if not use_sliding_windows: | |
attn_output = flash_attn_func( | |
query_states, | |
key_states, | |
value_states, | |
dropout, | |
softmax_scale=softmax_scale, | |
causal=causal, | |
) | |
else: | |
attn_output = flash_attn_func( | |
query_states, | |
key_states, | |
value_states, | |
dropout, | |
softmax_scale=softmax_scale, | |
causal=causal, | |
window_size=(self.config.sliding_window, self.config.sliding_window), | |
) | |
return attn_output | |
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): | |
batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape | |
# On the first iteration we need to properly re-create the padding mask | |
# by slicing it on the proper place | |
if kv_seq_len != attention_mask.shape[-1]: | |
attention_mask_num_tokens = attention_mask.shape[-1] | |
attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :] | |
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) | |
key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k) | |
value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k) | |
if query_length == kv_seq_len: | |
query_layer = index_first_axis( | |
query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k | |
) | |
cu_seqlens_q = cu_seqlens_k | |
max_seqlen_in_batch_q = max_seqlen_in_batch_k | |
indices_q = indices_k | |
elif query_length == 1: | |
max_seqlen_in_batch_q = 1 | |
cu_seqlens_q = torch.arange( | |
batch_size + 1, dtype=torch.int32, device=query_layer.device | |
) # There is a memcpy here, that is very bad. | |
indices_q = cu_seqlens_q[:-1] | |
query_layer = query_layer.squeeze(1) | |
else: | |
# The -q_len: slice assumes left padding. | |
attention_mask = attention_mask[:, -query_length:] | |
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) | |
return ( | |
query_layer, | |
key_layer, | |
value_layer, | |
indices_q, | |
(cu_seqlens_q, cu_seqlens_k), | |
(max_seqlen_in_batch_q, max_seqlen_in_batch_k), | |
) | |
# copied from transformers.models.llama.modeling_llama.LlamaSdpaAttention with Llama->Mistral | |
# TODO @Arthur no longer copied from LLama after static cache | |
class MistralSdpaAttention(MistralAttention): | |
""" | |
Mistral attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from | |
`MistralAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to | |
SDPA API. | |
""" | |
# Adapted from MistralAttention.forward | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_value: Optional[Cache] = None, | |
output_attentions: bool = False, | |
use_cache: bool = False, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
if output_attentions: | |
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented. | |
logger.warning_once( | |
"MistralModel is using MistralSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " | |
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' | |
) | |
return super().forward( | |
hidden_states=hidden_states, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_value=past_key_value, | |
output_attentions=output_attentions, | |
use_cache=use_cache, | |
) | |
bsz, q_len, _ = hidden_states.size() | |
query_states = self.q_proj(hidden_states) | |
key_states = self.k_proj(hidden_states) | |
value_states = self.v_proj(hidden_states) | |
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
kv_seq_len = key_states.shape[-2] | |
if past_key_value is not None: | |
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) | |
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) | |
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) | |
if past_key_value is not None: | |
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models | |
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | |
key_states = repeat_kv(key_states, self.num_key_value_groups) | |
value_states = repeat_kv(value_states, self.num_key_value_groups) | |
if attention_mask is not None: | |
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): | |
raise ValueError( | |
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" | |
) | |
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask, | |
# Reference: https://github.com/pytorch/pytorch/issues/112577. | |
if query_states.device.type == "cuda" and attention_mask is not None: | |
query_states = query_states.contiguous() | |
key_states = key_states.contiguous() | |
value_states = value_states.contiguous() | |
attn_output = torch.nn.functional.scaled_dot_product_attention( | |
query_states, | |
key_states, | |
value_states, | |
attn_mask=attention_mask, | |
dropout_p=self.attention_dropout if self.training else 0.0, | |
# The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1. | |
is_causal=self.is_causal and attention_mask is None and q_len > 1, | |
) | |
attn_output = attn_output.transpose(1, 2).contiguous() | |
attn_output = attn_output.view(bsz, q_len, self.hidden_size) | |
attn_output = self.o_proj(attn_output) | |
return attn_output, None, past_key_value | |
MISTRAL_ATTENTION_CLASSES = { | |
"eager": MistralAttention, | |
"flash_attention_2": MistralFlashAttention2, | |
"sdpa": MistralSdpaAttention, | |
} | |
class MistralDecoderLayer(nn.Module): | |
def __init__(self, config: MistralConfig, layer_idx: int): | |
super().__init__() | |
self.hidden_size = config.hidden_size | |
self.self_attn = MISTRAL_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx) | |
self.mlp = MistralMLP(config) | |
self.input_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
self.post_attention_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
output_attentions: Optional[bool] = False, | |
use_cache: Optional[bool] = False, | |
**kwargs, | |
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: | |
if "padding_mask" in kwargs: | |
warnings.warn( | |
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" | |
) | |
""" | |
Args: | |
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` | |
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size | |
`(batch, sequence_length)` where padding elements are indicated by 0. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
returned tensors for more detail. | |
use_cache (`bool`, *optional*): | |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding | |
(see `past_key_values`). | |
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states | |
""" | |
residual = hidden_states | |
hidden_states = self.input_layernorm(hidden_states) | |
# Self Attention | |
hidden_states, self_attn_weights, present_key_value = self.self_attn( | |
hidden_states=hidden_states, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_value=past_key_value, | |
output_attentions=output_attentions, | |
use_cache=use_cache, | |
) | |
hidden_states = residual + hidden_states | |
# Fully Connected | |
residual = hidden_states | |
hidden_states = self.post_attention_layernorm(hidden_states) | |
hidden_states = self.mlp(hidden_states) | |
hidden_states = residual + hidden_states | |
outputs = (hidden_states,) | |
if output_attentions: | |
outputs += (self_attn_weights,) | |
if use_cache: | |
outputs += (present_key_value,) | |
return outputs | |
MISTRAL_START_DOCSTRING = r""" | |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | |
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | |
etc.) | |
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | |
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | |
and behavior. | |
Parameters: | |
config ([`MistralConfig`]): | |
Model configuration class with all the parameters of the model. Initializing with a config file does not | |
load the weights associated with the model, only the configuration. Check out the | |
[`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
class MistralPreTrainedModel(PreTrainedModel): | |
config_class = MistralConfig | |
base_model_prefix = "model" | |
supports_gradient_checkpointing = True | |
_no_split_modules = ["MistralDecoderLayer"] | |
_skip_keys_device_placement = "past_key_values" | |
_supports_flash_attn_2 = True | |
_supports_sdpa = True | |
_supports_cache_class = True | |
def _init_weights(self, module): | |
std = self.config.initializer_range | |
if isinstance(module, nn.Linear): | |
module.weight.data.normal_(mean=0.0, std=std) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.Embedding): | |
module.weight.data.normal_(mean=0.0, std=std) | |
if module.padding_idx is not None: | |
module.weight.data[module.padding_idx].zero_() | |
MISTRAL_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide | |
it. | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
[What are input IDs?](../glossary#input-ids) | |
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see | |
`past_key_values`). | |
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] | |
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more | |
information on the default strategy. | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | |
config.n_positions - 1]`. | |
[What are position IDs?](../glossary#position-ids) | |
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): | |
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention | |
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` | |
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. | |
Two formats are allowed: | |
- a [`~cache_utils.Cache`] instance; | |
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of | |
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy | |
cache format. | |
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the | |
legacy cache format will be returned. | |
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't | |
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` | |
of shape `(batch_size, sequence_length)`. | |
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | |
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | |
model's internal embedding lookup matrix. | |
use_cache (`bool`, *optional*): | |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | |
`past_key_values`). | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
""" Classes to support Vision-Encoder-Text-Decoder architectures""" | |
VISION_ENCODER_DECODER_START_DOCSTRING = r""" | |
This class can be used to initialize an image-to-text-sequence model with any pretrained vision autoencoding model | |
as the encoder and any pretrained text autoregressive model as the decoder. The encoder is loaded via | |
[`~AutoModel.from_pretrained`] function and the decoder is loaded via [`~AutoModelForCausalLM.from_pretrained`] | |
function. Cross-attention layers are automatically added to the decoder and should be fine-tuned on a downstream | |
generative task, like image captioning. | |
The effectiveness of initializing sequence-to-sequence models with pretrained checkpoints for sequence generation | |
tasks was shown in [Leveraging Pre-trained Checkpoints for Sequence Generation | |
Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn. Michael Matena, Yanqi | |
Zhou, Wei Li, Peter J. Liu. | |
Additionally, in [TrOCR: Transformer-based Optical Character Recognition with Pre-trained | |
Models](https://arxiv.org/abs/2109.10282) it is shown how leveraging large pretrained vision models for optical | |
character recognition (OCR) yields a significant performance improvement. | |
After such a Vision-Encoder-Text-Decoder model has been trained/fine-tuned, it can be saved/loaded just like any | |
other models (see the examples for more information). | |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | |
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | |
etc.) | |
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | |
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | |
and behavior. | |
Parameters: | |
config ([`VisionEncoderDecoderConfig`]): Model configuration class with all the parameters of the model. | |
Initializing with a config file does not load the weights associated with the model, only the | |
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
VISION_ENCODER_DECODER_INPUTS_DOCSTRING = r""" | |
Args: | |
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): | |
Pixel values. Pixel values can be obtained using an image processor (e.g. if you use ViT as the encoder, | |
you should use [`AutoImageProcessor`]). See [`ViTImageProcessor.__call__`] for details. | |
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): | |
Indices of decoder input sequence tokens in the vocabulary. | |
Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
[What are input IDs?](../glossary#input-ids) | |
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see | |
`past_key_values`). | |
For training, `decoder_input_ids` are automatically created by the model by shifting the `labels` to the | |
right, replacing -100 by the `pad_token_id` and prepending them with the `decoder_start_token_id`. | |
decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*): | |
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also | |
be used by default. | |
encoder_outputs (`tuple(torch.FloatTensor)`, *optional*): | |
This tuple must consist of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) | |
`last_hidden_state` (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`) is a tensor | |
of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the | |
decoder. | |
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): | |
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. | |
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that | |
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all | |
`decoder_input_ids` of shape `(batch_size, sequence_length)`. | |
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): | |
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded | |
representation. This is useful if you want more control over how to convert `decoder_input_ids` indices | |
into associated vectors than the model's internal embedding lookup matrix. | |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Labels for computing the masked language modeling loss for the decoder. Indices should be in `[-100, 0, | |
..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored | |
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` | |
use_cache (`bool`, *optional*): | |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | |
`past_key_values`). | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
If set to `True`, the model will return a [`~utils.Seq2SeqLMOutput`] instead of a plain tuple. | |
kwargs (*optional*): Remaining dictionary of keyword arguments. Keyword arguments come in two flavors: | |
- Without a prefix which will be input as `**encoder_kwargs` for the encoder forward function. | |
- With a *decoder_* prefix which will be input as `**decoder_kwargs` for the decoder forward function. | |
""" | |
DEPRECATION_WARNING = ( | |
"Version v4.12.0 introduces a better way to train encoder-decoder models by computing the loss inside the" | |
" encoder-decoder framework rather than in the decoder itself. You may observe training discrepancies if" | |
" fine-tuning a model trained with versions anterior to 4.12.0. The decoder_input_ids are now created based on the" | |
