Add new SentenceTransformer model.
Browse files- README.md +295 -163
- model.safetensors +1 -1
- runs/Sep17_21-37-22_default/events.out.tfevents.1726609044.default.6407.0 +3 -0
- tokenizer_config.json +64 -14
README.md
CHANGED
@@ -1,201 +1,333 @@
|
|
1 |
---
|
2 |
base_model: colorfulscoop/sbert-base-ja
|
3 |
-
|
4 |
-
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
---
|
7 |
|
8 |
-
#
|
9 |
-
|
10 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
11 |
-
|
12 |
|
|
|
13 |
|
14 |
## Model Details
|
15 |
|
16 |
### Model Description
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
Generates similarity embeddings
|
21 |
|
22 |
-
- **
|
23 |
-
- **
|
24 |
-
- **
|
25 |
-
- **Model type:** [More Information Needed]
|
26 |
-
- **Language(s) (NLP):** ja
|
27 |
-
- **License:** cc-by-sa-4.0
|
28 |
-
- **Finetuned from model [optional]:** colorfulscoop/sbert-base-ja
|
29 |
|
30 |
-
### Model
|
31 |
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
-
|
35 |
-
- **Paper [optional]:** [More Information Needed]
|
36 |
-
- **Demo [optional]:** [More Information Needed]
|
37 |
|
38 |
-
|
39 |
|
40 |
-
|
41 |
|
42 |
-
|
|
|
|
|
43 |
|
44 |
-
|
|
|
|
|
45 |
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
-
|
|
|
|
|
|
|
|
|
49 |
|
50 |
-
<!--
|
|
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
### Out-of-Scope Use
|
55 |
|
56 |
-
|
|
|
57 |
|
58 |
-
|
|
|
59 |
|
60 |
-
|
61 |
|
62 |
-
|
63 |
|
64 |
-
|
|
|
65 |
|
66 |
-
|
|
|
67 |
|
68 |
-
|
|
|
69 |
|
70 |
-
|
|
|
71 |
|
72 |
-
|
|
|
73 |
|
74 |
-
|
|
|
75 |
|
76 |
-
|
|
|
77 |
|
78 |
## Training Details
|
79 |
|
80 |
-
### Training
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
-
|
150 |
-
-
|
151 |
-
-
|
152 |
-
-
|
153 |
-
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
199 |
## Model Card Contact
|
200 |
|
201 |
-
|
|
|
|
1 |
---
|
2 |
base_model: colorfulscoop/sbert-base-ja
|
3 |
+
library_name: sentence-transformers
|
4 |
+
pipeline_tag: sentence-similarity
|
5 |
+
tags:
|
6 |
+
- sentence-transformers
|
7 |
+
- sentence-similarity
|
8 |
+
- feature-extraction
|
9 |
+
- generated_from_trainer
|
10 |
+
- dataset_size:53
|
11 |
+
- loss:CosineSimilarityLoss
|
12 |
+
widget:
|
13 |
+
- source_sentence: 小さな 女の子 が 草 を 横切って 木 に 向かって 走り ます 。
|
14 |
+
sentences:
|
15 |
+
- 女の子 は 、 かつて 木 が 立って いた 裏庭 を 見 ながら 中 に い ました 。
|
16 |
+
- 人々 は 結婚 して い ます 。
|
17 |
+
- すべて の 色 の コート を 着た 子供 たち が 気球 に 飛び 込んで い ます 。
|
18 |
+
- source_sentence: 青い Tシャツ と 白い 帽子 を かぶった 男 が 、 空中 に 小さな 裸足 の 金髪 の 子供 を 抱えて い ます 。
|
19 |
+
sentences:
|
20 |
+
- 子供 を 抱きかかえた
|
21 |
+
- 女性 は 子供 を なだめて い ます 。
|
22 |
+
- 草 は 緑 でした
|
23 |
+
- source_sentence: 少年 は 木 の 切り株 に 座って い ます 。
|
24 |
+
sentences:
|
25 |
+
- フットボール の 試合 を 開始 する 準備 が でき ました
|
26 |
+
- 男 が ウィンドウ を 修正 し ます 。
|
27 |
+
- 木 を 切り 倒した 後 、 木 の 切り株 に 座って いる 少年 。
|
28 |
+
- source_sentence: 薄紫 色 の ドレス と 明るい ホット ピンク の 靴 を 着た 女性 が 、 水 と コーヒー を 飲んで テーブル に
|
29 |
+
座って い ます 。
|
30 |
+
sentences:
