LeoChiuu commited on
Commit
f015bc5
1 Parent(s): 9ec3395

Add new SentenceTransformer model.

Browse files
README.md CHANGED
@@ -1,201 +1,333 @@
1
  ---
2
  base_model: colorfulscoop/sbert-base-ja
3
- language: ja
4
- license: cc-by-sa-4.0
5
- model_name: LeoChiuu/sbert-base-ja-arc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  ---
7
 
8
- # Model Card for LeoChiuu/sbert-base-ja-arc
9
-
10
- <!-- Provide a quick summary of what the model is/does. -->
11
-
12
 
 
13
 
14
  ## Model Details
15
 
16
  ### Model Description
 
 
 
 
 
 
 
 
17
 
18
- <!-- Provide a longer summary of what this model is. -->
19
-
20
- Generates similarity embeddings
21
 
22
- - **Developed by:** [More Information Needed]
23
- - **Funded by [optional]:** [More Information Needed]
24
- - **Shared by [optional]:** [More Information Needed]
25
- - **Model type:** [More Information Needed]
26
- - **Language(s) (NLP):** ja
27
- - **License:** cc-by-sa-4.0
28
- - **Finetuned from model [optional]:** colorfulscoop/sbert-base-ja
29
 
30
- ### Model Sources [optional]
31
 
32
- <!-- Provide the basic links for the model. -->
 
 
 
 
 
33
 
34
- - **Repository:** [More Information Needed]
35
- - **Paper [optional]:** [More Information Needed]
36
- - **Demo [optional]:** [More Information Needed]
37
 
38
- ## Uses
39
 
40
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
41
 
42
- ### Direct Use
 
 
43
 
44
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
 
45
 
46
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
47
 
48
- ### Downstream Use [optional]
 
 
 
 
49
 
50
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
 
51
 
52
- [More Information Needed]
53
-
54
- ### Out-of-Scope Use
55
 
56
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
 
57
 
58
- [More Information Needed]
 
59
 
60
- ## Bias, Risks, and Limitations
61
 
62
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
63
 
64
- [More Information Needed]
 
65
 
66
- ### Recommendations
 
67
 
68
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
 
69
 
70
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
 
71
 
72
- ## How to Get Started with the Model
 
73
 
74
- Use the code below to get started with the model.
 
75
 
76
- [More Information Needed]
 
77
 
78
  ## Training Details
79
 
80
- ### Training Data
81
-
82
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
83
-
84
- [More Information Needed]
85
-
86
- ### Training Procedure
87
-
88
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
89
-
90
- #### Preprocessing [optional]
91
-
92
- [More Information Needed]
93
-
94
-
95
- #### Training Hyperparameters
96
-
97
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
98
-
99
- #### Speeds, Sizes, Times [optional]
100
-
101
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
102
-
103
- [More Information Needed]
104
-
105
- ## Evaluation
106
-
107
- <!-- This section describes the evaluation protocols and provides the results. -->
108
-
109
- ### Testing Data, Factors & Metrics
110
-
111
- #### Testing Data
112
-
113
- <!-- This should link to a Dataset Card if possible. -->
114
-
115
- [More Information Needed]
116
-
117
- #### Factors
118
-
119
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
120
-
121
- [More Information Needed]
122
-
123
- #### Metrics
124
-
125
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
126
-
127
- [More Information Needed]
128
-
129
- ### Results
130
-
131
- [More Information Needed]
132
-
133
- #### Summary
134
-
135
-
136
-
137
- ## Model Examination [optional]
138
-
139
- <!-- Relevant interpretability work for the model goes here -->
140
-
141
- [More Information Needed]
142
-
143
- ## Environmental Impact
144
-
145
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
146
-
147
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
148
-
149
- - **Hardware Type:** [More Information Needed]
150
- - **Hours used:** [More Information Needed]
151
- - **Cloud Provider:** [More Information Needed]
152
- - **Compute Region:** [More Information Needed]
153
- - **Carbon Emitted:** [More Information Needed]
154
-
155
- ## Technical Specifications [optional]
156
-
157
- ### Model Architecture and Objective
158
-
159
- [More Information Needed]
160
-
161
- ### Compute Infrastructure
162
-
163
- [More Information Needed]
164
-
165
- #### Hardware
166
-
167
- [More Information Needed]
168
-
169
- #### Software
170
-
171
- [More Information Needed]
172
-
173
- ## Citation [optional]
174
-
175
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
176
-
177
- **BibTeX:**
178
-
179
- [More Information Needed]
180
-
181
- **APA:**
182
-
183
- [More Information Needed]
184
-
185
- ## Glossary [optional]
186
-
187
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
188
-
189
- [More Information Needed]
190
-
191
- ## More Information [optional]
192
-
193
- [More Information Needed]
194
-
195
- ## Model Card Authors [optional]
196
-
197
- [More Information Needed]
198
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
199
  ## Model Card Contact
200
 