" labels, no need to pass them yourself anymore." | |
) | |
ENCODER_DECODER_START_DOCSTRING = r""" | |
This class can be used to initialize a sequence-to-sequence model with any pretrained autoencoding model as the | |
encoder and any pretrained autoregressive model as the decoder. The encoder is loaded via | |
[`~AutoModel.from_pretrained`] function and the decoder is loaded via [`~AutoModelForCausalLM.from_pretrained`] | |
function. Cross-attention layers are automatically added to the decoder and should be fine-tuned on a downstream | |
generative task, like summarization. | |
The effectiveness of initializing sequence-to-sequence models with pretrained checkpoints for sequence generation | |
tasks was shown in [Leveraging Pre-trained Checkpoints for Sequence Generation | |
Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn. Michael Matena, Yanqi | |
Zhou, Wei Li, Peter J. Liu. | |
After such an Encoder Decoder model has been trained/fine-tuned, it can be saved/loaded just like any other models | |
(see the examples for more information). | |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | |
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | |
etc.) | |
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | |
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | |
and behavior. | |
Parameters: | |
config ([`EncoderDecoderConfig`]): Model configuration class with all the parameters of the model. | |
Initializing with a config file does not load the weights associated with the model, only the | |
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
ENCODER_DECODER_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
Indices of input sequence tokens in the vocabulary. | |
Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
[What are input IDs?](../glossary#input-ids) | |
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): | |
Indices of decoder input sequence tokens in the vocabulary. | |
Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
[What are input IDs?](../glossary#input-ids) | |
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see | |
`past_key_values`). | |
For training, `decoder_input_ids` are automatically created by the model by shifting the `labels` to the | |
right, replacing -100 by the `pad_token_id` and prepending them with the `decoder_start_token_id`. | |
decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*): | |
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also | |
be used by default. | |
encoder_outputs (`tuple(torch.FloatTensor)`, *optional*): | |
This tuple must consist of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) | |
`last_hidden_state` (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`) is a tensor | |
of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the | |
decoder. | |
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): | |
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. | |
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that | |
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all | |
`decoder_input_ids` of shape `(batch_size, sequence_length)`. | |
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | |
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | |
model's internal embedding lookup matrix. | |
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): | |
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded | |
representation. This is useful if you want more control over how to convert `decoder_input_ids` indices | |
into associated vectors than the model's internal embedding lookup matrix. | |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Labels for computing the masked language modeling loss for the decoder. Indices should be in `[-100, 0, | |
..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored | |
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` | |
use_cache (`bool`, *optional*): | |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | |
`past_key_values`). | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
If set to `True`, the model will return a [`~utils.Seq2SeqLMOutput`] instead of a plain tuple. | |
kwargs (*optional*): Remaining dictionary of keyword arguments. Keyword arguments come in two flavors: | |
- Without a prefix which will be input as `**encoder_kwargs` for the encoder forward function. | |
- With a *decoder_* prefix which will be input as `**decoder_kwargs` for the decoder forward function. | |
""" | |
class MistralModel(MistralPreTrainedModel): | |
""" | |
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MistralDecoderLayer`] | |
Args: | |
config: MistralConfig | |
""" | |
def __init__(self, config: MistralConfig): | |
super().__init__(config) | |
self.padding_idx = config.pad_token_id | |
self.vocab_size = config.vocab_size | |
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) | |
self.layers = nn.ModuleList( | |
[MistralDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] | |
) | |
self._attn_implementation = config._attn_implementation | |
self.norm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
self.gradient_checkpointing = False | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.embed_tokens | |
def set_input_embeddings(self, value): | |
self.embed_tokens = value | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, BaseModelOutputWithPast]: | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
# retrieve input_ids and inputs_embeds | |
if input_ids is not None and inputs_embeds is not None: | |
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") | |
elif input_ids is not None: | |
batch_size, seq_length = input_ids.shape | |
elif inputs_embeds is not None: | |
batch_size, seq_length, _ = inputs_embeds.shape | |
else: | |
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") | |
if self.gradient_checkpointing and self.training: | |
if use_cache: | |
logger.warning_once( | |
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | |
) | |
use_cache = False | |
past_key_values_length = 0 | |
if use_cache: | |
use_legacy_cache = not isinstance(past_key_values, Cache) | |
if use_legacy_cache: | |
past_key_values = DynamicCache.from_legacy_cache(past_key_values) | |
past_key_values_length = past_key_values.get_usable_length(seq_length) | |
if position_ids is None: | |
device = input_ids.device if input_ids is not None else inputs_embeds.device | |
position_ids = torch.arange( | |
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device | |
) | |
position_ids = position_ids.unsqueeze(0).view(-1, seq_length) | |
else: | |
position_ids = position_ids.view(-1, seq_length).long() | |
if inputs_embeds is None: | |
inputs_embeds = self.embed_tokens(input_ids) | |
if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache: | |
is_padding_right = attention_mask[:, -1].sum().item() != batch_size | |
if is_padding_right: | |
raise ValueError( | |
"You are attempting to perform batched generation with padding_side='right'" | |
" this may lead to unexpected behaviour for Flash Attention version of Mistral. Make sure to " | |
" call `tokenizer.padding_side = 'left'` before tokenizing the input. " | |
) | |
if self._attn_implementation == "flash_attention_2": | |
# 2d mask is passed through the layers | |
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None | |
elif self._attn_implementation == "sdpa" and not output_attentions: | |
# output_attentions=True can not be supported when using SDPA, and we fall back on | |
# the manual implementation that requires a 4D causal mask in all cases. | |
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa( | |
attention_mask, | |
(batch_size, seq_length), | |
inputs_embeds, | |
past_key_values_length, | |
) | |
else: | |
# 4d mask is passed through the layers | |
attention_mask = _prepare_4d_causal_attention_mask( | |
attention_mask, | |
(batch_size, seq_length), | |
inputs_embeds, | |
past_key_values_length, | |
sliding_window=self.config.sliding_window, | |
) | |
hidden_states = inputs_embeds | |
# decoder layers | |
all_hidden_states = () if output_hidden_states else None | |
all_self_attns = () if output_attentions else None | |
next_decoder_cache = None | |
for decoder_layer in self.layers: | |
if output_hidden_states: | |
all_hidden_states += (hidden_states,) | |
if self.gradient_checkpointing and self.training: | |
layer_outputs = self._gradient_checkpointing_func( | |
decoder_layer.__call__, | |
hidden_states, | |
attention_mask, | |
position_ids, | |
past_key_values, | |
output_attentions, | |
use_cache, | |
) | |
else: | |
layer_outputs = decoder_layer( | |
hidden_states, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_value=past_key_values, | |
output_attentions=output_attentions, | |
use_cache=use_cache, | |
) | |
hidden_states = layer_outputs[0] | |
if use_cache: | |
next_decoder_cache = layer_outputs[2 if output_attentions else 1] | |
if output_attentions: | |
all_self_attns += (layer_outputs[1],) | |
hidden_states = self.norm(hidden_states) | |
# add hidden states from the last decoder layer | |
if output_hidden_states: | |
all_hidden_states += (hidden_states,) | |
next_cache = None | |
if use_cache: | |
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache | |
if not return_dict: | |
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) | |
return BaseModelOutputWithPast( | |
last_hidden_state=hidden_states, | |
past_key_values=next_cache, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attns, | |
) | |
class MistralForCausalLM(MistralPreTrainedModel): | |
_tied_weights_keys = ["lm_head.weight"] | |
def __init__(self, config): | |
super().__init__(config) | |
self.model = MistralModel(config) | |
self.vocab_size = config.vocab_size | |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.model.embed_tokens | |
def set_input_embeddings(self, value): | |
self.model.embed_tokens = value | |
def get_output_embeddings(self): | |
return self.lm_head | |
def set_output_embeddings(self, new_embeddings): | |
self.lm_head = new_embeddings | |
def set_decoder(self, decoder): | |
self.model = decoder | |
def get_decoder(self): | |
return self.model | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, CausalLMOutputWithPast]: | |
r""" | |
Args: | |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., | |
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored | |
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. | |
Returns: | |
Example: | |
```python | |
>>> from transformers import AutoTokenizer, MistralForCausalLM | |
>>> model = MistralForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1") | |
>>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1") | |
>>> prompt = "Hey, are you conscious? Can you talk to me?" | |
>>> inputs = tokenizer(prompt, return_tensors="pt") | |
>>> # Generate | |
>>> generate_ids = model.generate(inputs.input_ids, max_length=30) | |
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] | |
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." | |
```""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) | |
outputs = self.model( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
hidden_states = outputs[0] | |
logits = self.lm_head(hidden_states) | |
logits = logits.float() | |
loss = None | |
if labels is not None: | |
# Shift so that tokens < n predict n | |
shift_logits = logits[..., :-1, :].contiguous() | |
shift_labels = labels[..., 1:].contiguous() | |
# Flatten the tokens | |
shift_logits = shift_logits.view(-1, self.config.vocab_size) | |
shift_labels = shift_labels.view(-1) | |
# Ensure tensors are on the same device | |
shift_labels = shift_labels.to(shift_logits.device) | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(shift_logits, shift_labels) | |
if not return_dict: | |
output = (logits,) + outputs[1:] | |
return (loss,) + output if loss is not None else output | |
return CausalLMOutputWithPast( | |
loss=loss, | |
logits=logits, | |
past_key_values=outputs.past_key_values, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
def prepare_inputs_for_generation( | |
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs | |
): | |
# Omit tokens covered by past_key_values | |
if past_key_values is not None: | |
if isinstance(past_key_values, Cache): | |
cache_length = past_key_values.get_seq_length() | |
past_length = past_key_values.seen_tokens | |
max_cache_length = past_key_values.get_max_length() | |
else: | |
cache_length = past_length = past_key_values[0][0].shape[2] | |
max_cache_length = None | |
# Keep only the unprocessed tokens: | |
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where | |
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as | |
# input) | |
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: | |
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] | |
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard | |
# input_ids based on the past_length. | |
elif past_length < input_ids.shape[1]: | |
input_ids = input_ids[:, past_length:] | |
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens. | |
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask. | |
if ( | |
max_cache_length is not None | |
and attention_mask is not None | |
and cache_length + input_ids.shape[1] > max_cache_length | |
): | |
attention_mask = attention_mask[:, -max_cache_length:] | |
position_ids = kwargs.get("position_ids", None) | |
if attention_mask is not None and position_ids is None: | |
# create position_ids on the fly for batch generation | |
position_ids = attention_mask.long().cumsum(-1) - 1 | |
position_ids.masked_fill_(attention_mask == 0, 1) | |
if past_key_values: | |
position_ids = position_ids[:, -input_ids.shape[1] :] | |
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step | |
if inputs_embeds is not None and past_key_values is None: | |
model_inputs = {"inputs_embeds": inputs_embeds} | |
else: | |
model_inputs = {"input_ids": input_ids} | |
model_inputs.update( | |
{ | |
"position_ids": position_ids, | |
"past_key_values": past_key_values, | |
"use_cache": kwargs.get("use_cache"), | |
"attention_mask": attention_mask, | |
} | |
) | |
return model_inputs | |
def _reorder_cache(past_key_values, beam_idx): | |
reordered_past = () | |
for layer_past in past_key_values: | |
reordered_past += ( | |
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), | |
) | |
return reordered_past | |
# Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->Mistral, LLAMA->MISTRAL | |
class MistralForSequenceClassification(MistralPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.model = MistralModel(config) | |
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.model.embed_tokens | |
def set_input_embeddings(self, value): | |
self.model.embed_tokens = value | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, SequenceClassifierOutputWithPast]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | |
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | |
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