|
31 |
+
- 女の子 と 女性 が い ます 。
|
32 |
+
- 黄色 の 自転車 は レース で 他 の 自転車 を リード し ます 。
|
33 |
+
- ブラインド デート の 女性 が 座って 、 デート が 現れる の を 待ち ます 。
|
34 |
+
- source_sentence: 野球 の 試合 中 に 基地 を 走る 野球 選手 の シャープリー 。
|
35 |
+
sentences:
|
36 |
+
- 歩道 は 混んで い ます 。
|
37 |
+
- 車 は レース 中 です 。
|
38 |
+
- Sharp ley は ゲーム で プレイ して い ます 。
|
39 |
---
|
40 |
|
41 |
+
# SentenceTransformer based on colorfulscoop/sbert-base-ja
|
|
|
|
|
|
|
42 |
|
43 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [colorfulscoop/sbert-base-ja](https://huggingface.co/colorfulscoop/sbert-base-ja). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
44 |
|
45 |
## Model Details
|
46 |
|
47 |
### Model Description
|
48 |
+
- **Model Type:** Sentence Transformer
|
49 |
+
- **Base model:** [colorfulscoop/sbert-base-ja](https://huggingface.co/colorfulscoop/sbert-base-ja) <!-- at revision ecb8a98cd5176719ff7ab0d770a27420118732cf -->
|
50 |
+
- **Maximum Sequence Length:** 512 tokens
|
51 |
+
- **Output Dimensionality:** 768 tokens
|
52 |
+
- **Similarity Function:** Cosine Similarity
|
53 |
+
<!-- - **Training Dataset:** Unknown -->
|
54 |
+
<!-- - **Language:** Unknown -->
|
55 |
+
<!-- - **License:** Unknown -->
|
56 |
|
57 |
+
### Model Sources
|
|
|
|
|
58 |
|
59 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
60 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
61 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
|
|
|
|
|
|
|
|
62 |
|
63 |
+
### Full Model Architecture
|
64 |
|
65 |
+
```
|
66 |
+
SentenceTransformer(
|
67 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
68 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
69 |
+
)
|
70 |
+
```
|
71 |
|
72 |
+
## Usage
|
|
|
|
|
73 |
|
74 |
+
### Direct Usage (Sentence Transformers)
|
75 |
|
76 |
+
First install the Sentence Transformers library:
|
77 |
|
78 |
+
```bash
|
79 |
+
pip install -U sentence-transformers
|
80 |
+
```
|
81 |
|
82 |
+
Then you can load this model and run inference.
|
83 |
+
```python
|
84 |
+
from sentence_transformers import SentenceTransformer
|
85 |
|
86 |
+
# Download from the 🤗 Hub
|
87 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
88 |
+
# Run inference
|
89 |
+
sentences = [
|
90 |
+
'野球 の 試合 中 に 基地 を 走る 野球 選手 の シャープリー 。',
|
91 |
+
'Sharp ley は ゲーム で プレイ して い ます 。',
|
92 |
+
'歩道 は 混んで い ます 。',
|
93 |
+
]
|
94 |
+
embeddings = model.encode(sentences)
|
95 |
+
print(embeddings.shape)
|
96 |
+
# [3, 768]
|
97 |
|
98 |
+
# Get the similarity scores for the embeddings
|
99 |
+
similarities = model.similarity(embeddings, embeddings)
|
100 |
+
print(similarities.shape)
|
101 |
+
# [3, 3]
|
102 |
+
```
|
103 |
|
104 |
+
<!--
|
105 |
+
### Direct Usage (Transformers)
|
106 |
|
107 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
|
|
|
|
108 |
|
109 |
+
</details>
|
110 |
+
-->
|
111 |
|
112 |
+
<!--
|
113 |
+
### Downstream Usage (Sentence Transformers)
|
114 |
|
115 |
+
You can finetune this model on your own dataset.