201
- [More Information Needed]
 
 
1
  ---
2
  base_model: colorfulscoop/sbert-base-ja
3
+ library_name: sentence-transformers
4
+ pipeline_tag: sentence-similarity
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - generated_from_trainer
10
+ - dataset_size:53
11
+ - loss:CosineSimilarityLoss
12
+ widget:
13
+ - source_sentence: 小さな 女の子 が 草 を 横切って 木 に 向かって 走り ます 。
14
+ sentences:
15
+ - 女の子 は 、 かつて 木 が 立って いた 裏庭 を 見 ながら 中 に い ました 。
16
+ - 人々 は 結婚 して い ます 。
17
+ - すべて の 色 の コート を 着た 子供 たち が 気球 に 飛び 込んで い ます 。
18
+ - source_sentence: 青い Tシャツ と 白い 帽子 を かぶった 男 が 、 空中 に 小さな 裸足 の 金髪 の 子供 を 抱えて い ます 。
19
+ sentences:
20
+ - 子供 を 抱きかかえた
21
+ - 女性 は 子供 を なだめて い ます 。
22
+ - 草 は 緑 でした
23
+ - source_sentence: 少年 は 木 の 切り株 に 座って い ます 。
24
+ sentences:
25
+ - フットボール の 試合 を 開始 する 準備 が でき ました
26
+ - 男 が ウィンドウ を 修正 し ます 。
27
+ - 木 を 切り 倒した 後 、 木 の 切り株 に 座って いる 少年 。
28
+ - source_sentence: 薄紫 色 の ドレス と 明るい ホット ピンク の 靴 を 着た 女性 が 、 水 と コーヒー を 飲んで テーブル に
29
+ 座って い ます 。
30
+ sentences:
31
+ - 女の子 と 女性 が い ます 。
32
+ - 黄色 の 自転車 は レース で 他 の 自転車 を リード し ます 。
33
+ - ブラインド デート の 女性 が 座って 、 デート が 現れる の を 待ち ます 。
34
+ - source_sentence: 野球 の 試合 中 に 基地 を 走る 野球 選手 の シャープリー 。
35
+ sentences:
36
+ - 歩道 は 混んで い ます 。
37
+ - 車 は レース 中 です 。
38
+ - Sharp ley は ゲーム で プレイ して い ます 。
39
  ---
40
 
41
+ # SentenceTransformer based on colorfulscoop/sbert-base-ja
 
 
 
42
 
43
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [colorfulscoop/sbert-base-ja](https://huggingface.co/colorfulscoop/sbert-base-ja). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
44
 
45
  ## Model Details
46
 
47
  ### Model Description
48
+ - **Model Type:** Sentence Transformer
49
+ - **Base model:** [colorfulscoop/sbert-base-ja](https://huggingface.co/colorfulscoop/sbert-base-ja) <!-- at revision ecb8a98cd5176719ff7ab0d770a27420118732cf -->
50
+ - **Maximum Sequence Length:** 512 tokens
51
+ - **Output Dimensionality:** 768 tokens
52
+ - **Similarity Function:** Cosine Similarity
53
+ <!-- - **Training Dataset:** Unknown -->
54
+ <!-- - **Language:** Unknown -->
55
+ <!-- - **License:** Unknown -->
56
 
57
+ ### Model Sources
 
 
58
 
59
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
60
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
61
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
 