transformer_outputs = self.model( | |
input_ids, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
hidden_states = transformer_outputs[0] | |
logits = self.score(hidden_states) | |
if input_ids is not None: | |
batch_size = input_ids.shape[0] | |
else: | |
batch_size = inputs_embeds.shape[0] | |
if self.config.pad_token_id is None and batch_size != 1: | |
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") | |
if self.config.pad_token_id is None: | |
sequence_lengths = -1 | |
else: | |
if input_ids is not None: | |
sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).long().argmax(-1) - 1).to( | |
logits.device | |
) | |
else: | |
sequence_lengths = -1 | |
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] | |
loss = None | |
if labels is not None: | |
labels = labels.to(logits.device) | |
if self.config.problem_type is None: | |
if self.num_labels == 1: | |
self.config.problem_type = "regression" | |
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): | |
self.config.problem_type = "single_label_classification" | |
else: | |
self.config.problem_type = "multi_label_classification" | |
if self.config.problem_type == "regression": | |
loss_fct = MSELoss() | |
if self.num_labels == 1: | |
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) | |
else: | |
loss = loss_fct(pooled_logits, labels) | |
elif self.config.problem_type == "single_label_classification": | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) | |
elif self.config.problem_type == "multi_label_classification": | |
loss_fct = BCEWithLogitsLoss() | |
loss = loss_fct(pooled_logits, labels) | |
if not return_dict: | |
output = (pooled_logits,) + transformer_outputs[1:] | |
return ((loss,) + output) if loss is not None else output | |
return SequenceClassifierOutputWithPast( | |
loss=loss, | |
logits=pooled_logits, | |
past_key_values=transformer_outputs.past_key_values, | |
hidden_states=transformer_outputs.hidden_states, | |
attentions=transformer_outputs.attentions, | |
) | |
class VisionEncoderDecoderModel(PreTrainedModel): | |
r""" | |
[`VisionEncoderDecoderModel`] is a generic model class that will be instantiated as a transformer architecture with | |
one of the base vision model classes of the library as encoder and another one as decoder when created with the | |
:meth*~transformers.AutoModel.from_pretrained* class method for the encoder and | |
:meth*~transformers.AutoModelForCausalLM.from_pretrained* class method for the decoder. | |
""" | |
config_class = VisionEncoderDecoderConfig | |
base_model_prefix = "vision_encoder_decoder" | |
main_input_name = "pixel_values" | |
supports_gradient_checkpointing = True | |
def __init__( | |
self, | |
config: Optional[PretrainedConfig] = None, | |
encoder: Optional[PreTrainedModel] = None, | |
decoder: Optional[PreTrainedModel] = None, | |
): | |
if config is None and (encoder is None or decoder is None): | |
raise ValueError("Either a configuration or an encoder and a decoder has to be provided.") | |
if config is None: | |
config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config) | |
else: | |
if not isinstance(config, self.config_class): | |
raise ValueError(f"Config: {config} has to be of type {self.config_class}") | |
if config.decoder.cross_attention_hidden_size is not None: | |
if config.decoder.cross_attention_hidden_size != config.encoder.hidden_size: | |
raise ValueError( | |
"If `cross_attention_hidden_size` is specified in the decoder's configuration, it has to be equal" | |
f" to the encoder's `hidden_size`. Got {config.decoder.cross_attention_hidden_size} for" | |
f" `config.decoder.cross_attention_hidden_size` and {config.encoder.hidden_size} for" | |
" `config.encoder.hidden_size`." | |
) | |
# initialize with config | |
# make sure input & output embeddings is not tied | |
config.tie_word_embeddings = False | |
super().__init__(config) | |
if encoder is None: | |
encoder = AutoModel.from_config(config.encoder) | |
if decoder is None: | |
decoder = AutoModelForCausalLM.from_config(config.decoder) | |
self.encoder = encoder | |
self.decoder = decoder | |
if self.encoder.config.to_dict() != self.config.encoder.to_dict(): | |
logger.warning( | |
f"Config of the encoder: {self.encoder.__class__} is overwritten by shared encoder config:" | |
f" {self.config.encoder}" | |
) | |
if self.decoder.config.to_dict() != self.config.decoder.to_dict(): | |
logger.warning( | |
f"Config of the decoder: {self.decoder.__class__} is overwritten by shared decoder config:" | |
f" {self.config.decoder}" | |
) | |
# make sure that the individual model's config refers to the shared config | |
# so that the updates to the config will be synced | |
self.encoder.config = self.config.encoder | |
self.decoder.config = self.config.decoder | |
# encoder outputs might need to be projected to different dimension for decoder | |
if ( | |
self.encoder.config.hidden_size != self.decoder.config.hidden_size | |
and self.decoder.config.cross_attention_hidden_size is None | |
): | |
self.enc_to_dec_proj = nn.Linear(self.encoder.config.hidden_size, self.decoder.config.hidden_size) | |
if self.encoder.get_output_embeddings() is not None: | |
raise ValueError( | |
f"The encoder {self.encoder} should not have a LM Head. Please use a model without LM Head" | |
) | |
def get_encoder(self): | |
return self.encoder | |
def get_decoder(self): | |
return self.decoder | |
def get_output_embeddings(self): | |
return self.decoder.get_output_embeddings() | |
def set_output_embeddings(self, new_embeddings): | |
return self.decoder.set_output_embeddings(new_embeddings) | |
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): | |
r""" | |
Example: | |
```python | |
>>> from transformers import VisionEncoderDecoderModel, AutoImageProcessor, AutoTokenizer | |
>>> from PIL import Image | |
>>> import requests | |
>>> image_processor = AutoImageProcessor.from_pretrained("ydshieh/vit-gpt2-coco-en") | |
>>> decoder_tokenizer = AutoTokenizer.from_pretrained("ydshieh/vit-gpt2-coco-en") | |
>>> model = VisionEncoderDecoderModel.from_pretrained("ydshieh/vit-gpt2-coco-en") | |
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" | |
>>> img = Image.open(requests.get(url, stream=True).raw) | |
>>> pixel_values = image_processor(images=img, return_tensors="pt").pixel_values # Batch size 1 | |
>>> output_ids = model.generate( | |
... pixel_values, max_length=16, num_beams=4, return_dict_in_generate=True | |
... ).sequences | |
>>> preds = decoder_tokenizer.batch_decode(output_ids, skip_special_tokens=True) | |
>>> preds = [pred.strip() for pred in preds] | |
>>> assert preds == ["a cat laying on top of a couch next to another cat"] | |
```""" | |
from_tf = kwargs.pop("from_tf", False) | |
if from_tf: | |
from transformers import TFVisionEncoderDecoderModel | |
# a workaround to load from tensorflow checkpoint | |
# Using `_tf_model` won't work, because the weight names in the encoder/decoder of `_tf_model` get | |
# extended before saving those components. For example, The name of `_tf_model.encoder.vit` is | |
# `[top model name]/encoder/vit`, but the name of `tf_model.encoder.vit` is `[top model name]/vit`. The | |
# [top model name] is handled (stripped) by the conversion method, and the former case gets extra `encoder`, | |
# which should not occur when we want to save the components alone. | |
# There was a (very) ugly potential fix, which wasn't integrated to `transformers`: see | |
# https://github.com/huggingface/transformers/pull/13222/commits/dbb3c9de76eee235791d2064094654637c99f36d#r697304245 | |
# (the change in `src/transformers/modeling_tf_utils.py`) | |
_tf_model = TFVisionEncoderDecoderModel.from_pretrained( | |
pretrained_model_name_or_path, *model_args, **kwargs | |
) | |
config = _tf_model.config | |
# Using `tf_model` instead | |
encoder = _tf_model.encoder.__class__(_tf_model.config.encoder) | |
decoder = _tf_model.decoder.__class__(_tf_model.config.decoder) | |
# Make sure models are built | |
encoder(encoder.dummy_inputs) | |
decoder(decoder.dummy_inputs) | |
# Get the variable correspondence between `_tf_model` and `encoder` and `decoder` | |
encoder_variables = {} | |
for v in encoder.trainable_variables + encoder.non_trainable_variables: | |
encoder_variables["/".join(v.name.split("/")[1:])] = v | |
decoder_variables = {} | |
for v in decoder.trainable_variables + decoder.non_trainable_variables: | |
decoder_variables["/".join(v.name.split("/")[1:])] = v | |
_encoder_variables = {} | |
for v in _tf_model.encoder.trainable_variables + _tf_model.encoder.non_trainable_variables: | |
_encoder_variables["/".join(v.name.split("/")[2:])] = v | |
_decoder_variables = {} | |
for v in _tf_model.decoder.trainable_variables + _tf_model.decoder.non_trainable_variables: | |
_decoder_variables["/".join(v.name.split("/")[2:])] = v | |
# assign weight values to `encoder` and `decoder` from `_tf_model` | |
for name, v in encoder_variables.items(): | |
v.assign(_encoder_variables[name]) | |
for name, v in decoder_variables.items(): | |
v.assign(_decoder_variables[name]) | |
tf_model = TFVisionEncoderDecoderModel(encoder=encoder, decoder=decoder) | |
# Deal with `enc_to_dec_proj` | |
if hasattr(_tf_model, "enc_to_dec_proj"): | |
tf_model(tf_model.dummy_inputs) | |
tf_model.enc_to_dec_proj.kernel.assign(_tf_model.enc_to_dec_proj.kernel) | |
tf_model.enc_to_dec_proj.bias.assign(_tf_model.enc_to_dec_proj.bias) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
encoder_dir = os.path.join(tmpdirname, "encoder") | |
decoder_dir = os.path.join(tmpdirname, "decoder") | |
tf_model.encoder.save_pretrained(encoder_dir) | |
tf_model.decoder.save_pretrained(decoder_dir) | |
if hasattr(tf_model, "enc_to_dec_proj"): | |
enc_to_dec_proj_weight = torch.transpose( | |
torch.from_numpy(tf_model.enc_to_dec_proj.kernel.numpy()), 1, 0 | |
) | |
enc_to_dec_proj_bias = torch.from_numpy(tf_model.enc_to_dec_proj.bias.numpy()) | |
del _tf_model | |
del tf_model | |
gc.collect() | |
model = VisionEncoderDecoderModel.from_encoder_decoder_pretrained( | |
encoder_dir, decoder_dir, encoder_from_tf=True, decoder_from_tf=True | |
) | |
# This is only for copying some specific attributes of this particular model. | |
model.config = config | |
if hasattr(model, "enc_to_dec_proj"): | |
model.enc_to_dec_proj.weight.data = enc_to_dec_proj_weight.contiguous() | |
model.enc_to_dec_proj.bias.data = enc_to_dec_proj_bias.contiguous() | |
return model | |
# At the moment fast initialization is not supported for composite models | |
if kwargs.get("_fast_init", False): | |
logger.warning( | |
"Fast initialization is currently not supported for VisionEncoderDecoderModel. " | |
"Falling back to slow initialization..." | |
) | |
kwargs["_fast_init"] = False | |
return super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) | |
def from_encoder_decoder_pretrained( | |
cls, | |
encoder_pretrained_model_name_or_path: str = None, | |
decoder_pretrained_model_name_or_path: str = None, | |
*model_args, | |
**kwargs, | |
) -> PreTrainedModel: | |
r""" | |
Instantiate an encoder and a decoder from one or two base classes of the library from pretrained model | |
checkpoints. | |
The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train | |
the model, you need to first set it back in training mode with `model.train()`. | |
Params: | |
encoder_pretrained_model_name_or_path (`str`, *optional*): | |
Information necessary to initiate the image encoder. Can be either: | |
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. An | |
example is `google/vit-base-patch16-224-in21k`. | |
- A path to a *directory* containing model weights saved using | |
[`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. | |
- A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In | |
this case, `from_tf` should be set to `True` and a configuration object should be provided as | |
`config` argument. This loading path is slower than converting the TensorFlow checkpoint in a | |
PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards. | |
decoder_pretrained_model_name_or_path (`str`, *optional*, defaults to `None`): | |
Information necessary to initiate the text decoder. Can be either: | |
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. | |
- A path to a *directory* containing model weights saved using | |
[`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. | |
- A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In | |
this case, `from_tf` should be set to `True` and a configuration object should be provided as | |
`config` argument. This loading path is slower than converting the TensorFlow checkpoint in a | |
PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards. | |
model_args (remaining positional arguments, *optional*): | |
All remaning positional arguments will be passed to the underlying model's `__init__` method. | |
kwargs (remaining dictionary of keyword arguments, *optional*): | |
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g., | |
`output_attentions=True`). | |
- To update the encoder configuration, use the prefix *encoder_* for each configuration parameter. | |
- To update the decoder configuration, use the prefix *decoder_* for each configuration parameter. | |
- To update the parent model configuration, do not use a prefix for each configuration parameter. | |
Behaves differently depending on whether a `config` is provided or automatically loaded. | |
Example: | |
```python | |
>>> from transformers import VisionEncoderDecoderModel | |
>>> # initialize a vit-bert from a pretrained ViT and a pretrained BERT model. Note that the cross-attention layers will be randomly initialized | |
>>> model = VisionEncoderDecoderModel.from_encoder_decoder_pretrained( | |
... "google/vit-base-patch16-224-in21k", "google-bert/bert-base-uncased" | |
... ) | |
>>> # saving model after fine-tuning | |
>>> model.save_pretrained("./vit-bert") | |
>>> # load fine-tuned model | |
>>> model = VisionEncoderDecoderModel.from_pretrained("./vit-bert") | |
```""" | |
kwargs_encoder = { | |
argument[len("encoder_") :]: value for argument, value in kwargs.items() if argument.startswith("encoder_") | |
} | |
kwargs_decoder = { | |
argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_") | |
} | |
# remove encoder, decoder kwargs from kwargs | |
for key in kwargs_encoder.keys(): | |
del kwargs["encoder_" + key] | |
for key in kwargs_decoder.keys(): | |
del kwargs["decoder_" + key] | |
# Load and initialize the encoder and decoder | |
# The distinction between encoder and decoder at the model level is made | |
# by the value of the flag `is_decoder` that we need to set correctly. | |
encoder = kwargs_encoder.pop("model", None) | |
if encoder is None: | |
if encoder_pretrained_model_name_or_path is None: | |
raise ValueError( | |
"If `encoder_model` is not defined as an argument, a `encoder_pretrained_model_name_or_path` has " | |
"to be defined." | |
) | |
if "config" not in kwargs_encoder: | |
encoder_config, kwargs_encoder = AutoConfig.from_pretrained( | |