|
116 |
|
117 |
+
<details><summary>Click to expand</summary>
|
118 |
|
119 |
+
</details>
|
120 |
+
-->
|
121 |
|
122 |
+
<!--
|
123 |
+
### Out-of-Scope Use
|
124 |
|
125 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
126 |
+
-->
|
127 |
|
128 |
+
<!--
|
129 |
+
## Bias, Risks and Limitations
|
130 |
|
131 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
132 |
+
-->
|
133 |
|
134 |
+
<!--
|
135 |
+
### Recommendations
|
136 |
|
137 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
138 |
+
-->
|
139 |
|
140 |
## Training Details
|
141 |
|
142 |
+
### Training Dataset
|
143 |
+
|
144 |
+
#### Unnamed Dataset
|
145 |
+
|
146 |
+
|
147 |
+
* Size: 53 training samples
|
148 |
+
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
|
149 |
+
* Approximate statistics based on the first 53 samples:
|
150 |
+
| | sentence_0 | sentence_1 | label |
|
151 |
+
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------|
|
152 |
+
| type | string | string | int |
|
153 |
+
| details | <ul><li>min: 14 tokens</li><li>mean: 36.25 tokens</li><li>max: 84 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 22.15 tokens</li><li>max: 38 tokens</li></ul> | <ul><li>0: ~35.85%</li><li>1: ~64.15%</li></ul> |
|
154 |
+
* Samples:
|
155 |
+
| sentence_0 | sentence_1 | label |
|
156 |
+
|:------------------------------------------------------------------------------------|:------------------------------------------|:---------------|
|
157 |
+
| <code>2 人 の カップル は バス で おしゃべり して い ます 。</code> | <code>2 つ の カップル は バス停 で 寝て い ます 。</code> | <code>1</code> |
|
158 |
+
| <code>眼鏡 を かけて いる 3 人 が 写真 の ポーズ を とり ます 。</code> | <code>人々 は 眼鏡 を かけて い ます</code> | <code>0</code> |
|
159 |
+
| <code>女性 が 通り の 角 に ある 車 椅子 に 乗って おり 、 白い シャツ を 着た 男性 が 通り を 渡ろう と して い ます 。</code> | <code>女性 と 男性 は ニューヨーク に い ます 。</code> | <code>1</code> |
|
160 |
+
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
|
161 |
+
```json
|
162 |
+
{
|
163 |
+
"loss_fct": "torch.nn.modules.loss.MSELoss"
|
164 |
+
}
|
165 |
+
```
|
166 |
+
|
167 |
+
### Training Hyperparameters
|
168 |
+
#### Non-Default Hyperparameters
|
169 |
+
|
170 |
+
- `per_device_train_batch_size`: 16
|
171 |
+
- `per_device_eval_batch_size`: 16
|
172 |
+
- `multi_dataset_batch_sampler`: round_robin
|
173 |
+
|
174 |
+
#### All Hyperparameters
|
175 |
+
<details><summary>Click to expand</summary>
|
176 |
+
|
177 |
+
- `overwrite_output_dir`: False
|
178 |
+
- `do_predict`: False
|
179 |
+
- `eval_strategy`: no
|
180 |
+
- `prediction_loss_only`: True
|
181 |
+
- `per_device_train_batch_size`: 16
|
182 |
+
- `per_device_eval_batch_size`: 16
|
183 |
+
- `per_gpu_train_batch_size`: None
|
184 |
+
- `per_gpu_eval_batch_size`: None
|
185 |
+
- `gradient_accumulation_steps`: 1
|
186 |
+
- `eval_accumulation_steps`: None
|
187 |
+
- `torch_empty_cache_steps`: None
|
188 |
+
- `learning_rate`: 5e-05
|
189 |
+
- `weight_decay`: 0.0
|
190 |
+
- `adam_beta1`: 0.9
|
191 |
+
- `adam_beta2`: 0.999
|
192 |
+
- `adam_epsilon`: 1e-08
|
193 |
+
- `max_grad_norm`: 1
|
194 |
+
- `num_train_epochs`: 3
|
195 |
+
- `max_steps`: -1
|
196 |
+
- `lr_scheduler_type`: linear
|
197 |
+
- `lr_scheduler_kwargs`: {}
