Lepolesa commited on
Commit
96986b1
1 Parent(s): ccf8754

End of training

Browse files
Files changed (2) hide show
  1. README.md +92 -0
  2. pytorch_model.bin +1 -1
README.md ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: distilbert-base-uncased
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - rotten_tomatoes
8
+ metrics:
9
+ - accuracy
10
+ - f1
11
+ - precision
12
+ - recall
13
+ model-index:
14
+ - name: my_distilbert_model
15
+ results:
16
+ - task:
17
+ name: Text Classification
18
+ type: text-classification
19
+ dataset:
20
+ name: rotten_tomatoes
21
+ type: rotten_tomatoes
22
+ config: default
23
+ split: test
24
+ args: default
25
+ metrics:
26
+ - name: Accuracy
27
+ type: accuracy
28
+ value: 0.849906191369606
29
+ - name: F1
30
+ type: f1
31
+ value: 0.8499040780048225
32
+ - name: Precision
33
+ type: precision
34
+ value: 0.8499258993286938
35
+ - name: Recall
36
+ type: recall
37
+ value: 0.849906191369606
38
+ ---
39
+
40
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
41
+ should probably proofread and complete it, then remove this comment. -->
42
+
43
+ # my_distilbert_model
44
+
45
+ This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the rotten_tomatoes dataset.
46
+ It achieves the following results on the evaluation set:
47
+ - Loss: 0.5344
48
+ - Accuracy: 0.8499
49
+ - F1: 0.8499
50
+ - Precision: 0.8499
51
+ - Recall: 0.8499
52
+
53
+ ## Model description
54
+
55
+ More information needed
56
+
57
+ ## Intended uses & limitations
58
+
59
+ More information needed
60
+
61
+ ## Training and evaluation data
62
+
63
+ More information needed
64
+
65
+ ## Training procedure
66
+
67
+ ### Training hyperparameters
68
+
69
+ The following hyperparameters were used during training:
70
+ - learning_rate: 2e-05
71
+ - train_batch_size: 16
72
+ - eval_batch_size: 16
73
+ - seed: 42
74
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
+ - lr_scheduler_type: linear
76
+ - num_epochs: 3
77
+
78
+ ### Training results
79
+
80
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
81
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
82
+ | 0.4179 | 1.0 | 534 | 0.3769 | 0.8415 | 0.8413 | 0.8428 | 0.8415 |
83
+ | 0.2395 | 2.0 | 1068 | 0.4314 | 0.8490 | 0.8490 | 0.8490 | 0.8490 |
84
+ | 0.1638 | 3.0 | 1602 | 0.5344 | 0.8499 | 0.8499 | 0.8499 | 0.8499 |
85
+
86
+
87
+ ### Framework versions
88
+
89
+ - Transformers 4.33.2
90
+ - Pytorch 1.10.0
91
+ - Datasets 2.14.5
92
+ - Tokenizers 0.13.3
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:18c4e110c0f4300554144e93b511700be3c2bbc18e303acca800e0aee0cc187d
3
  size 267852913
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eb358009d9464fa40d37347041cd1894ea7bb2e51b8426df70cf5e328d794b5e
3
  size 267852913