encoder_pretrained_model_name_or_path, **kwargs_encoder, return_unused_kwargs=True | |
) | |
if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True: | |
logger.info( | |
f"Initializing {encoder_pretrained_model_name_or_path} as a encoder model " | |
"from a decoder model. Cross-attention and casual mask are disabled." | |
) | |
encoder_config.is_decoder = False | |
encoder_config.add_cross_attention = False | |
kwargs_encoder["config"] = encoder_config | |
encoder = AutoModel.from_pretrained(encoder_pretrained_model_name_or_path, *model_args, **kwargs_encoder) | |
decoder = kwargs_decoder.pop("model", None) | |
if decoder is None: | |
if decoder_pretrained_model_name_or_path is None: | |
raise ValueError( | |
"If `decoder_model` is not defined as an argument, a `decoder_pretrained_model_name_or_path` has " | |
"to be defined." | |
) | |
if "config" not in kwargs_decoder: | |
decoder_config, kwargs_decoder = AutoConfig.from_pretrained( | |
decoder_pretrained_model_name_or_path, **kwargs_decoder, return_unused_kwargs=True | |
) | |
if decoder_config.is_decoder is False or decoder_config.add_cross_attention is False: | |
logger.info( | |
f"Initializing {decoder_pretrained_model_name_or_path} as a decoder model. Cross attention" | |
f" layers are added to {decoder_pretrained_model_name_or_path} and randomly initialized if" | |
f" {decoder_pretrained_model_name_or_path}'s architecture allows for cross attention layers." | |
) | |
decoder_config.is_decoder = True | |
decoder_config.add_cross_attention = True | |
kwargs_decoder["config"] = decoder_config | |
if kwargs_decoder["config"].is_decoder is False or kwargs_decoder["config"].add_cross_attention is False: | |
logger.warning( | |
f"Decoder model {decoder_pretrained_model_name_or_path} is not initialized as a decoder. " | |
f"In order to initialize {decoder_pretrained_model_name_or_path} as a decoder, " | |
"make sure that the attributes `is_decoder` and `add_cross_attention` of `decoder_config` " | |
"passed to `.from_encoder_decoder_pretrained(...)` are set to `True` or do not pass a " | |
"`decoder_config` to `.from_encoder_decoder_pretrained(...)`" | |
) | |
decoder = AutoModelForCausalLM.from_pretrained(decoder_pretrained_model_name_or_path, **kwargs_decoder) | |
# instantiate config with corresponding kwargs | |
config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config, **kwargs) | |
# make sure input & output embeddings is not tied | |
config.tie_word_embeddings = False | |
return cls(encoder=encoder, decoder=decoder, config=config) | |
def forward( | |
self, | |
pixel_values: Optional[torch.FloatTensor] = None, | |
decoder_input_ids: Optional[torch.LongTensor] = None, | |
decoder_attention_mask: Optional[torch.BoolTensor] = None, | |
encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None, | |
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | |
decoder_inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
**kwargs, | |
) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]: | |
r""" | |
Returns: | |
Examples: | |
```python | |
>>> from transformers import AutoProcessor, VisionEncoderDecoderModel | |
>>> import requests | |
>>> from PIL import Image | |
>>> import torch | |
>>> processor = AutoProcessor.from_pretrained("microsoft/trocr-base-handwritten") | |
>>> model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten") | |
>>> # load image from the IAM dataset | |
>>> url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" | |
>>> image = Image.open(requests.get(url, stream=True).raw).convert("RGB") | |
>>> # training | |
>>> model.config.decoder_start_token_id = processor.tokenizer.eos_token_id | |
>>> model.config.pad_token_id = processor.tokenizer.pad_token_id | |
>>> model.config.vocab_size = model.config.decoder.vocab_size | |
>>> pixel_values = processor(image, return_tensors="pt").pixel_values | |
>>> text = "hello world" | |
>>> labels = processor.tokenizer(text, return_tensors="pt").input_ids | |
>>> outputs = model(pixel_values=pixel_values, labels=labels) | |
>>> loss = outputs.loss | |
>>> # inference (generation) | |
>>> generated_ids = model.generate(pixel_values) | |
>>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
```""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
kwargs_encoder = {argument: value for argument, value in kwargs.items() if not argument.startswith("decoder_")} | |
kwargs_decoder = { | |
argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_") | |
} | |
if encoder_outputs is None: | |
if pixel_values is None: | |
raise ValueError("You have to specify pixel_values") | |
encoder_outputs = self.encoder( | |
pixel_values=pixel_values, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
**kwargs_encoder, | |
) | |
elif isinstance(encoder_outputs, tuple): | |
encoder_outputs = BaseModelOutput(*encoder_outputs) | |
encoder_hidden_states = encoder_outputs[0] | |
# optionally project encoder_hidden_states | |
if ( | |
self.encoder.config.hidden_size != self.decoder.config.hidden_size | |
and self.decoder.config.cross_attention_hidden_size is None | |
): | |
encoder_hidden_states = self.enc_to_dec_proj(encoder_hidden_states) | |
# else: | |
encoder_attention_mask = None | |
if (labels is not None) and (decoder_input_ids is None and decoder_inputs_embeds is None): | |
decoder_input_ids = shift_tokens_right( | |
labels, self.config.pad_token_id, self.config.decoder_start_token_id | |
) | |
# Decode | |
decoder_outputs = self.decoder( | |
input_ids=decoder_input_ids, | |
attention_mask=decoder_attention_mask, | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_attention_mask=encoder_attention_mask, | |
inputs_embeds=decoder_inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
use_cache=use_cache, | |
past_key_values=past_key_values, | |
return_dict=return_dict, | |
**kwargs_decoder, | |
) | |
# Compute loss independent from decoder (as some shift the logits inside them) | |
loss = None | |
if labels is not None: | |
logits = decoder_outputs.logits if return_dict else decoder_outputs[0] | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(logits.reshape(-1, self.decoder.config.vocab_size), labels.reshape(-1)) | |
if not return_dict: | |
if loss is not None: | |
return (loss,) + decoder_outputs + encoder_outputs | |
else: | |
return decoder_outputs + encoder_outputs | |
return Seq2SeqLMOutput( | |
loss=loss, | |
logits=decoder_outputs.logits, | |
past_key_values=decoder_outputs.past_key_values, | |
decoder_hidden_states=decoder_outputs.hidden_states, | |
decoder_attentions=decoder_outputs.attentions, | |
cross_attentions=decoder_outputs.cross_attentions, | |
encoder_last_hidden_state=encoder_outputs.last_hidden_state, | |
encoder_hidden_states=encoder_outputs.hidden_states, | |
encoder_attentions=encoder_outputs.attentions, | |
) | |
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor): | |
return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id) | |
def prepare_inputs_for_generation( | |
self, input_ids, past_key_values=None, attention_mask=None, use_cache=None, encoder_outputs=None, **kwargs | |
): | |
decoder_inputs = self.decoder.prepare_inputs_for_generation(input_ids, past_key_values=past_key_values) | |
decoder_attention_mask = decoder_inputs["attention_mask"] if "attention_mask" in decoder_inputs else None | |
input_dict = { | |
"attention_mask": attention_mask, | |
"decoder_attention_mask": decoder_attention_mask, | |
"decoder_input_ids": decoder_inputs["input_ids"], | |
"encoder_outputs": encoder_outputs, | |
"past_key_values": decoder_inputs["past_key_values"], | |
"use_cache": use_cache, | |
} | |
return input_dict | |
def resize_token_embeddings(self, *args, **kwargs): | |
raise NotImplementedError( | |
"Resizing the embedding layers via the VisionEncoderDecoderModel directly is not supported.Please use the" | |
" respective methods of the wrapped decoder object (model.decoder.resize_token_embeddings(...))" | |
) | |
def _reorder_cache(self, past_key_values, beam_idx): | |
# apply decoder cache reordering here | |
return self.decoder._reorder_cache(past_key_values, beam_idx) | |
class EncoderDecoderModel(PreTrainedModel): | |
r""" | |
[`EncoderDecoderModel`] is a generic model class that will be instantiated as a transformer architecture with one | |
of the base model classes of the library as encoder and another one as decoder when created with the | |
:meth*~transformers.AutoModel.from_pretrained* class method for the encoder and | |
:meth*~transformers.AutoModelForCausalLM.from_pretrained* class method for the decoder. | |
""" | |
config_class = EncoderDecoderConfig | |
base_model_prefix = "encoder_decoder" | |
main_input_name = "input_ids" | |
supports_gradient_checkpointing = True | |
def __init__( | |
self, | |
config: Optional[PretrainedConfig] = None, | |
encoder: Optional[PreTrainedModel] = None, | |
decoder: Optional[PreTrainedModel] = None, | |
): | |
if config is None and (encoder is None or decoder is None): | |
raise ValueError("Either a configuration or an encoder and a decoder has to be provided.") | |
if config is None: | |
config = EncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config) | |
else: | |
if not isinstance(config, self.config_class): | |
raise ValueError(f"Config: {config} has to be of type {self.config_class}") | |
if config.decoder.cross_attention_hidden_size is not None: | |
if config.decoder.cross_attention_hidden_size != config.encoder.hidden_size: | |
raise ValueError( | |
"If `cross_attention_hidden_size` is specified in the decoder's configuration, it has to be equal" | |
f" to the encoder's `hidden_size`. Got {config.decoder.cross_attention_hidden_size} for" | |
f" `config.decoder.cross_attention_hidden_size` and {config.encoder.hidden_size} for" | |
" `config.encoder.hidden_size`." | |
) | |
# initialize with config | |
super().__init__(config) | |
if encoder is None: | |
from ..auto.modeling_auto import AutoModel | |
encoder = AutoModel.from_config(config.encoder) | |
if decoder is None: | |
from ..auto.modeling_auto import AutoModelForCausalLM | |
decoder = AutoModelForCausalLM.from_config(config.decoder) | |
self.encoder = encoder | |
self.decoder = decoder | |
if self.encoder.config.to_dict() != self.config.encoder.to_dict(): | |
logger.warning( | |
f"Config of the encoder: {self.encoder.__class__} is overwritten by shared encoder config:" | |
f" {self.config.encoder}" | |
) | |
if self.decoder.config.to_dict() != self.config.decoder.to_dict(): | |
logger.warning( | |
f"Config of the decoder: {self.decoder.__class__} is overwritten by shared decoder config:" | |
f" {self.config.decoder}" | |
) | |
# make sure that the individual model's config refers to the shared config | |
# so that the updates to the config will be synced | |
self.encoder.config = self.config.encoder | |
self.decoder.config = self.config.decoder | |
# encoder outputs might need to be projected to different dimension for decoder | |
if ( | |
self.encoder.config.hidden_size != self.decoder.config.hidden_size | |
and self.decoder.config.cross_attention_hidden_size is None | |
): | |
self.enc_to_dec_proj = nn.Linear(self.encoder.config.hidden_size, self.decoder.config.hidden_size) | |
if self.encoder.get_output_embeddings() is not None: | |
raise ValueError( | |
f"The encoder {self.encoder} should not have a LM Head. Please use a model without LM Head" | |
) | |
decoder_signature = set(inspect.signature(self.decoder.forward).parameters.keys()) | |
if "encoder_hidden_states" not in decoder_signature: | |
raise ValueError( | |
"The selected decoder is not prepared for the encoder hidden states to be passed. Please see the " | |
"following discussion on GitHub: https://github.com/huggingface/transformers/issues/23350" | |
) | |
# tie encoder, decoder weights if config set accordingly | |
self.tie_weights() | |
def tie_weights(self): | |
# tie encoder & decoder if needed | |
if self.config.tie_encoder_decoder: | |
# tie encoder and decoder base model | |
decoder_base_model_prefix = self.decoder.base_model_prefix | |
tied_weights = self._tie_encoder_decoder_weights( | |
self.encoder, | |
self.decoder._modules[decoder_base_model_prefix], | |
self.decoder.base_model_prefix, | |
"encoder", | |
) | |
# Setting a dynamic variable instead of `_tied_weights_keys` because it's a class | |
# attributed not an instance member, therefore modifying it will modify the entire class | |
# Leading to issues on subsequent calls by different tests or subsequent calls. | |
self._dynamic_tied_weights_keys = tied_weights | |
def get_encoder(self): | |
return self.encoder | |
def get_decoder(self): | |
return self.decoder | |
def get_input_embeddings(self): | |
return self.encoder.get_input_embeddings() | |
def get_output_embeddings(self): | |
return self.decoder.get_output_embeddings() | |
def set_output_embeddings(self, new_embeddings): | |
return self.decoder.set_output_embeddings(new_embeddings) | |
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): | |
r""" | |
Example: | |
```python | |
>>> from transformers import EncoderDecoderModel | |
>>> model = EncoderDecoderModel.from_pretrained("patrickvonplaten/bert2bert-cnn_dailymail-fp16") | |
```""" | |
from_tf = kwargs.pop("from_tf", False) | |
if from_tf: | |
from transformers import TFEncoderDecoderModel | |
# a workaround to load from tensorflow checkpoint | |
# Using `_tf_model` won't work, because the weight names in the encoder/decoder of `_tf_model` get | |
# extended before saving those components. For example, The name of `_tf_model.encoder.vit` is | |
# `[top model name]/encoder/vit`, but the name of `tf_model.encoder.vit` is `[top model name]/vit`. The | |
# [top model name] is handled (stripped) by the conversion method, and the former case gets extra `encoder`, | |
# which should not occur when we want to save the components alone. | |
# There was a (very) ugly potential fix, which wasn't integrated to `transformers`: see | |
# https://github.com/huggingface/transformers/pull/13222/commits/dbb3c9de76eee235791d2064094654637c99f36d#r697304245 | |
# (the change in `src/transformers/modeling_tf_utils.py`) | |
_tf_model = TFEncoderDecoderModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) | |
config = _tf_model.config | |
# Using `tf_model` instead | |
encoder = _tf_model.encoder.__class__(_tf_model.config.encoder) | |
decoder = _tf_model.decoder.__class__(_tf_model.config.decoder) | |
# Make sure models are built | |
encoder(encoder.dummy_inputs) | |
decoder(decoder.dummy_inputs) | |
# Get the variable correspondence between `_tf_model` and `encoder` and `decoder` | |
encoder_variables = {} | |
for v in encoder.trainable_variables + encoder.non_trainable_variables: | |
encoder_variables["/".join(v.name.split("/")[1:])] = v | |
decoder_variables = {} | |
for v in decoder.trainable_variables + decoder.non_trainable_variables: | |
decoder_variables["/".join(v.name.split("/")[1:])] = v | |
_encoder_variables = {} | |
for v in _tf_model.encoder.trainable_variables + _tf_model.encoder.non_trainable_variables: | |