|
198 |
+
- `warmup_ratio`: 0.0
|
199 |
+
- `warmup_steps`: 0
|
200 |
+
- `log_level`: passive
|
201 |
+
- `log_level_replica`: warning
|
202 |
+
- `log_on_each_node`: True
|
203 |
+
- `logging_nan_inf_filter`: True
|
204 |
+
- `save_safetensors`: True
|
205 |
+
- `save_on_each_node`: False
|
206 |
+
- `save_only_model`: False
|
207 |
+
- `restore_callback_states_from_checkpoint`: False
|
208 |
+
- `no_cuda`: False
|
209 |
+
- `use_cpu`: False
|
210 |
+
- `use_mps_device`: False
|
211 |
+
- `seed`: 42
|
212 |
+
- `data_seed`: None
|
213 |
+
- `jit_mode_eval`: False
|
214 |
+
- `use_ipex`: False
|
215 |
+
- `bf16`: False
|
216 |
+
- `fp16`: False
|
217 |
+
- `fp16_opt_level`: O1
|
218 |
+
- `half_precision_backend`: auto
|
219 |
+
- `bf16_full_eval`: False
|
220 |
+
- `fp16_full_eval`: False
|
221 |
+
- `tf32`: None
|
222 |
+
- `local_rank`: 0
|
223 |
+
- `ddp_backend`: None
|
224 |
+
- `tpu_num_cores`: None
|
225 |
+
- `tpu_metrics_debug`: False
|
226 |
+
- `debug`: []
|
227 |
+
- `dataloader_drop_last`: False
|
228 |
+
- `dataloader_num_workers`: 0
|
229 |
+
- `dataloader_prefetch_factor`: None
|
230 |
+
- `past_index`: -1
|
231 |
+
- `disable_tqdm`: False
|
232 |
+
- `remove_unused_columns`: True
|
233 |
+
- `label_names`: None
|
234 |
+
- `load_best_model_at_end`: False
|
235 |
+
- `ignore_data_skip`: False
|
236 |
+
- `fsdp`: []
|
237 |
+
- `fsdp_min_num_params`: 0
|
238 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
239 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
240 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
241 |
+
- `deepspeed`: None
|
242 |
+
- `label_smoothing_factor`: 0.0
|
243 |
+
- `optim`: adamw_torch
|
244 |
+
- `optim_args`: None
|
245 |
+
- `adafactor`: False
|
246 |
+
- `group_by_length`: False
|
247 |
+
- `length_column_name`: length
|
248 |
+
- `ddp_find_unused_parameters`: None
|
249 |
+
- `ddp_bucket_cap_mb`: None
|
250 |
+
- `ddp_broadcast_buffers`: False
|
251 |
+
- `dataloader_pin_memory`: True
|
252 |
+
- `dataloader_persistent_workers`: False
|
253 |
+
- `skip_memory_metrics`: True
|
254 |
+
- `use_legacy_prediction_loop`: False
|
255 |
+
- `push_to_hub`: False
|
256 |
+
- `resume_from_checkpoint`: None
|
257 |
+
- `hub_model_id`: None
|
258 |
+
- `hub_strategy`: every_save
|
259 |
+
- `hub_private_repo`: False
|
260 |
+
- `hub_always_push`: False
|
261 |
+
- `gradient_checkpointing`: False
|
262 |
+
- `gradient_checkpointing_kwargs`: None
|
263 |
+
- `include_inputs_for_metrics`: False
|
264 |
+
- `eval_do_concat_batches`: True
|
265 |
+
- `fp16_backend`: auto
|
266 |
+
- `push_to_hub_model_id`: None
|
267 |
+
- `push_to_hub_organization`: None
|
268 |
+
- `mp_parameters`:
|
269 |
+
- `auto_find_batch_size`: False
|
270 |
+
- `full_determinism`: False
|
271 |
+
- `torchdynamo`: None
|
272 |
+
- `ray_scope`: last
|
273 |
+
- `ddp_timeout`: 1800
|
274 |
+
- `torch_compile`: False
|
275 |
+
- `torch_compile_backend`: None
|
276 |
+
- `torch_compile_mode`: None
|
277 |
+
- `dispatch_batches`: None
|
278 |
+
- `split_batches`: None
|
279 |
+
- `include_tokens_per_second`: False
|
280 |
+
- `include_num_input_tokens_seen`: False
|
281 |
+
- `neftune_noise_alpha`: None