 
 
 
62
 
63
+ ### Full Model Architecture
64
 
65
+ ```
66
+ SentenceTransformer(
67
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
68
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
69
+ )
70
+ ```
71
 
72
+ ## Usage
 
 
73
 
74
+ ### Direct Usage (Sentence Transformers)
75
 
76
+ First install the Sentence Transformers library:
77
 
78
+ ```bash
79
+ pip install -U sentence-transformers
80
+ ```
81
 
82
+ Then you can load this model and run inference.
83
+ ```python
84
+ from sentence_transformers import SentenceTransformer
85
 
86
+ # Download from the 🤗 Hub
87
+ model = SentenceTransformer("sentence_transformers_model_id")
88
+ # Run inference
89
+ sentences = [
90
+ '野球 の 試合 中 に 基地 を 走る 野球 選手 の シャープリー 。',
91
+ 'Sharp ley は ゲーム で プレイ して い ます 。',
92
+ '歩道 は 混んで い ます 。',
93
+ ]
94
+ embeddings = model.encode(sentences)
95
+ print(embeddings.shape)
96
+ # [3, 768]
97
 
98
+ # Get the similarity scores for the embeddings
99
+ similarities = model.similarity(embeddings, embeddings)
100
+ print(similarities.shape)
101
+ # [3, 3]
102
+ ```
103
 