_encoder_variables["/".join(v.name.split("/")[2:])] = v | |
_decoder_variables = {} | |
for v in _tf_model.decoder.trainable_variables + _tf_model.decoder.non_trainable_variables: | |
_decoder_variables["/".join(v.name.split("/")[2:])] = v | |
# assign weight values to `encoder` and `decoder` from `_tf_model` | |
for name, v in encoder_variables.items(): | |
v.assign(_encoder_variables[name]) | |
for name, v in decoder_variables.items(): | |
v.assign(_decoder_variables[name]) | |
tf_model = TFEncoderDecoderModel(encoder=encoder, decoder=decoder) | |
# Deal with `enc_to_dec_proj` | |
if hasattr(_tf_model, "enc_to_dec_proj"): | |
tf_model(tf_model.dummy_inputs) | |
tf_model.enc_to_dec_proj.kernel.assign(_tf_model.enc_to_dec_proj.kernel) | |
tf_model.enc_to_dec_proj.bias.assign(_tf_model.enc_to_dec_proj.bias) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
encoder_dir = os.path.join(tmpdirname, "encoder") | |
decoder_dir = os.path.join(tmpdirname, "decoder") | |
tf_model.encoder.save_pretrained(encoder_dir) | |
tf_model.decoder.save_pretrained(decoder_dir) | |
if hasattr(tf_model, "enc_to_dec_proj"): | |
enc_to_dec_proj_weight = torch.transpose( | |
torch.from_numpy(tf_model.enc_to_dec_proj.kernel.numpy()), 1, 0 | |
) | |
enc_to_dec_proj_bias = torch.from_numpy(tf_model.enc_to_dec_proj.bias.numpy()) | |
del _tf_model | |
del tf_model | |
gc.collect() | |
model = EncoderDecoderModel.from_encoder_decoder_pretrained( | |
encoder_dir, decoder_dir, encoder_from_tf=True, decoder_from_tf=True | |
) | |
# This is only for copying some specific attributes of this particular model. | |
model.config = config | |
if hasattr(model, "enc_to_dec_proj"): | |
model.enc_to_dec_proj.weight.data = enc_to_dec_proj_weight.contiguous() | |
model.enc_to_dec_proj.bias.data = enc_to_dec_proj_bias.contiguous() | |
return model | |
# At the moment fast initialization is not supported for composite models | |
if kwargs.get("_fast_init", False): | |
logger.warning( | |
"Fast initialization is currently not supported for EncoderDecoderModel. " | |
"Falling back to slow initialization..." | |
) | |
kwargs["_fast_init"] = False | |
return super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) | |
def from_encoder_decoder_pretrained( | |
cls, | |
encoder_pretrained_model_name_or_path: str = None, | |
decoder_pretrained_model_name_or_path: str = None, | |
*model_args, | |
**kwargs, | |
) -> PreTrainedModel: | |
r""" | |
Instantiate an encoder and a decoder from one or two base classes of the library from pretrained model | |
checkpoints. | |
The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train | |
the model, you need to first set it back in training mode with `model.train()`. | |
Params: | |
encoder_pretrained_model_name_or_path (`str`, *optional*): | |
Information necessary to initiate the encoder. Can be either: | |
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. | |
- A path to a *directory* containing model weights saved using | |
[`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. | |
- A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In | |
this case, `from_tf` should be set to `True` and a configuration object should be provided as | |
`config` argument. This loading path is slower than converting the TensorFlow checkpoint in a | |
PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards. | |
decoder_pretrained_model_name_or_path (`str`, *optional*, defaults to `None`): | |
Information necessary to initiate the decoder. Can be either: | |
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. | |
- A path to a *directory* containing model weights saved using | |
[`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. | |
- A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In | |
this case, `from_tf` should be set to `True` and a configuration object should be provided as | |
`config` argument. This loading path is slower than converting the TensorFlow checkpoint in a | |
PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards. | |
model_args (remaining positional arguments, *optional*): | |
All remaining positional arguments will be passed to the underlying model's `__init__` method. | |
kwargs (remaining dictionary of keyword arguments, *optional*): | |
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g., | |
`output_attentions=True`). | |
- To update the encoder configuration, use the prefix *encoder_* for each configuration parameter. | |
- To update the decoder configuration, use the prefix *decoder_* for each configuration parameter. | |
- To update the parent model configuration, do not use a prefix for each configuration parameter. | |
Behaves differently depending on whether a `config` is provided or automatically loaded. | |
Example: | |
```python | |
>>> from transformers import EncoderDecoderModel | |
>>> # initialize a bert2bert from two pretrained BERT models. Note that the cross-attention layers will be randomly initialized | |
>>> model = EncoderDecoderModel.from_encoder_decoder_pretrained("google-bert/bert-base-uncased", "google-bert/bert-base-uncased") | |
>>> # saving model after fine-tuning | |
>>> model.save_pretrained("./bert2bert") | |
>>> # load fine-tuned model | |
>>> model = EncoderDecoderModel.from_pretrained("./bert2bert") | |
```""" | |
kwargs_encoder = { | |
argument[len("encoder_") :]: value for argument, value in kwargs.items() if argument.startswith("encoder_") | |
} | |
kwargs_decoder = { | |
argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_") | |
} | |
# remove encoder, decoder kwargs from kwargs | |
for key in kwargs_encoder.keys(): | |
del kwargs["encoder_" + key] | |
for key in kwargs_decoder.keys(): | |
del kwargs["decoder_" + key] | |
# Load and initialize the encoder and decoder | |
# The distinction between encoder and decoder at the model level is made | |
# by the value of the flag `is_decoder` that we need to set correctly. | |
encoder = kwargs_encoder.pop("model", None) | |
if encoder is None: | |
if encoder_pretrained_model_name_or_path is None: | |
raise ValueError( | |
"If `encoder_model` is not defined as an argument, a `encoder_pretrained_model_name_or_path` has " | |
"to be defined." | |
) | |
if "config" not in kwargs_encoder: | |
encoder_config, kwargs_encoder = AutoConfig.from_pretrained( | |
encoder_pretrained_model_name_or_path, **kwargs_encoder, return_unused_kwargs=True | |
) | |
if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True: | |
logger.info( | |
f"Initializing {encoder_pretrained_model_name_or_path} as a encoder model " | |
"from a decoder model. Cross-attention and casual mask are disabled." | |
) | |
encoder_config.is_decoder = False | |
encoder_config.add_cross_attention = False | |
kwargs_encoder["config"] = encoder_config | |
encoder = AutoModel.from_pretrained(encoder_pretrained_model_name_or_path, *model_args, **kwargs_encoder) | |
decoder = kwargs_decoder.pop("model", None) | |
if decoder is None: | |
if decoder_pretrained_model_name_or_path is None: | |
raise ValueError( | |
"If `decoder_model` is not defined as an argument, a `decoder_pretrained_model_name_or_path` has " | |
"to be defined." | |
) | |
if "config" not in kwargs_decoder: | |
decoder_config, kwargs_decoder = AutoConfig.from_pretrained( | |
decoder_pretrained_model_name_or_path, **kwargs_decoder, return_unused_kwargs=True | |
) | |
if decoder_config.is_decoder is False or decoder_config.add_cross_attention is False: | |
logger.info( | |
f"Initializing {decoder_pretrained_model_name_or_path} as a decoder model. Cross attention" | |
f" layers are added to {decoder_pretrained_model_name_or_path} and randomly initialized if" | |
f" {decoder_pretrained_model_name_or_path}'s architecture allows for cross attention layers." | |
) | |
decoder_config.is_decoder = True | |
decoder_config.add_cross_attention = True | |
kwargs_decoder["config"] = decoder_config | |
if kwargs_decoder["config"].is_decoder is False or kwargs_decoder["config"].add_cross_attention is False: | |
logger.warning( | |
f"Decoder model {decoder_pretrained_model_name_or_path} is not initialized as a decoder. " | |
f"In order to initialize {decoder_pretrained_model_name_or_path} as a decoder, " | |
"make sure that the attributes `is_decoder` and `add_cross_attention` of `decoder_config` " | |
"passed to `.from_encoder_decoder_pretrained(...)` are set to `True` or do not pass a " | |
"`decoder_config` to `.from_encoder_decoder_pretrained(...)`" | |
) | |
decoder = AutoModelForCausalLM.from_pretrained(decoder_pretrained_model_name_or_path, **kwargs_decoder) | |
# instantiate config with corresponding kwargs | |
config = EncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config, **kwargs) | |
return cls(encoder=encoder, decoder=decoder, config=config) | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
decoder_input_ids: Optional[torch.LongTensor] = None, | |
decoder_attention_mask: Optional[torch.BoolTensor] = None, | |
encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None, | |
past_key_values: Tuple[Tuple[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
decoder_inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
**kwargs, | |
) -> Union[Tuple, Seq2SeqLMOutput]: | |
r""" | |
Returns: | |
Examples: | |
```python | |
>>> from transformers import EncoderDecoderModel, BertTokenizer | |
>>> import torch | |
>>> tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-uncased") | |
>>> model = EncoderDecoderModel.from_encoder_decoder_pretrained( | |
... "google-bert/bert-base-uncased", "google-bert/bert-base-uncased" | |
... ) # initialize Bert2Bert from pre-trained checkpoints | |
>>> # training | |
>>> model.config.decoder_start_token_id = tokenizer.cls_token_id | |
>>> model.config.pad_token_id = tokenizer.pad_token_id | |
>>> model.config.vocab_size = model.config.decoder.vocab_size | |
>>> input_ids = tokenizer("This is a really long text", return_tensors="pt").input_ids | |
>>> labels = tokenizer("This is the corresponding summary", return_tensors="pt").input_ids | |
>>> outputs = model(input_ids=input_ids, labels=labels) | |
>>> loss, logits = outputs.loss, outputs.logits | |
>>> # save and load from pretrained | |
>>> model.save_pretrained("bert2bert") | |
>>> model = EncoderDecoderModel.from_pretrained("bert2bert") | |
>>> # generation | |
>>> generated = model.generate(input_ids) | |
```""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
kwargs_encoder = {argument: value for argument, value in kwargs.items() if not argument.startswith("decoder_")} | |
kwargs_decoder = { | |
argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_") | |
} | |
if encoder_outputs is None: | |
encoder_outputs = self.encoder( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
**kwargs_encoder, | |
) | |
elif isinstance(encoder_outputs, tuple): | |
encoder_outputs = BaseModelOutput(*encoder_outputs) | |
encoder_hidden_states = encoder_outputs[0] | |
# optionally project encoder_hidden_states | |
if ( | |
self.encoder.config.hidden_size != self.decoder.config.hidden_size | |
and self.decoder.config.cross_attention_hidden_size is None | |
): | |
encoder_hidden_states = self.enc_to_dec_proj(encoder_hidden_states) | |
if (labels is not None) and (decoder_input_ids is None and decoder_inputs_embeds is None): | |
decoder_input_ids = shift_tokens_right( | |
labels, self.config.pad_token_id, self.config.decoder_start_token_id | |
) | |
if decoder_attention_mask is None: | |
decoder_attention_mask = decoder_input_ids.new_tensor(decoder_input_ids != self.config.pad_token_id) | |
# Decode | |
decoder_outputs = self.decoder( | |
input_ids=decoder_input_ids, | |
attention_mask=decoder_attention_mask, | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_attention_mask=attention_mask, | |
inputs_embeds=decoder_inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
use_cache=use_cache, | |
past_key_values=past_key_values, | |
return_dict=return_dict, | |
**kwargs_decoder, | |
) | |
# Compute loss independent from decoder (as some shift the logits inside them) | |
loss = None | |
if labels is not None: | |
warnings.warn(DEPRECATION_WARNING, FutureWarning) | |
logits = decoder_outputs.logits if return_dict else decoder_outputs[0] | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(logits.reshape(-1, self.decoder.config.vocab_size), labels.view(-1)) | |
if not return_dict: | |
if loss is not None: | |
return (loss,) + decoder_outputs + encoder_outputs | |
else: | |
return decoder_outputs + encoder_outputs | |
return Seq2SeqLMOutput( | |
loss=loss, | |
logits=decoder_outputs.logits, | |
past_key_values=decoder_outputs.past_key_values, | |
decoder_hidden_states=decoder_outputs.hidden_states, | |
decoder_attentions=decoder_outputs.attentions, | |
cross_attentions=decoder_outputs.cross_attentions, | |
encoder_last_hidden_state=encoder_outputs.last_hidden_state, | |
encoder_hidden_states=encoder_outputs.hidden_states, | |
encoder_attentions=encoder_outputs.attentions, | |
) | |
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor): | |
return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id) | |
def prepare_inputs_for_generation( | |
self, input_ids, past_key_values=None, attention_mask=None, use_cache=None, encoder_outputs=None, **kwargs | |
): | |
decoder_inputs = self.decoder.prepare_inputs_for_generation(input_ids, past_key_values=past_key_values) | |
decoder_attention_mask = decoder_inputs["attention_mask"] if "attention_mask" in decoder_inputs else None | |
input_dict = { | |
"attention_mask": attention_mask, | |
"decoder_attention_mask": decoder_attention_mask, | |
"decoder_input_ids": decoder_inputs["input_ids"], | |
"encoder_outputs": encoder_outputs, | |
"past_key_values": decoder_inputs["past_key_values"], | |
"use_cache": use_cache, | |
} | |
return input_dict | |
def resize_token_embeddings(self, *args, **kwargs): | |
raise NotImplementedError( | |
"Resizing the embedding layers via the EncoderDecoderModel directly is not supported. Please use the" | |
" respective methods of the wrapped objects (model.encoder.resize_token_embeddings(...) or" | |
" model.decoder.resize_token_embeddings(...))" | |
) | |
def _reorder_cache(self, past_key_values, beam_idx): | |
# apply decoder cache reordering here | |
return self.decoder._reorder_cache(past_key_values, beam_idx) | |
class MistralForCausalThoughtLM(MistralPreTrainedModel): | |
_tied_weights_keys = ["lm_head.weight"] | |
def save_tokens_with_rewards_to_pdf(input_ids, token_rewards, tokenizer, output_file="text.pdf", eps=0.2, eps2=0.5): | |
c = canvas.Canvas(output_file, pagesize=letter) | |
c.setFont("Courier", 8) | |
x, y = 50, 750 | |
previous_text = "" | |
current_text = "" | |
for token_idx, reward in enumerate(token_rewards): | |
current_text = tokenizer.decode(input_ids[: token_idx + 1]) | |
if current_text != previous_text: | |
diff_text = current_text[len(previous_text) :] | |
if "\n" in diff_text: | |
lines = diff_text.split("\n") | |
for line_idx, line in enumerate(lines): | |
if line_idx > 0: | |
x = 50 | |
y -= 12 | |