|
282 |
+
- `optim_target_modules`: None
|
283 |
+
- `batch_eval_metrics`: False
|
284 |
+
- `eval_on_start`: False
|
285 |
+
- `eval_use_gather_object`: False
|
286 |
+
- `batch_sampler`: batch_sampler
|
287 |
+
- `multi_dataset_batch_sampler`: round_robin
|
288 |
+
|
289 |
+
</details>
|
290 |
+
|
291 |
+
### Framework Versions
|
292 |
+
- Python: 3.10.14
|
293 |
+
- Sentence Transformers: 3.1.0
|
294 |
+
- Transformers: 4.44.2
|
295 |
+
- PyTorch: 2.4.1+cu121
|
296 |
+
- Accelerate: 0.34.2
|
297 |
+
- Datasets: 2.20.0
|
298 |
+
- Tokenizers: 0.19.1
|
299 |
+
|
300 |
+
## Citation
|
301 |
+
|
302 |
+
### BibTeX
|
303 |
+
|
304 |
+
#### Sentence Transformers
|
305 |
+
```bibtex
|
306 |
+
@inproceedings{reimers-2019-sentence-bert,
|
307 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
308 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
309 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
310 |
+
month = "11",
|
311 |
+
year = "2019",
|
312 |
+
publisher = "Association for Computational Linguistics",
|
313 |
+
url = "https://arxiv.org/abs/1908.10084",
|
314 |
+
}
|
315 |
+
```
|
316 |
+
|
317 |
+
<!--
|
318 |
+
## Glossary
|
319 |
+
|
320 |
+
*Clearly define terms in order to be accessible across audiences.*
|
321 |
+
-->
|
322 |
+
|
323 |
+
<!--
|
324 |
+
## Model Card Authors
|
325 |
+
|
326 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
327 |
+
-->
|
328 |
+
|
329 |
+
<!--
|
330 |
## Model Card Contact
|
331 |
|
332 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
333 |
+
-->
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 442491744
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3e280a07e6d4bc221c0a6e86125598a2fb6511e9bbe657aa75f9c550fecf327d
|
3 |
size 442491744
|
runs/Sep17_21-37-22_default/events.out.tfevents.1726609044.default.6407.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:df8127336f1b41994cef6dafa9f52e34a032066bd934e2fde8363188d7754373
|
3 |
+
size 25624
|
tokenizer_config.json
CHANGED
@@ -1,15 +1,65 @@
|
|
1 |
{
|
2 |
-
|
3 |
-
"
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
"
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<pad>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<unk>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": true,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": false
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": false
|
34 |
+
},
|
35 |
+
"4": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": false
|
42 |
+
},
|
43 |
+
"32000": {
|
44 |
+
"content": "[PAD]",
|
45 |
+
"lstrip": false,
|
46 |
+
"normalized": true,
|
47 |
+
"rstrip": false,
|
48 |
+
"single_word": false,
|
49 |
+
"special": false
|
50 |
+
}
|
51 |
+
},
|
52 |
+
"bos_token": "[CLS]",
|
53 |
+
"clean_up_tokenization_spaces": true,
|
54 |
+
"cls_token": "[CLS]",
|
55 |
+
"do_lower_case": false,
|
56 |
+
"eos_token": "[SEP]",
|
57 |
+
"mask_token": "[MASK]",
|
58 |
+
"model_max_length": 512,
|
59 |
+
"pad_token": "<pad>",
|
60 |
+
"sep_token": "[SEP]",
|
61 |
+
"sp_model_kwargs": {},
|
62 |
+
"split_by_punct": false,
|
63 |
+
"tokenizer_class": "DebertaV2Tokenizer",
|
64 |
+
"unk_token": "<unk>"
|
65 |
+
}
|