104
+ <!--
105
+ ### Direct Usage (Transformers)
106
 
107
+ <details><summary>Click to see the direct usage in Transformers</summary>
 
 
108
 
109
+ </details>
110
+ -->
111
 
112
+ <!--
113
+ ### Downstream Usage (Sentence Transformers)
114
 
115
+ You can finetune this model on your own dataset.
116
 
117
+ <details><summary>Click to expand</summary>
118
 
119
+ </details>
120
+ -->
121
 
122
+ <!--
123
+ ### Out-of-Scope Use
124
 
125
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
126
+ -->
127
 
128
+ <!--
129
+ ## Bias, Risks and Limitations
130
 
131
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
132
+ -->
133
 
134
+ <!--
135
+ ### Recommendations
136
 
137
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
138
+ -->
139
 
140
  ## Training Details
141
 
142
+ ### Training Dataset
143
+
144
+ #### Unnamed Dataset
145
+
146
+
147
+ * Size: 53 training samples
148
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
149
+ * Approximate statistics based on the first 53 samples:
150
+ | | sentence_0 | sentence_1 | label |
151
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------|
152
+ | type | string | string | int |
153
+ | details | <ul><li>min: 14 tokens</li><li>mean: 36.25 tokens</li><li>max: 84 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 22.15 tokens</li><li>max: 38 tokens</li></ul> | <ul><li>0: ~35.85%</li><li>1: ~64.15%</li></ul> |
154
+ * Samples:
155
+ | sentence_0 | sentence_1 | label |
156
+ |:------------------------------------------------------------------------------------|:------------------------------------------|:---------------|
157
+ | <code>2 人 の カップル は バス で おしゃべり して い ます 。</code> | <code>2 つ の カップル は バス停 で 寝て い ます 。</code> | <code>1</code> |
158
+ | <code>眼鏡 を かけて いる 3 人 が 写真 の ポーズ を とり ます 。</code> | <code>人々 は 眼鏡 を かけて い ます</code> | <code>0</code> |
159
+ | <code>女性 通り ある 椅子 乗って おり 白い シャツ 着た 男性 通り 渡ろう と して い ます 。</code> | <code>女性 と 男性 は ニューヨーク に い ます 。</code> | <code>1</code> |
160
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
161
+ ```json
162
+ {
163
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
164
+ }
165
+ ```
166
+
167
+ ### Training Hyperparameters
168
+ #### Non-Default Hyperparameters
169
+
170
+ - `per_device_train_batch_size`: 16
171
+ - `per_device_eval_batch_size`: 16
172
+ - `multi_dataset_batch_sampler`: round_robin
173
+
174
+ #### All Hyperparameters
175
+ <details><summary>Click to expand</summary>
176
+
177
+ - `overwrite_output_dir`: False
178
+ - `do_predict`: False
179
+ - `eval_strategy`: no
180
+ - `prediction_loss_only`: True
181
+ - `per_device_train_batch_size`: 16
182
+ - `per_device_eval_batch_size`: 16
183
+ - `per_gpu_train_batch_size`: None
184
+ - `per_gpu_eval_batch_size`: None
185
+ - `gradient_accumulation_steps`: 1
186
+ - `eval_accumulation_steps`: None
187
+ - `torch_empty_cache_steps`: None
188
+ - `learning_rate`: 5e-05
189
+ - `weight_decay`: 0.0
190
+ - `adam_beta1`: 0.9
191
+ - `adam_beta2`: 0.999
192
+ - `adam_epsilon`: 1e-08
193
+ - `max_grad_norm`: 1
194
+ - `num_train_epochs`: 3
195
+ - `max_steps`: -1
196
+ - `lr_scheduler_type`: linear
197
+ - `lr_scheduler_kwargs`: {}
198
+ - `warmup_ratio`: 0.0
199
+ - `warmup_steps`: 0
200
+ - `log_level`: passive
201
+ - `log_level_replica`: warning
202
+ - `log_on_each_node`: True
203
+ - `logging_nan_inf_filter`: True
204
+ - `save_safetensors`: True
205
+ - `save_on_each_node`: False
206
+ - `save_only_model`: False
207
+ - `restore_callback_states_from_checkpoint`: False
208
+ - `no_cuda`: False
209
+ - `use_cpu`: False
210
+ - `use_mps_device`: False
211
+ - `seed`: 42
212
+ - `data_seed`: None
213
+ - `jit_mode_eval`: False
214
+ - `use_ipex`: False
215
+ - `bf16`: False
216
+ - `fp16`: False
217
+ - `fp16_opt_level`: O1
218
+ - `half_precision_backend`: auto
219
+ - `bf16_full_eval`: False
220
+ - `fp16_full_eval`: False
221
+ - `tf32`: None
222
+ - `local_rank`: 0
223
+ - `ddp_backend`: None
224
+ - `tpu_num_cores`: None
225
+ - `tpu_metrics_debug`: False
226
+ - `debug`: []
227
+ - `dataloader_drop_last`: False
228
+ - `dataloader_num_workers`: 0
229
+ - `dataloader_prefetch_factor`: None
230
+ - `past_index`: -1
231
+ - `disable_tqdm`: False
232
+ - `remove_unused_columns`: True
233
+ - `label_names`: None
234
+ - `load_best_model_at_end`: False
235
+ - `ignore_data_skip`: False
236
+ - `fsdp`: []
237
+ - `fsdp_min_num_params`: 0
238
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
239
+ - `fsdp_transformer_layer_cls_to_wrap`: None
240
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
241
+ - `deepspeed`: None
242
+ - `label_smoothing_factor`: 0.0
243
+ - `optim`: adamw_torch
244
+ - `optim_args`: None
245
+ - `adafactor`: False
246
+ - `group_by_length`: False
247
+ - `length_column_name`: length
248
+ - `ddp_find_unused_parameters`: None
249
+ - `ddp_bucket_cap_mb`: None
250
+ - `ddp_broadcast_buffers`: False
251
+ - `dataloader_pin_memory`: True
252
+ - `dataloader_persistent_workers`: False
253
+ - `skip_memory_metrics`: True
254
+ - `use_legacy_prediction_loop`: False
255
+ - `push_to_hub`: False
256
+ - `resume_from_checkpoint`: None
257
+ - `hub_model_id`: None
258
+ - `hub_strategy`: every_save
259
+ - `hub_private_repo`: False
260
+ - `hub_always_push`: False
261
+ - `gradient_checkpointing`: False
262
+ - `gradient_checkpointing_kwargs`: None
263
+ - `include_inputs_for_metrics`: False
264
+ - `eval_do_concat_batches`: True
265
+ - `fp16_backend`: auto
266
+ - `push_to_hub_model_id`: None
267
+ - `push_to_hub_organization`: None
268
+ - `mp_parameters`:
269
+ - `auto_find_batch_size`: False
270
+ - `full_determinism`: False
271
+ - `torchdynamo`: None
272
+ - `ray_scope`: last
273
+ - `ddp_timeout`: 1800
274
+ - `torch_compile`: False
275
+ - `torch_compile_backend`: None
276
+ - `torch_compile_mode`: None
277
+ - `dispatch_batches`: None
278
+ - `split_batches`: None
279
+ - `include_tokens_per_second`: False
280
+ - `include_num_input_tokens_seen`: False
281
+ - `neftune_noise_alpha`: None
282
+ - `optim_target_modules`: None
283
+ - `batch_eval_metrics`: False
284
+ - `eval_on_start`: False
285
+ - `eval_use_gather_object`: False
286
+ - `batch_sampler`: batch_sampler
287
+ - `multi_dataset_batch_sampler`: round_robin
288
+
289
+ </details>
290
+
291
+ ### Framework Versions
292
+ - Python: 3.10.14
293
+ - Sentence Transformers: 3.1.0
294
+ - Transformers: 4.44.2
295
+ - PyTorch: 2.4.1+cu121
296
+ - Accelerate: 0.34.2
297
+ - Datasets: 2.20.0
298
+ - Tokenizers: 0.19.1
299
+
300
+ ## Citation
301
+
302
+ ### BibTeX
303
+
304
+ #### Sentence Transformers
305
+ ```bibtex
306
+ @inproceedings{reimers-2019-sentence-bert,
307
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
308
+ author = "Reimers, Nils and Gurevych, Iryna",
309
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
310
+ month = "11",
311
+ year = "2019",
312
+ publisher = "Association for Computational Linguistics",
313
+ url = "https://arxiv.org/abs/1908.10084",
314
+ }
315
+ ```
316
+
317
+ <!--
318
+ ## Glossary
319
+
320
+ *Clearly define terms in order to be accessible across audiences.*
321
+ -->
322
+
323
+ <!--
324
+ ## Model Card Authors
325
+
326
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
327
+ -->
328
+
329
+ <!--
330
  ## Model Card Contact
331
 