if abs(reward) < eps: | |
opacity = 0 | |
elif abs(reward) > eps2: | |
opacity = 0.8 | |
else: | |
opacity = 0.8 * (abs(reward) - eps) / (eps2 - eps) | |
text_width = c.stringWidth(line) | |
if reward > 0: | |
highlight_color = HexColor("#4CCD99") | |
else: | |
highlight_color = HexColor("#FFC700") | |
highlight_color.alpha = opacity | |
c.setFillColor(highlight_color) | |
c.rect(x, y - 2, text_width, 10, fill=True, stroke=False) | |
c.setFillColor(HexColor("#000000")) | |
c.drawString(x, y, line) | |
x += text_width | |
else: | |
if abs(reward) < eps: | |
opacity = 0 | |
elif abs(reward) > eps2: | |
opacity = 0.8 | |
else: | |
opacity = 0.8 * (abs(reward) - eps) / (eps2 - eps) | |
text_width = c.stringWidth(diff_text) | |
if reward > 0: | |
highlight_color = HexColor("#4CCD99") | |
else: | |
highlight_color = HexColor("#FFC700") | |
highlight_color.alpha = opacity | |
c.setFillColor(highlight_color) | |
c.rect(x, y - 2, text_width, 10, fill=True, stroke=False) | |
c.setFillColor(HexColor("#000000")) | |
c.drawString(x, y, diff_text) | |
x += text_width | |
if x > 550: | |
x = 50 | |
y -= 12 | |
if y < 50: | |
c.showPage() | |
y = 750 | |
x = 50 | |
previous_text = current_text | |
c.showPage() | |
c.save() | |
def __init__(self, config): | |
super().__init__(config) | |
self.model = MistralModel(config) | |
self.vocab_size = config.vocab_size | |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | |
self.max_thoughts = config.max_thoughts | |
self.merged_lm_and_talk_heads = config.merged_lm_and_talk_heads | |
self.use_concat_talk_head = config.use_concat_talk_head | |
self.use_shallow_talk = config.use_shallow_talk | |
self.use_complex_talk_head = config.use_complex_talk_head | |
self.use_weighted_talk_head = config.use_weighted_talk_head | |
# the weighted head will output a single value, so it can't be passed to the lm head | |
assert not (self.use_weighted_talk_head and self.use_shallow_talk) | |
self.n_ahead = 1 | |
self.n_ahead_talk = 1 | |
self.n_passes = 1 | |
self.n_tokens_print = 1 | |
self.gradient_accumulation_steps = 1 | |
self.training_steps = 0 | |
self.tokenizer = None | |
self.start_token_id = None | |
self.end_token_id = None | |
self.rm_initialized = False | |
self.residual_talk_head = True | |
self.thought_init_std_scale = 1e-2 | |
self.final_only_mode = False | |
self.first_and_last_mode = True | |
self.first_only = False | |
self.original_loss_weight = 0.5 | |
self.cumulative_residual = False | |
self.clever_residual = False | |
self.skip_residual = False | |
self.no_residual = True | |
self.optimize_lm_head_only_at_start = False | |
self.optimize_model_only_at_start = False | |
if self.optimize_model_only_at_start: | |
raise NotImplementedError | |
self.train_only_thinking_embedding = False | |
self.weighted_embeddings = False | |
self.use_start_thought_token = True | |
self.use_end_thought_token = True | |
self.initialize_thought_embedding_to_normal = False | |
self.initial_start_token = "---" | |
self.initial_end_token = "---" | |
self.output_logits_at_the_end = True | |
self.gumbel_temperature = 0.001 | |
self.use_policy_loss = True | |
self.include_policy_loss = True | |
self.trice_mode = True | |
self.remove_negative_rewards = True | |
self.use_policy_loss_for_end_thought = True | |
self.base_original_mode = False | |
self.original_mode = False | |
self.thought_prefix = "(Let's think step by step" | |
self.tokenized_thought_prefix = None | |
self.log_dict = defaultdict(int) | |
self.eval_log_dict = defaultdict(int) | |
self.print_final_only = True | |
self.loss_mean = loss_mean | |
self.all_rewards = [] | |
self.all_unreduced_losses = [] | |
self.kill_after = 100 | |
self.start_embedding = nn.Parameter(torch.zeros(2, self.model.config.hidden_size)) | |
self.end_embedding = nn.Parameter(torch.zeros(2, self.model.config.hidden_size)) | |
self.policy_loss_beta = 1e6 | |
self.embedding_scale = 1e2 | |
self.reinforce_temperature = 3 | |
self.base_loss_beta = 1 | |
# Not used in the paper: | |
self.use_thought_prefix = False | |
self.use_reparam_for_thought_embeddings = False | |
self.use_upper_triangular = False | |
self.subtract_mean_reward = False | |
self.comparison_mode = False | |
self.gumbel_detach = True | |
# For visualization | |
self.eval_mode = False | |
num_talk = 1 | |
talk_input_dim = config.hidden_size if not self.use_concat_talk_head else config.hidden_size * 2 | |
if self.use_weighted_talk_head: | |
talk_output_dim = 1 | |
else: | |
talk_output_dim = config.hidden_size if self.use_shallow_talk else config.vocab_size | |
if not self.merged_lm_and_talk_heads: | |
if self.use_complex_talk_head: | |
self.talk_head = nn.ModuleList([nn.Sequential( | |
nn.Linear(talk_input_dim, config.hidden_size), | |
nn.ReLU(), | |
nn.Linear(config.hidden_size, config.hidden_size), | |
nn.ReLU(), | |
nn.Linear(config.hidden_size, talk_output_dim, bias=False) | |
)]) | |
else: | |
self.talk_head = nn.ModuleList([nn.Sequential( | |
nn.Linear(talk_input_dim, talk_output_dim, bias=False) | |
)]) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.model.embed_tokens | |
def set_input_embeddings(self, value): | |
self.model.embed_tokens = value | |
def get_output_embeddings(self): | |
return self.lm_head | |
def set_output_embeddings(self, new_embeddings): | |
self.lm_head = new_embeddings | |
def set_decoder(self, decoder): | |
self.model = decoder | |
def get_decoder(self): | |
return self.model | |
def infer( | |
self, | |
input_ids: torch.LongTensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
): | |
batch_size, seq_len = input_ids.shape | |
# Save the original input_ids and attention_mask for later use | |
original_input_ids = input_ids.clone() | |
original_attention_mask = attention_mask.clone() if attention_mask is not None else None | |
# Append the start thought token to the input sequence | |
start_thought_token_id = self.tokenizer.convert_tokens_to_ids("<|startthought|>") | |
input_ids = torch.cat([input_ids, torch.tensor([[start_thought_token_id]] * batch_size).to(input_ids.device)], dim=-1) | |
seq_len += 1 | |
# Update the attention mask | |
if attention_mask is not None: | |
attention_mask = torch.cat([attention_mask, torch.ones((batch_size, 1)).to(attention_mask.device)], dim=-1) | |
# Generate the continuation | |
continuation_length = self.n_ahead - 2 | |
new_key_values = past_key_values | |
start_time = time.time() | |
for continuation_idx in range(continuation_length): | |
outputs = self.model( | |
input_ids=input_ids if continuation_idx == 0 else next_token_id.unsqueeze(-1).to(input_ids.device), | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_values=new_key_values, | |
inputs_embeds=inputs_embeds, | |
use_cache=True, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
new_key_values = outputs.past_key_values | |
hidden_states = outputs[0] | |
logits = self.lm_head(hidden_states) | |
logits = logits[:, -1, :] # Only consider the last token | |
# Apply Gumbel-Softmax to the logits | |
next_token_logits = F.gumbel_softmax(logits, tau=self.gumbel_temperature, hard=True, dim=-1) | |
next_token_id = torch.argmax(next_token_logits, dim=-1) | |
# Append the generated token to the input sequence | |
input_ids = torch.cat([input_ids, next_token_id.unsqueeze(-1).to(input_ids.device)], dim=-1) | |
seq_len += 1 | |
# Update the attention mask | |
if attention_mask is not None: | |
attention_mask = torch.cat([attention_mask, torch.ones((batch_size, 1)).to(attention_mask.device)], dim=-1) | |
# Append the end thought token to the input sequence | |
end_thought_token_id = self.tokenizer.convert_tokens_to_ids("<|endthought|>") | |
input_ids = torch.cat([input_ids, torch.tensor([[end_thought_token_id]] * batch_size).to(input_ids.device)], dim=-1) | |
seq_len += 1 | |
# Update the attention mask | |
if attention_mask is not None: | |
attention_mask = torch.cat([attention_mask, torch.ones((batch_size, 1)).to(attention_mask.device)], dim=-1) | |
# Get the hidden states before and after the thought | |
outputs_before = self.model( | |
input_ids=original_input_ids, | |
attention_mask=original_attention_mask, | |
position_ids=position_ids, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
hidden_states_before = outputs_before[0][:, -1:, :] | |
# two new tokens: last continuation token and end thought token | |
outputs_after = self.model( | |
input_ids=torch.cat([next_token_id.unsqueeze(-1).to(input_ids.device), torch.tensor(end_thought_token_id).unsqueeze(-1).unsqueeze(-1).to(input_ids.device)], dim=-1), | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_values=new_key_values, | |
inputs_embeds=inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
hidden_states_after = outputs_after[0][:, -1:, :] | |
# Apply the talk head to get the mixing weight | |
mixing_weight = self.talk_head[0](torch.cat([hidden_states_before, hidden_states_after], dim=-1)) | |
# Apply the mixing weight to the hidden states | |
mixed_hidden_states = (1 - mixing_weight) * hidden_states_before + mixing_weight * hidden_states_after | |
# Apply the language model head to get the final logits | |
logits = self.lm_head(mixed_hidden_states) | |
return logits | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, CausalLMOutputWithPast]: | |
r""" | |
Args: | |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., | |
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored | |
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. | |
Returns: | |
Example: | |
```python | |
>>> from transformers import AutoTokenizer, MistralForCausalLM | |
>>> model = MistralForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1") | |
>>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1") | |
>>> prompt = "Hey, are you conscious? Can you talk to me?" | |
>>> inputs = tokenizer(prompt, return_tensors="pt") | |
>>> # Generate | |
>>> generate_ids = model.generate(inputs.input_ids, max_length=30) | |
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] | |
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." | |
```""" | |
log_dict = self.log_dict if self.training else self.eval_log_dict | |
if self.training and self.kill_after is not None and self.training_steps // self.gradient_accumulation_steps > self.kill_after: | |
raise ValueError("Killed after") | |
if not self.training: | |
n_ahead_talk_to_restore = self.n_ahead_talk | |
n_passes_to_restore = self.n_passes | |
self.n_ahead_talk = 1 | |
self.n_passes = 1 | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
assert self.cumulative_residual or self.clever_residual or self.skip_residual or self.no_residual | |
assert not (self.skip_residual and self.use_policy_loss) | |
if self.tokenized_thought_prefix is None and self.use_thought_prefix: | |
self.tokenized_thought_prefix = self.tokenizer(self.thought_prefix, return_tensors="pt", add_special_tokens=False)["input_ids"] | |
def apply_head(head, states, detach=False): | |
if detach: | |
head_weight = head.weight.detach() | |
else: | |
head_weight = head.weight | |
head_weight = head_weight.to(states.device) | |
return (head_weight @ states.transpose(-1, -2)).transpose(-1, -2).contiguous() | |
def idx_if_sequential(head, idx=0): | |
if isinstance(head, nn.Sequential) or isinstance(head, nn.ModuleList): | |
return idx_if_sequential(head[idx], idx=idx) | |
return head | |
def none_repeat_interleave(x, n): | |
if x is None: | |
return x | |
return x.repeat_interleave(n, dim=0) | |
if self.n_passes > 1: | |
input_ids = none_repeat_interleave(input_ids, self.n_passes) | |
attention_mask = none_repeat_interleave(attention_mask, self.n_passes) | |
position_ids = none_repeat_interleave(position_ids, self.n_passes) | |
inputs_embeds = none_repeat_interleave(inputs_embeds, self.n_passes) | |
labels = none_repeat_interleave(labels, self.n_passes) | |
if past_key_values is not None: | |
past_key_values = [none_repeat_interleave(p, self.n_passes) for p in past_key_values] | |
cur_token_indices = torch.arange(input_ids.shape[1], device=input_ids.device) | |
self.tokenizer_has_start_thought_token = True | |
self.tokenizer_has_end_thought_token = True | |
if self.start_token_id is None: | |
self.start_token_id = self.tokenizer.convert_tokens_to_ids("<|startthought|>") | |
if self.start_token_id == 0: | |
self.start_token_id = self.tokenizer.bos_token_id | |
self.tokenizer_has_start_thought_token = False | |
elif self.use_start_thought_token: | |
# base_start_id = self.tokenizer.convert_tokens_to_ids(self.initial_start_token) | |
base_start_id = self.tokenizer.encode(self.initial_start_token, add_special_tokens=False)[0] | |
if self.initialize_thought_embedding_to_normal: | |
self.start_embedding.data = torch.zeros_like(self.start_embedding.data) | |
else: | |
self.start_embedding.data[0] = self.model.embed_tokens.weight.data[base_start_id].clone().detach() / self.embedding_scale | |
self.start_embedding.data[1] = torch.log(self.model.embed_tokens.weight.data.std(dim=0) * self.thought_init_std_scale / self.embedding_scale) | |
if self.end_token_id is None: | |
self.end_token_id = self.tokenizer.convert_tokens_to_ids("<|endthought|>") | |
if self.end_token_id == 0: | |
self.end_token_id = self.tokenizer.eos_token_id | |
self.tokenizer_has_end_thought_token = False | |
elif self.use_end_thought_token: | |
# base_end_id = self.tokenizer.convert_tokens_to_ids(self.initial_end_token) | |
base_end_id = self.tokenizer.encode(self.initial_end_token, add_special_tokens=False)[0] | |
if self.initialize_thought_embedding_to_normal: | |
self.end_embedding.data = torch.zeros_like(self.end_embedding.data) | |
else: | |
self.end_embedding.data[0] = self.model.embed_tokens.weight.data[base_end_id].clone().detach() / self.embedding_scale | |
self.end_embedding.data[1] = torch.log(self.model.embed_tokens.weight.data.std(dim=0) * self.thought_init_std_scale / self.embedding_scale) | |
if not self.rm_initialized and (self.n_ahead > 1 or not self.base_original_mode): | |
self.rm_initialized = True | |
if not self.use_shallow_talk: | |
head = self.talk_head[0] | |
cur_head = head[-1] if isinstance(head, nn.Sequential) else head | |
talk_input_dim = cur_head.weight.data.shape[1] | |
talk_output_dim = 1 if self.use_weighted_talk_head else self.lm_head.weight.data.shape[0] | |
cur_head.weight.data = torch.zeros(talk_output_dim, talk_input_dim, device=cur_head.weight.device, dtype=cur_head.weight.dtype) | |
else: | |
# convert to identity transform | |
def lambda_transform(cur_head): | |
if cur_head.weight.data.shape[0] != cur_head.weight.data.shape[1]: | |
return torch.cat([ | |
torch.eye( | |
cur_head.weight.data.shape[0], | |
device=cur_head.weight.device, | |
dtype=cur_head.weight.dtype | |
), | |
torch.zeros( | |
cur_head.weight.data.shape[0], | |
cur_head.weight.data.shape[1] - cur_head.weight.data.shape[0], | |
device=cur_head.weight.device, | |
dtype=cur_head.weight.dtype | |
)], dim=1) | |
return torch.eye( | |
cur_head.weight.data.shape[0], | |
device=cur_head.weight.device, | |
dtype=cur_head.weight.dtype | |
) | |
if isinstance(self.talk_head[0], nn.Sequential): | |