332
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
333
+ -->
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:370be1e346976206b1dc079fcae69305c15ede8e5e0005ebf3b4bec104745504
3
  size 442491744
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3e280a07e6d4bc221c0a6e86125598a2fb6511e9bbe657aa75f9c550fecf327d
3
  size 442491744
runs/Sep17_21-37-22_default/events.out.tfevents.1726609044.default.6407.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:df8127336f1b41994cef6dafa9f52e34a032066bd934e2fde8363188d7754373
3
+ size 25624
tokenizer_config.json CHANGED
@@ -1,15 +1,65 @@
1
  {
2
- "bos_token": "[CLS]",
3
- "clean_up_tokenization_spaces": true,
4
- "cls_token": "[CLS]",
5
- "do_lower_case": false,
6
- "eos_token": "[SEP]",
7
- "mask_token": "[MASK]",
8
- "model_max_length": 512,
9
- "pad_token": "<pad>",
10
- "sep_token": "[SEP]",
11
- "sp_model_kwargs": {},
12
- "split_by_punct": false,
13
- "tokenizer_class": "DebertaV2Tokenizer",
14
- "unk_token": "<unk>"
15
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<pad>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<unk>",
13
+ "lstrip": false,
14
+ "normalized": true,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": false
26
+ },
27
+ "3": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": false
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": false
42
+ },
43
+ "32000": {
44
+ "content": "[PAD]",
45
+ "lstrip": false,
46
+ "normalized": true,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": false
50
+ }
51
+ },
52
+ "bos_token": "[CLS]",
53
+ "clean_up_tokenization_spaces": true,
54
+ "cls_token": "[CLS]",
55
+ "do_lower_case": false,
56
+ "eos_token": "[SEP]",
57
+ "mask_token": "[MASK]",
58
+ "model_max_length": 512,
59
+ "pad_token": "<pad>",
60
+ "sep_token": "[SEP]",
61
+ "sp_model_kwargs": {},
62
+ "split_by_punct": false,
63
+ "tokenizer_class": "DebertaV2Tokenizer",
64
+ "unk_token": "<unk>"
65
+ }