for cur_head in self.talk_head[0]: | |
# if it has weights | |
if hasattr(cur_head, "weight"): | |
cur_head.weight.data = lambda_transform(cur_head) | |
else: | |
self.talk_head[-1].weight.data = lambda_transform(self.talk_head[0]) | |
loss = None | |
prev_rm_tokens = None | |
cur_rm_tokens = None | |
prev_rm_logits = None | |
prev_sample_probs = None | |
did_skip_sampling = None | |
skip_sampling = None | |
sample_probs = None | |
hidden_states = None | |
logits = None | |
talk_kl_penalty = None | |
rm_logits = None | |
residual_logits = None | |
probabilities_2d = None | |
prev_probabilities_2d = None | |
policy_reward = None | |
logits_to_output = None | |
batch_size, seq_len = input_ids.shape | |
base_input_ids = input_ids.clone() | |
loss_list = [] | |
dqn_loss_list = [] | |
sampled_token_history = [] | |
sample_probs_history = [] | |
action_loglikelihoods_list = [] | |
if self.use_end_thought_token or self.use_start_thought_token: | |
if not self.use_reparam_for_thought_embeddings: | |
start_embedding = self.start_embedding[0].unsqueeze(0) * self.embedding_scale | |
end_embedding = self.end_embedding[0].unsqueeze(0) * self.embedding_scale | |
else: | |
start_embedding = self.start_embedding * self.embedding_scale | |
end_embedding = self.end_embedding * self.embedding_scale | |
base_embeddings = self.model.embed_tokens.weight | |
if self.train_only_thinking_embedding: | |
base_embeddings = base_embeddings.detach() | |
# # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) | |
fwd_iters = 1 if self.original_mode else self.n_ahead + self.n_ahead_talk - 1 | |
for ahead_idx in range(fwd_iters): | |
past_key_values_length = 0 | |
if past_key_values is not None: | |
use_legacy_cache = not isinstance(past_key_values, Cache) | |
if use_legacy_cache: | |
past_key_values = DynamicCache.from_legacy_cache(past_key_values) | |
past_key_values_length = past_key_values.get_usable_length(seq_len) | |
if position_ids is None: | |
device = input_ids.device if input_ids is not None else inputs_embeds.device | |
position_ids = torch.arange( | |
past_key_values_length, seq_len + past_key_values_length, dtype=torch.long, device=device | |
) | |
position_ids = position_ids.unsqueeze(0).view(-1, seq_len) | |
else: | |
position_ids = position_ids.view(-1, seq_len).long() | |
if inputs_embeds is None: | |
contains_start = self.use_start_thought_token and (input_ids == self.start_token_id).any() | |
contains_end = self.use_end_thought_token and (input_ids == self.end_token_id).any() | |
contains_thought = contains_start or contains_end | |
if contains_thought: | |
thought_id = self.start_token_id if contains_start else self.end_token_id | |
cur_thought_embedding = start_embedding if contains_start else end_embedding | |
if self.use_reparam_for_thought_embeddings: | |
inputs_embeds = torch.randn(batch_size, seq_len, self.model.config.hidden_size, device=input_ids.device, dtype=cur_thought_embedding.dtype) | |
inputs_embeds = inputs_embeds.detach() * torch.exp(cur_thought_embedding[1]) + cur_thought_embedding[0] | |
if contains_start: | |
sampled_start = inputs_embeds.clone().detach() | |
if contains_end: | |
sampled_end = inputs_embeds.clone().detach() | |
else: | |
inputs_embeds = cur_thought_embedding.unsqueeze(0).repeat(batch_size, seq_len, 1) | |
else: | |
with torch.set_grad_enabled(not self.train_only_thinking_embedding): | |
inputs_embeds = self.model.embed_tokens(input_ids) | |
if self.n_ahead != 1 or self.n_ahead_talk != 1 or self.comparison_mode: | |
if attention_mask is None: | |
base_attention_mask = torch.triu(torch.ones(seq_len, seq_len), diagonal=0).to(input_ids.device) | |
base_attention_mask = base_attention_mask.view(1, 1, seq_len, seq_len) | |
base_attention_mask = base_attention_mask.repeat(input_ids.shape[0], 1, 1, 1) | |
attention_mask = base_attention_mask | |
breakpoint() | |
elif attention_mask.dim() == 2: | |
if seq_len + past_key_values_length != attention_mask.shape[-1]: | |
breakpoint() | |
attention_mask = torch.cat( | |
[torch.ones((attention_mask.shape[0], past_key_values_length), dtype=attention_mask.dtype, device=attention_mask.device), attention_mask], | |
dim=-1 | |
) | |
# # if the attention mask | |
attention_mask = _prepare_4d_causal_attention_mask( | |
attention_mask, | |
(batch_size, seq_len), | |
inputs_embeds, | |
past_key_values_length, | |
sliding_window=self.config.sliding_window, | |
) | |
outputs = self.model( | |
# input_ids=input_ids, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
prev_hidden_states = hidden_states | |
hidden_states = outputs[0] | |
prev_rm_logits = rm_logits # for policy gradient | |
prev_rm_tokens = cur_rm_tokens # for policy gradient | |
if ahead_idx == 0: | |
hidden_states_lm = hidden_states | |
logits = self.lm_head(hidden_states_lm) | |
base_hidden_states = hidden_states.clone() | |
initial_loss_logits = logits.clone() | |
if self.optimize_lm_head_only_at_start or self.optimize_model_only_at_start: | |
logits = logits.detach() | |
base_hidden_states = base_hidden_states.detach() | |
if self.optimize_model_only_at_start: | |
hidden_states = hidden_states.detach() | |
base_logits = logits.clone() | |
else: | |
talk_hidden_states = hidden_states | |
if self.merged_lm_and_talk_heads: | |
assert self.no_residual | |
residual_logits = self.lm_head(hidden_states) | |
talk_hidden_states = hidden_states | |
else: | |
if ahead_idx > self.n_ahead - 1: | |
cur_base_hidden = torch.cat([ | |
base_hidden_states[..., ahead_idx - self.n_ahead + 1:, :], | |
base_hidden_states[..., :ahead_idx - self.n_ahead + 1, :] | |
], dim=-2) | |
else: | |
cur_base_hidden = base_hidden_states | |
if self.use_concat_talk_head: | |
# concatenate the hidden states with the original hidden states | |
head_input_hidden_states = torch.cat([cur_base_hidden, talk_hidden_states], dim=-1) | |
else: | |
head_input_hidden_states = talk_hidden_states | |
residual_logits = self.talk_head[0](head_input_hidden_states) | |
if self.use_shallow_talk: | |
residual_logits = apply_head(self.lm_head, residual_logits, detach=self.optimize_lm_head_only_at_start) | |
residual_logits = residual_logits.to(logits.device) | |
if self.use_weighted_talk_head: | |
# combine the cur_base_hidden with the talk_hidden_states according to the weighted head | |
residual_logits = cur_base_hidden * (1 - residual_logits) + talk_hidden_states * residual_logits | |
residual_logits = apply_head(self.lm_head, residual_logits, detach=self.optimize_lm_head_only_at_start) | |
assert sum([self.cumulative_residual, self.clever_residual, self.skip_residual, self.no_residual]) == 1 | |
if self.clever_residual: | |
if ahead_idx >= self.n_ahead - 1: | |
# get the logits shifted according to the current talk ahead | |
cur_base_logits = torch.cat([ | |
base_logits[..., ahead_idx - self.n_ahead + 1:, :], | |
base_logits[..., :ahead_idx - self.n_ahead + 1, :] | |
], dim=-2) | |
if self.optimize_lm_head_only_at_start: | |
cur_base_logits = cur_base_logits.detach() | |
logits = cur_base_logits + residual_logits | |
else: | |
logits += residual_logits / self.n_ahead | |
elif self.cumulative_residual: | |
if self.residual_talk_head: | |
if ahead_idx < self.n_ahead: | |
logits += residual_logits | |
else: | |
# get the logits shifted according to the current talk ahead | |
cur_base_logits = torch.cat([ | |
base_logits[..., ahead_idx - self.n_ahead + 1:, :], | |
base_logits[..., :ahead_idx - self.n_ahead + 1, :] | |
], dim=-2) | |
if self.optimize_lm_head_only_at_start: | |
cur_base_logits = cur_base_logits.detach() | |
logits = cur_base_logits + residual_logits | |
else: | |
if ahead_idx < self.n_ahead: | |
logits += residual_logits | |
else: | |
logits = residual_logits | |
elif self.skip_residual: | |
if ahead_idx >= self.n_ahead: | |
# get the logits shifted according to the current talk ahead | |
cur_base_logits = torch.cat([ | |
base_logits[..., ahead_idx - self.n_ahead + 1:, :], | |
base_logits[..., :ahead_idx - self.n_ahead + 1, :] | |
], dim=-2) | |
if self.optimize_lm_head_only_at_start: | |
cur_base_logits = cur_base_logits.detach() | |
logits = cur_base_logits | |
elif self.no_residual: | |
logits = residual_logits | |
else: | |
logits = base_logits + residual_logits | |
attempted = False | |
talk_loss_list = [] | |
if self.original_mode or (self.n_ahead == 1) or (self.comparison_mode and ahead_idx == 0):# or (self.optimize_lm_head_only_at_start and ahead_idx == 0): | |
loss = None | |
attempted = True | |
if labels is not None: | |
for shift_amount in range(self.n_ahead_talk): | |
# Shift so that tokens < n predict n | |
# ab[cde]f | |
# abc[def] | |
if ahead_idx == 0 and self.optimize_lm_head_only_at_start: | |
loss_logits = initial_loss_logits | |
else: | |
loss_logits = logits | |
shift_logits = loss_logits[..., shift_amount:-1, :].contiguous() | |
shift_labels = labels[..., 1 + shift_amount:].contiguous() | |
# Flatten the tokens | |
loss_fct = CrossEntropyLoss(reduction="none") | |
shift_logits = shift_logits.view(-1, self.config.vocab_size) | |
shift_labels = shift_labels.view(-1).clone() | |
# Enable model parallelism | |
shift_labels[shift_labels == self.tokenizer.pad_token_id] = -100 | |
shift_labels = shift_labels.to(shift_logits.device) | |
loss = loss_fct(shift_logits, shift_labels) | |
if not self.comparison_mode and not (self.optimize_lm_head_only_at_start and (self.n_ahead + self.n_ahead_talk > 2)) or self.original_mode: | |
loss_list.append(loss) | |
talk_loss_list.append(nonzero_mean(loss).detach()) | |
if not attempted or self.comparison_mode: | |
rm_hidden_states = hidden_states | |
# print("Magnitude of RM hidden states before RM head", rm_hidden_states.norm()) | |
rm_logits = apply_head(self.lm_head, rm_hidden_states, detach=self.optimize_lm_head_only_at_start) | |
# don't allow it to predict the thinking token | |
if self.tokenizer_has_start_thought_token: | |
rm_logits[..., self.start_token_id] = -1e10 | |
if self.tokenizer_has_end_thought_token: | |
rm_logits[..., self.end_token_id] = -1e10 | |
probabilities = rm_logits | |
if probabilities_2d is not None: | |
prev_probabilities_2d = probabilities_2d.clone() | |
probabilities_2d = probabilities.view(-1, probabilities.size(-1)) | |
did_skip_sampling = skip_sampling | |
skip_sampling = False | |
if ahead_idx == 0 and self.use_start_thought_token: | |
override_token = self.start_token_id | |
elif self.use_thought_prefix and ahead_idx < self.tokenized_thought_prefix.shape[-1]: | |
override_token = self.tokenized_thought_prefix[..., ahead_idx] | |
elif ahead_idx == self.n_ahead - 2 and self.use_end_thought_token: | |
override_token = self.end_token_id | |
else: | |
override_token = None | |
if override_token is not None and self.n_ahead > 1: | |
# always start with the start token | |
probabilities_2d = torch.zeros_like(probabilities_2d) | |
probabilities_2d[:, override_token] = 1.0 | |
skip_sampling = True | |
elif ahead_idx >= self.n_ahead - 1: | |
if labels is not None: # we're in the talk phase | |
cur_talk_n = ahead_idx - (self.n_ahead - 1) + 1 | |
# print("Setting rm to labels", cur_talk_n, "during", ahead_idx) | |
shift_labels = labels[..., cur_talk_n:].contiguous().to(probabilities_2d.device) | |
padding = torch.full_like( | |
labels[..., :cur_talk_n], | |
self.tokenizer.pad_token_id, | |
dtype=torch.long, | |
device=shift_labels.device | |
) | |
new_rm_tokens = torch.cat( | |
[shift_labels, padding], | |
dim=-1 | |
) | |
# convert rm tokens to one-hot | |
probabilities_2d = F.one_hot(new_rm_tokens, num_classes=self.vocab_size).reshape(-1, self.vocab_size).to(probabilities_2d.dtype) | |
skip_sampling = True | |
else: | |
continue | |
temperature = self.gumbel_temperature if self.training else 0.001 | |
prev_sample_probs = sample_probs | |
sample_probs = probabilities_2d | |
if ahead_idx < self.n_ahead - 1 and not skip_sampling: | |
probabilities_2d = F.gumbel_softmax(sample_probs, tau=temperature, hard=True, dim=-1) | |
if self.gumbel_detach: | |
probabilities_2d = probabilities_2d.detach() | |
sampled_token_history.append(probabilities_2d.argmax(dim=-1).detach().cpu()) | |
# convert rm logits directly to embeddings | |
contains_start = self.use_start_thought_token and (probabilities_2d[..., self.start_token_id].sum() > 0) | |
contains_end = self.use_end_thought_token and (probabilities_2d[..., self.end_token_id].sum() > 0) | |
contains_thought = contains_start or contains_end | |
if not contains_thought: | |
with torch.set_grad_enabled(not self.train_only_thinking_embedding): | |
inputs_embeds = probabilities_2d @ (self.model.embed_tokens.weight.to(probabilities.device).to(probabilities.dtype)) | |
else: | |
thought_id = self.start_token_id if contains_start else self.end_token_id | |
cur_thought_embedding = start_embedding if contains_start else end_embedding | |
if self.use_reparam_for_thought_embeddings: | |
inputs_embeds = torch.randn(batch_size, seq_len, self.model.config.hidden_size, device=input_ids.device, dtype=cur_thought_embedding.dtype) | |
inputs_embeds = inputs_embeds * torch.exp(cur_thought_embedding[1]) + cur_thought_embedding[0] | |
if contains_start: | |
sampled_start = inputs_embeds.clone().detach() | |
else: | |
sampled_end = inputs_embeds.clone().detach() | |
else: | |
inputs_embeds = cur_thought_embedding.unsqueeze(0).repeat(batch_size, seq_len, 1) | |
inputs_embeds = inputs_embeds.view(probabilities.size(0), probabilities.size(1), -1).to(self.model.embed_tokens.weight.dtype) | |
inputs_embeds = inputs_embeds.view(probabilities.size(0), probabilities.size(1), -1).to(self.model.embed_tokens.weight.dtype) | |
if len(attention_mask.shape) == 2: | |
breakpoint() | |
else: | |
original_attention = attention_mask[..., :attention_mask.shape[-2]] | |
if self.use_upper_triangular: | |
new_attention = original_attention | |
else: | |
original_attention = original_attention == attention_mask.max() | |
# because eye isn't implemented for BF16, we need to handle the case | |
if not attention_mask.dtype == torch.bfloat16: | |
new_attention = torch.eye( | |
seq_len, dtype=attention_mask.dtype, device=attention_mask.device | |
) | |
else: | |
new_attention = torch.eye( | |
seq_len, dtype=torch.float32, device=attention_mask.device | |
).to(attention_mask.dtype) | |
new_attention = new_attention.view(1, 1, seq_len, seq_len).repeat(input_ids.shape[0], 1, 1, 1) | |
new_attention = new_attention * original_attention | |
new_attention[new_attention == 0] = attention_mask.min() | |
new_attention[new_attention == 1] = attention_mask.max() | |
attention_mask = torch.cat([attention_mask, new_attention], dim=-1) | |
past_key_values = outputs.past_key_values | |
position_ids = position_ids + 1 | |
if labels is not None and (self.n_ahead > 1 or not self.base_original_mode): | |
# Shift so that tokens < n predict n | |
# logits: abcdef -> bcdef? -> cdef?? | |
# labels: abcdef -> ?bcdef -> ??cdef | |
if ahead_idx == 0 and self.optimize_lm_head_only_at_start: | |
loss_logits = initial_loss_logits | |
else: | |
loss_logits = logits | |
shift_idx = 1 + max(0, ahead_idx - (self.n_ahead - 1)) | |
shift_logits = loss_logits[..., :-shift_idx, :].contiguous() | |
shift_labels = labels[..., shift_idx:].contiguous() | |
# Flatten the tokens | |
loss_fct = CrossEntropyLoss(reduction="none") | |
shift_logits = shift_logits.view(-1, self.config.vocab_size) | |
shift_labels = shift_labels.view(-1) | |
# Enable model parallelism | |
shift_labels = shift_labels.to(shift_logits.device) | |
# if shift_labels.min() == self.tokenizer.pad_token_id: | |
shift_labels = torch.where(shift_labels == self.tokenizer.pad_token_id, -100, shift_labels) | |
unreduced_loss = loss_fct(shift_logits, shift_labels) | |
if torch.any(unreduced_loss != unreduced_loss): | |
raise ValueError("NaN loss") | |
unreduced_loss = unreduced_loss.reshape(logits.shape[0], -1) | |
loss_list.append(unreduced_loss) | |
if self.use_policy_loss and ahead_idx > 0 and (ahead_idx > 1 or not self.use_start_thought_token): | |
# we treat the change in loss as the reward | |
previous_loss = loss_list[-2] | |
# for example, suppose n_ahead = 3 and n_ahead_talk = 2 | |
# note that we end at self.n_ahead + self.n_ahead_talk - 2 | |
# in this case, 5 - 2 = 3, so we end at ahead_idx = 3 | |
# we also predict the next token at ahead_idx = 2 | |
# when we get to ahead_idx = 2, we predict ahead | |
# so we shift by 1 | |
# note that this is ahead_idx = n_ahead - 1 | |
# when we get to ahead_idx = 3, we predict ahead | |
# so we shift by 2 | |
# note that this is ahead_idx = n_ahead | |
if ahead_idx < self.n_ahead - 1: | |
shift_amount = 0 | |
original_dqn_reward = (previous_loss - unreduced_loss).detach() | |
if self.first_and_last_mode: | |
original_dqn_reward = original_dqn_reward * 0.0 | |
else: | |
# logits vs cur_policy_shift_logits | |
# let's look at rm_logits and prev_rm_logits | |
shift_amount = max(0, ahead_idx - (self.n_ahead - 1)) | |
# let's say shift_amount = 2 | |
# abcdefg -> bcdefg? -> cdefg?? | |
# logits = [a b]c d e f[g] | |
# labels = [a b c]d e f g | |
cur_policy_shift_logits = initial_loss_logits[..., shift_amount:-1, :].contiguous().detach() | |
cur_policy_shift_labels = labels[..., 1 + shift_amount:].contiguous() | |
# Flatten the tokens | |
cur_policy_loss_fct = CrossEntropyLoss(reduction="none") | |
cur_policy_shift_logits = cur_policy_shift_logits.view(-1, self.config.vocab_size) | |
cur_policy_shift_labels = cur_policy_shift_labels.view(-1).clone() | |
# Enable model parallelism | |
cur_policy_shift_labels[cur_policy_shift_labels == self.tokenizer.pad_token_id] = -100 | |
cur_policy_shift_labels = cur_policy_shift_labels.to(cur_policy_shift_labels.device) | |
cur_policy_reward_base_loss = loss_fct( | |
cur_policy_shift_logits, cur_policy_shift_labels.to(cur_policy_shift_logits.device) | |
).reshape(logits.shape[0], -1) | |
original_dqn_reward = cur_policy_reward_base_loss.detach() - unreduced_loss | |
if not did_skip_sampling: | |
nonzero_indices = prev_probabilities_2d.nonzero() | |
action_loglikelihoods = F.log_softmax(prev_sample_probs / self.reinforce_temperature, dim=-1)[nonzero_indices[:, 0], nonzero_indices[:, 1]] | |
action_loglikelihoods_2d = action_loglikelihoods.reshape(batch_size, -1)[:, :-1 - shift_amount] | |
action_loglikelihoods_list.append(action_loglikelihoods_2d) | |
if policy_reward is None: | |
policy_reward = original_dqn_reward[:, :-(self.n_ahead_talk - shift_amount)] | |
else: | |
if self.n_ahead_talk > shift_amount: | |
added_reward = original_dqn_reward[:, :-(self.n_ahead_talk - shift_amount)] | |
else: | |
added_reward = original_dqn_reward | |
policy_reward += added_reward | |
if self.use_policy_loss and ahead_idx == self.n_ahead + self.n_ahead_talk - 2: | |
# only compute during the thinking phase | |
if self.use_reparam_for_thought_embeddings and (self.use_start_thought_token or self.use_end_thought_token): | |
# sampled_start, sampled_end | |
# calculate the log likelihood of the start and end embeddings sampled from a multivariate normal distribution | |
# with mean start_embedding[0] and standard deviation start_embedding[1] | |
if self.use_start_thought_token: | |
exp_start_std = torch.exp(start_embedding[1]) | |
start_loglikelihood = -0.5 * (sampled_start.detach() - start_embedding[0]) ** 2 / exp_start_std ** 2 - start_embedding[1] - 0.5 * math.log(2 * math.pi) | |
start_loglikelihood = start_loglikelihood.mean(dim=-1) | |
if self.use_end_thought_token: | |
exp_end_std = torch.exp(end_embedding[1]) | |
end_loglikelihood = -0.5 * (sampled_end.detach() - end_embedding[0]) ** 2 / exp_end_std ** 2 - end_embedding[1] - 0.5 * math.log(2 * math.pi) | |
end_loglikelihood = end_loglikelihood.mean(dim=-1) | |
# we use the mean instead of the sum to prevent dependence on the dimensionality of the embeddings | |
if self.use_end_thought_token and self.use_policy_loss_for_end_thought: | |
action_loglikelihoods_list.append(end_loglikelihood) | |
if self.use_start_thought_token: | |
action_loglikelihoods_list.append(start_loglikelihood) | |
if ahead_idx == self.n_ahead + self.n_ahead_talk - 2 and self.eval_mode: | |
with torch.no_grad(): | |
# calculate the 0.75 quantile of the rewards | |
filtered_tokens = input_ids[:, :policy_reward.shape[-1]].cpu().detach().numpy().flatten() | |
filtered_tokens_mask = filtered_tokens != self.tokenizer.pad_token_id | |
filtered_tokens = filtered_tokens[filtered_tokens_mask] | |
filtered_rewards = policy_reward.float().cpu().detach().numpy()[:, :seq_len - self.n_ahead_talk].flatten() | |
filtered_rewards = filtered_rewards[filtered_tokens_mask] | |
abs_reward_list = np.abs(policy_reward.float().cpu().detach().numpy()[:, :seq_len - self.n_ahead_talk].flatten()) | |
abs_reward_list = abs_reward_list[filtered_tokens_mask] | |
medium_quantile = np.quantile(abs_reward_list, 0.5) | |
upper_quantile = np.quantile(abs_reward_list, 0.95) | |
save_tokens_with_rewards_to_pdf( | |
filtered_tokens, | |
[0] + filtered_rewards.tolist(), | |
self.tokenizer, | |
output_file=f"texts/rewards_talk_{self.n_ahead_talk}_{self.training_steps}.pdf", | |
eps=medium_quantile, | |
eps2=upper_quantile, | |
) | |
def plot_kde(data, losses): | |
sns.set(style="whitegrid") | |
# Create the KDE plot | |
sns.kdeplot(data, fill=True) | |
# Set the plot title and labels | |
plt.title("KDE Plot") | |
plt.xlabel("Value") | |
plt.ylabel("Density") | |
# Save the plot | |
plt.savefig(f"texts/kde_talk_{self.n_ahead_talk}_{self.training_steps}.pdf") | |
# Close the plot | |
plt.close() | |
# Step 1: Create a base color palette | |
base_colors = sns.color_palette("light:#5A9", n_colors=256) # More colors for a smoother gradient | |
base_cmap = LinearSegmentedColormap.from_list("log_light", base_colors) | |
log_norm = LogNorm(vmin=1e-3, vmax=10) | |
sns.kdeplot(x=data, y=losses, fill=True, levels=20, norm=log_norm, cut=0, linewidths=0) | |
# limit y to 0 to 25 and x to -1 to 1 | |
plt.xlim(-1, 1) | |
plt.ylim(0, 25) | |
plt.savefig(f"texts/jointer_talk_{self.n_ahead_talk}_{self.training_steps}.pdf") | |
plt.close() | |
self.all_rewards.extend(filtered_rewards) | |
self.all_unreduced_losses.extend(unreduced_loss[:, :-1].flatten()[filtered_tokens_mask].float().flatten().cpu().detach().numpy()) | |
plot_kde(self.all_rewards, self.all_unreduced_losses) | |
for action_loglikelihoods_2d in action_loglikelihoods_list: | |
train_policy_reward = policy_reward | |
# discard rewards below the mean | |
if self.trice_mode and self.n_passes > 1: | |
batched_policy_reward = train_policy_reward.reshape(-1, self.n_passes, train_policy_reward.shape[-1]) | |
# average over the passes | |
train_policy_reward = batched_policy_reward - batched_policy_reward.mean(dim=1, keepdim=True) | |
train_policy_reward = train_policy_reward.reshape(-1, train_policy_reward.shape[-1]) | |
if self.subtract_mean_reward: | |
train_policy_reward = train_policy_reward - train_policy_reward.mean() | |
if self.remove_negative_rewards: | |
fixed_policy_reward = train_policy_reward.detach().clamp(min=0) | |
else: | |
fixed_policy_reward = train_policy_reward.detach() | |
actor_loss = -fixed_policy_reward * action_loglikelihoods_2d[:, :policy_reward.shape[-1]].to(policy_reward.device) | |
if action_loglikelihoods_2d.mean() < -1e4 and not self.use_policy_loss_just_for_thoughts: | |
# This will only happen when we force the next token to be the end of thought token | |
break | |
dqn_loss_list.append(actor_loss.mean()) | |
if loss_list: | |
if self.first_and_last_mode: | |
loss = sum( | |
self.loss_mean(loss_list[-(i + 1)]) for i in range(self.n_ahead_talk) | |
) * (1 - self.original_loss_weight) / self.n_ahead_talk | |
loss = loss + self.loss_mean(loss_list[0]) * self.original_loss_weight | |
# Let's NaN out the others | |
# e.g. if n_ahead_talk = 2 and the list is 5 long, we want to NaN out 1, 2 but keep 0, 3, 4 | |
for i in range(1, len(loss_list) - self.n_ahead_talk): | |
loss_list[i] = loss_list[i] * math.nan | |
elif self.first_only: | |
loss = self.loss_mean(loss_list[0]) | |
elif self.final_only_mode: | |
loss = sum( | |
self.loss_mean(loss_list[-i]) for i in range(1, self.n_ahead_talk + 1) | |
) / self.n_ahead_talk | |
else: | |
loss = None | |
for i in range(len(loss_list)): | |
cur_loss = self.loss_mean(loss_list[i]) | |
if loss is not None: | |
loss = loss + cur_loss.to(loss.device) | |
else: | |
loss = cur_loss | |
loss = loss / len(loss_list) | |
loss = loss * self.base_loss_beta | |
if dqn_loss_list: | |
dqn_loss = sum(dqn_loss_list) / len(dqn_loss_list) | |
if self.include_policy_loss: | |
if loss is not None: | |
loss += dqn_loss * self.policy_loss_beta | |
else: | |
loss = dqn_loss * self.policy_loss_beta | |
if not return_dict: | |
output = (logits,) + outputs[1:] | |
return (loss,) + output if loss is not None else output | |
base_log_dict = { | |
f"loss_{i}": nonzero_mean(loss_list[i]) for i in range(len(loss_list)) | |
} | |
if loss is not None: | |
base_log_dict["loss_train"] = loss.item() | |
for loss_key, loss_val in base_log_dict.items(): | |
log_dict[loss_key] += loss_val / self.n_tokens_print | |
if self.use_policy_loss and policy_reward is not None: | |
log_dict["policy_loss"] += dqn_loss / self.n_tokens_print | |
log_dict["policy_reward"] += policy_reward.mean() / self.n_tokens_print | |
if not loss_list: | |
if loss is not None: | |
log_dict["loss_0"] += loss / self.n_tokens_print | |
else: | |
log_dict["loss_final"] += nonzero_mean(loss_list[-1]) / self.n_tokens_print | |
log_dict["loss_talk"] += sum(nonzero_mean(cur_loss_item) for cur_loss_item in loss_list[-self.n_ahead_talk:]) / self.n_ahead_talk / self.n_tokens_print | |
# also log relative losses to loss_0 | |
if loss_list: | |
for i in range(len(loss_list)): | |
talk_idx = min(max(i - (self.n_ahead - 1), 0), len(talk_loss_list) - 1) | |
if not talk_loss_list: | |
cur_talk_loss = nonzero_mean(loss_list[0]) | |
else: | |
cur_talk_loss = talk_loss_list[talk_idx] | |
log_dict[f"rel_loss_{i}"] += (nonzero_mean(loss_list[i]) - cur_talk_loss) / self.n_tokens_print | |
if self.training: | |
self.training_steps += 1 | |
try: | |
# if self.training_steps % (self.gradient_accumulation_steps * 256) == 0: | |
if self.wandb_enabled: | |
if self.training_steps % (self.n_tokens_print) == 0 or not self.training:# and "0" in str(loss.device): | |
if not self.training: | |
new_log_dict = {} | |
for key in list(log_dict.keys()): | |
new_log_dict["eval_" + key] = log_dict[key] | |
log_dict = new_log_dict | |
log_dict["training_steps"] = self.training_steps | |
log_dict["batch_size"] = batch_size | |
log_dict["example_steps"] = self.training_steps * batch_size * self.gradient_accumulation_steps | |
if self.n_ahead > 1: | |
log_dict["compute_steps"] = self.training_steps * batch_size * (self.n_ahead + self.n_ahead_talk - 1) * self.gradient_accumulation_steps | |
else: # There's no overhead for talk tokens if there's no thinking | |
log_dict["compute_steps"] = self.training_steps * batch_size * self.gradient_accumulation_steps | |
# remove all nans | |
for key in list(log_dict.keys()): | |
if log_dict[key] != log_dict[key]: | |
del log_dict[key] | |
if self.training: | |
wandb.log(log_dict) | |
if self.training: | |
self.log_dict = defaultdict(int) | |
else: | |
self.eval_log_dict = defaultdict(int) | |
except Exception as e: | |
pass | |
if not self.training: | |
self.n_ahead_talk = n_ahead_talk_to_restore | |
self.n_passes = n_passes_to_restore | |
return CausalLMOutputWithPast( | |
loss=loss if loss is not None else None, | |
logits=(rm_logits if self.n_ahead > 1 else logits) if not self.output_logits_at_the_end else logits, | |
past_key_values=outputs.past_key_values, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
def prepare_inputs_for_generation( | |
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs | |
): | |
# Omit tokens covered by past_key_values | |
if past_key_values is not None: | |
if isinstance(past_key_values, Cache): | |
cache_length = past_key_values.get_seq_length() | |
past_length = past_key_values.seen_tokens | |
max_cache_length = past_key_values.get_max_length() | |
else: | |
cache_length = past_length = past_key_values[0][0].shape[2] | |
max_cache_length = None | |
# Keep only the unprocessed tokens: | |
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where | |
# some of the inputs are exclusively passed as part of the cache (e.g. when passing inputs_embeds as | |
# input) | |
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: | |
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] | |
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard | |
# input_ids based on the past_length. | |
elif past_length < input_ids.shape[1]: | |
input_ids = input_ids[:, past_length:] | |
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens. | |
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask. | |
if ( | |
max_cache_length is not None | |
and attention_mask is not None | |
and cache_length + input_ids.shape[1] > max_cache_length | |
): | |
attention_mask = attention_mask[:, -max_cache_length:] | |
position_ids = kwargs.get("position_ids", None) | |
if attention_mask is not None and position_ids is None: | |
# create position_ids on the fly for batch generation | |
position_ids = attention_mask.long().cumsum(-1) - 1 | |
position_ids.masked_fill_(attention_mask == 0, 1) | |
if past_key_values: | |
position_ids = position_ids[:, -input_ids.shape[1] :] | |
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step | |
if inputs_embeds is not None and past_key_values is None: | |
model_inputs = {"inputs_embeds": inputs_embeds} | |
else: | |
model_inputs = {"input_ids": input_ids} | |
model_inputs.update( | |
{ | |
"position_ids": position_ids, | |
"past_key_values": past_key_values, | |
"use_cache": kwargs.get("use_cache"), | |
"attention_mask": attention_mask, | |
} | |
) | |
return model_inputs | |
def _reorder_cache(past_key_values, beam_idx): | |
reordered_past = () | |
for layer_past in past_key_values: | |
reordered_past += ( | |
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), | |
) | |
return reordered_past | |